Convex analysis and variational problems:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1999
|
Schriftenreihe: | Classics in applied mathematics
28 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader. - English language ed. originally published: Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co. [distributor], 1976, in series: Studies in mathematics and its applications ; v. 1 Includes bibliographical references (p. 391-401) and index Preface to the Classics edition -- Preface -- Part One. Fundamentals of convex analysis. Chapter I. Convex functions -- Chapter II. Minimization of convex functions and variational inequalities -- Chapter III. Duality in convex optimization -- Part Two. Duality and convex variational problems. Chapter IV. Applications of duality to the calculus of variations (I) -- Chapter V. Applications of duality to the calculus of variations (II) -- Chapter VI. Duality by the minimax theorem -- Chapter VII. Other applications of duality -- Part Three. Relaxation and non-convex variational problems. Chapter VIII. Existence of solutions for variational problems -- Chapter IX. Relaxation of non-convex variational problems (I) -- Chapter X. Relaxation of non-convex variational problems (II) -- Appendix I. An a priori estimate in non-convex programming -- Appendix II. Non-convex optimization problems depending on a parameter -- Comments -- Bibliography -- Index This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references |
Beschreibung: | 1 Online-Ressource (xiv, 402 Seiten) |
ISBN: | 0898714508 9780898714500 |
DOI: | 10.1137/1.9781611971088 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747326 | ||
003 | DE-604 | ||
005 | 20240214 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1999 sz |||| o||u| ||||||eng d | ||
010 | |a 99046956 | ||
020 | |a 0898714508 |c pbk. |9 0898714508 | ||
020 | |a 9780898714500 |c pbk. |9 9780898714500 | ||
024 | 7 | |a 10.1137/1.9781611971088 |2 doi | |
035 | |a (OCoLC)873886491 | ||
035 | |a (DE-599)BVBBV039747326 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
100 | 1 | |a Ekeland, Ivar |d 1944- |0 (DE-588)121956881 |4 aut | |
240 | 1 | 0 | |a Analyse convexe et problèmes variationnels |
245 | 1 | 0 | |a Convex analysis and variational problems |c Ivar Ekeland, Roger Témam |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1999 | |
300 | |a 1 Online-Ressource (xiv, 402 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Classics in applied mathematics |v 28 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader. - English language ed. originally published: Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co. [distributor], 1976, in series: Studies in mathematics and its applications ; v. 1 | ||
500 | |a Includes bibliographical references (p. 391-401) and index | ||
500 | |a Preface to the Classics edition -- Preface -- Part One. Fundamentals of convex analysis. Chapter I. Convex functions -- Chapter II. Minimization of convex functions and variational inequalities -- Chapter III. Duality in convex optimization -- Part Two. Duality and convex variational problems. Chapter IV. Applications of duality to the calculus of variations (I) -- Chapter V. Applications of duality to the calculus of variations (II) -- Chapter VI. Duality by the minimax theorem -- Chapter VII. Other applications of duality -- Part Three. Relaxation and non-convex variational problems. Chapter VIII. Existence of solutions for variational problems -- Chapter IX. Relaxation of non-convex variational problems (I) -- Chapter X. Relaxation of non-convex variational problems (II) -- Appendix I. An a priori estimate in non-convex programming -- Appendix II. Non-convex optimization problems depending on a parameter -- Comments -- Bibliography -- Index | ||
500 | |a This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references | ||
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Convex functions | |
650 | 4 | |a Calculus of variations | |
650 | 0 | 7 | |a Variationsrechnung |0 (DE-588)4062355-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Analysis |0 (DE-588)4138566-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Analysis |0 (DE-588)4138566-4 |D s |
689 | 0 | 1 | |a Variationsrechnung |0 (DE-588)4062355-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Temam, Roger |d 1940- |0 (DE-588)1024798135 |4 aut | |
710 | 2 | |a Society for Industrial and Applied Mathematics |0 (DE-588)5862-2 |4 isb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898714508 |w (DE-604)BV013422849 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898714500 |
830 | 0 | |a Classics in applied mathematics |v 28 |w (DE-604)BV040633091 |9 28 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611971088 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594857 | ||
966 | e | |u https://doi.org/10.1137/1.9781611971088 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971088 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971088 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971088 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637633085440 |
---|---|
any_adam_object | |
author | Ekeland, Ivar 1944- Temam, Roger 1940- |
author_GND | (DE-588)121956881 (DE-588)1024798135 |
author_facet | Ekeland, Ivar 1944- Temam, Roger 1940- |
author_role | aut aut |
author_sort | Ekeland, Ivar 1944- |
author_variant | i e ie r t rt |
building | Verbundindex |
bvnumber | BV039747326 |
classification_rvk | SK 660 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886491 (DE-599)BVBBV039747326 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611971088 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04552nmm a2200613zcb4500</leader><controlfield tag="001">BV039747326</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1999 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">99046956</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898714508</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898714508</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898714500</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898714500</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611971088</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886491</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747326</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ekeland, Ivar</subfield><subfield code="d">1944-</subfield><subfield code="0">(DE-588)121956881</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Analyse convexe et problèmes variationnels</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex analysis and variational problems</subfield><subfield code="c">Ivar Ekeland, Roger Témam</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 402 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">28</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader. - English language ed. originally published: Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co. [distributor], 1976, in series: Studies in mathematics and its applications ; v. 1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 391-401) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface to the Classics edition -- Preface -- Part One. Fundamentals of convex analysis. Chapter I. Convex functions -- Chapter II. Minimization of convex functions and variational inequalities -- Chapter III. Duality in convex optimization -- Part Two. Duality and convex variational problems. Chapter IV. Applications of duality to the calculus of variations (I) -- Chapter V. Applications of duality to the calculus of variations (II) -- Chapter VI. Duality by the minimax theorem -- Chapter VII. Other applications of duality -- Part Three. Relaxation and non-convex variational problems. Chapter VIII. Existence of solutions for variational problems -- Chapter IX. Relaxation of non-convex variational problems (I) -- Chapter X. Relaxation of non-convex variational problems (II) -- Appendix I. An a priori estimate in non-convex programming -- Appendix II. Non-convex optimization problems depending on a parameter -- Comments -- Bibliography -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of variations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Variationsrechnung</subfield><subfield code="0">(DE-588)4062355-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Temam, Roger</subfield><subfield code="d">1940-</subfield><subfield code="0">(DE-588)1024798135</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Society for Industrial and Applied Mathematics</subfield><subfield code="0">(DE-588)5862-2</subfield><subfield code="4">isb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898714508</subfield><subfield code="w">(DE-604)BV013422849</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898714500</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">28</subfield><subfield code="w">(DE-604)BV040633091</subfield><subfield code="9">28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611971088</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594857</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971088</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971088</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971088</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971088</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747326 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
institution_GND | (DE-588)5862-2 |
isbn | 0898714508 9780898714500 |
language | English |
lccn | 99046956 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594857 |
oclc_num | 873886491 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xiv, 402 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | Classics in applied mathematics |
series2 | Classics in applied mathematics |
spelling | Ekeland, Ivar 1944- (DE-588)121956881 aut Analyse convexe et problèmes variationnels Convex analysis and variational problems Ivar Ekeland, Roger Témam Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1999 1 Online-Ressource (xiv, 402 Seiten) txt rdacontent c rdamedia cr rdacarrier Classics in applied mathematics 28 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader. - English language ed. originally published: Amsterdam : North-Holland Pub. Co. ; New York : American Elsevier Pub. Co. [distributor], 1976, in series: Studies in mathematics and its applications ; v. 1 Includes bibliographical references (p. 391-401) and index Preface to the Classics edition -- Preface -- Part One. Fundamentals of convex analysis. Chapter I. Convex functions -- Chapter II. Minimization of convex functions and variational inequalities -- Chapter III. Duality in convex optimization -- Part Two. Duality and convex variational problems. Chapter IV. Applications of duality to the calculus of variations (I) -- Chapter V. Applications of duality to the calculus of variations (II) -- Chapter VI. Duality by the minimax theorem -- Chapter VII. Other applications of duality -- Part Three. Relaxation and non-convex variational problems. Chapter VIII. Existence of solutions for variational problems -- Chapter IX. Relaxation of non-convex variational problems (I) -- Chapter X. Relaxation of non-convex variational problems (II) -- Appendix I. An a priori estimate in non-convex programming -- Appendix II. Non-convex optimization problems depending on a parameter -- Comments -- Bibliography -- Index This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references Mathematical optimization Convex functions Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd rswk-swf Konvexe Analysis (DE-588)4138566-4 gnd rswk-swf Konvexe Analysis (DE-588)4138566-4 s Variationsrechnung (DE-588)4062355-5 s DE-604 Temam, Roger 1940- (DE-588)1024798135 aut Society for Industrial and Applied Mathematics (DE-588)5862-2 isb Erscheint auch als Druck-Ausgabe, Paperback 0898714508 (DE-604)BV013422849 Erscheint auch als Druck-Ausgabe, Paperback 9780898714500 Classics in applied mathematics 28 (DE-604)BV040633091 28 https://doi.org/10.1137/1.9781611971088 Verlag Volltext |
spellingShingle | Ekeland, Ivar 1944- Temam, Roger 1940- Convex analysis and variational problems Classics in applied mathematics Mathematical optimization Convex functions Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd Konvexe Analysis (DE-588)4138566-4 gnd |
subject_GND | (DE-588)4062355-5 (DE-588)4138566-4 |
title | Convex analysis and variational problems |
title_alt | Analyse convexe et problèmes variationnels |
title_auth | Convex analysis and variational problems |
title_exact_search | Convex analysis and variational problems |
title_full | Convex analysis and variational problems Ivar Ekeland, Roger Témam |
title_fullStr | Convex analysis and variational problems Ivar Ekeland, Roger Témam |
title_full_unstemmed | Convex analysis and variational problems Ivar Ekeland, Roger Témam |
title_short | Convex analysis and variational problems |
title_sort | convex analysis and variational problems |
topic | Mathematical optimization Convex functions Calculus of variations Variationsrechnung (DE-588)4062355-5 gnd Konvexe Analysis (DE-588)4138566-4 gnd |
topic_facet | Mathematical optimization Convex functions Calculus of variations Variationsrechnung Konvexe Analysis |
url | https://doi.org/10.1137/1.9781611971088 |
volume_link | (DE-604)BV040633091 |
work_keys_str_mv | AT ekelandivar analyseconvexeetproblemesvariationnels AT temamroger analyseconvexeetproblemesvariationnels AT societyforindustrialandappliedmathematics analyseconvexeetproblemesvariationnels AT ekelandivar convexanalysisandvariationalproblems AT temamroger convexanalysisandvariationalproblems AT societyforindustrialandappliedmathematics convexanalysisandvariationalproblems |