Mathematical theory of reliability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1996
|
Schriftenreihe: | Classics in applied mathematics
17 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 243-250) and indexes Preface to the Classics edition -- Preface -- Chapter 1. Introduction. historical background of the mathematical theory of reliability -- Chapter 2. Failure distributions -- Chapter 3. Operating characteristics of maintenance policies -- Chapter 4. Optimum maintenance policies -- Chapter 5. Stochastic models for complex systems -- Chapter 6. Redundancy optimization -- Chapter 7. Qualitative relationships for multicomponent structures -- Appendix 1. Total positivity -- Appendix 2. Test for increasing failure rate -- Appendix 3. Tables giving bounds on distributions with monotone failure rate -- References -- Index This monograph presents a survey of mathematical models useful in solving reliability problems. It includes a detailed discussion of life distributions corresponding to wearout and their use in determining maintenance policies, and covers important topics such as the theory of increasing (decreasing) failure rate distributions, optimum maintenance policies, and the theory of coherent systems. The emphasis throughout the book is on making minimal assumptions--and only those based on plausible physical considerations--so that the resulting mathematical deductions may be safely made about a large variety of commonly occurring reliability situations. The first part of the book is concerned with component reliability, while the second part covers system reliability, including problems that are as important today as they were in the 1960s. Mathematical reliability refers to a body of ideas, mathematical models, and methods directed toward the solution of problems in predicting, estimating, or optimizing the probability of survival, mean life, or, more generally, life distribution of components and systems. The enduring relevance of the subject of reliability and the continuing demand for a graduate-level book on this topic are the driving forces behind its republication. Unavailable since its original publication in 1965, Mathematical Theory of Reliability now joins a growing list of volumes in SIAM's Classics series. Although contemporary reliability books are now available, few provide as mathematically rigorous a treatment of the required probability background as this one |
Beschreibung: | 1 Online-Ressource (xv, 258 Seiten) |
ISBN: | 0898713692 9780898713695 |
DOI: | 10.1137/1.9781611971194 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747316 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1996 sz |||| o||u| ||||||eng d | ||
010 | |a 96013952 | ||
020 | |a 0898713692 |c pbk. |9 0898713692 | ||
020 | |a 9780898713695 |c pbk. |9 9780898713695 | ||
024 | 7 | |a 10.1137/1.9781611971194 |2 doi | |
035 | |a (OCoLC)775728890 | ||
035 | |a (DE-599)BVBBV039747316 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
100 | 1 | |a Barlow, Richard E. |d 1931- |e Verfasser |0 (DE-588)170529533 |4 aut | |
245 | 1 | 0 | |a Mathematical theory of reliability |c Richard E. Barlow, Frank Proschan with contributions by Larry C. Hunter |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1996 | |
300 | |a 1 Online-Ressource (xv, 258 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Classics in applied mathematics |v 17 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 243-250) and indexes | ||
500 | |a Preface to the Classics edition -- Preface -- Chapter 1. Introduction. historical background of the mathematical theory of reliability -- Chapter 2. Failure distributions -- Chapter 3. Operating characteristics of maintenance policies -- Chapter 4. Optimum maintenance policies -- Chapter 5. Stochastic models for complex systems -- Chapter 6. Redundancy optimization -- Chapter 7. Qualitative relationships for multicomponent structures -- Appendix 1. Total positivity -- Appendix 2. Test for increasing failure rate -- Appendix 3. Tables giving bounds on distributions with monotone failure rate -- References -- Index | ||
500 | |a This monograph presents a survey of mathematical models useful in solving reliability problems. It includes a detailed discussion of life distributions corresponding to wearout and their use in determining maintenance policies, and covers important topics such as the theory of increasing (decreasing) failure rate distributions, optimum maintenance policies, and the theory of coherent systems. The emphasis throughout the book is on making minimal assumptions--and only those based on plausible physical considerations--so that the resulting mathematical deductions may be safely made about a large variety of commonly occurring reliability situations. The first part of the book is concerned with component reliability, while the second part covers system reliability, including problems that are as important today as they were in the 1960s. Mathematical reliability refers to a body of ideas, mathematical models, and methods directed toward the solution of problems in predicting, estimating, or optimizing the probability of survival, mean life, or, more generally, life distribution of components and systems. The enduring relevance of the subject of reliability and the continuing demand for a graduate-level book on this topic are the driving forces behind its republication. Unavailable since its original publication in 1965, Mathematical Theory of Reliability now joins a growing list of volumes in SIAM's Classics series. Although contemporary reliability books are now available, few provide as mathematically rigorous a treatment of the required probability background as this one | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Reliability (Engineering) / Mathematical models | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Probabilities | |
650 | 0 | 7 | |a Zuverlässigkeitstheorie |0 (DE-588)4195525-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zuverlässigkeit |0 (DE-588)4059245-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zuverlässigkeitstheorie |0 (DE-588)4195525-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 1 | 1 | |a Zuverlässigkeit |0 (DE-588)4059245-5 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Proschan, Frank |d 1921-2003 |e Sonstige |0 (DE-588)172314488 |4 oth | |
700 | 1 | |a Hunter, Larry Clifton |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898713692 |w (DE-604)BV011050095 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898713695 |
830 | 0 | |a Classics in applied mathematics |v 17 |w (DE-604)BV040633091 |9 17 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611971194 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594847 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611971194 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971194 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971194 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971194 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637615259648 |
---|---|
any_adam_object | |
author | Barlow, Richard E. 1931- |
author_GND | (DE-588)170529533 (DE-588)172314488 |
author_facet | Barlow, Richard E. 1931- |
author_role | aut |
author_sort | Barlow, Richard E. 1931- |
author_variant | r e b re reb |
building | Verbundindex |
bvnumber | BV039747316 |
classification_rvk | SK 850 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)775728890 (DE-599)BVBBV039747316 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611971194 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05134nmm a2200661zcb4500</leader><controlfield tag="001">BV039747316</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1996 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">96013952</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898713692</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898713692</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898713695</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898713695</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611971194</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775728890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747316</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barlow, Richard E.</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170529533</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical theory of reliability</subfield><subfield code="c">Richard E. Barlow, Frank Proschan with contributions by Larry C. Hunter</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 258 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">17</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 243-250) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface to the Classics edition -- Preface -- Chapter 1. Introduction. historical background of the mathematical theory of reliability -- Chapter 2. Failure distributions -- Chapter 3. Operating characteristics of maintenance policies -- Chapter 4. Optimum maintenance policies -- Chapter 5. Stochastic models for complex systems -- Chapter 6. Redundancy optimization -- Chapter 7. Qualitative relationships for multicomponent structures -- Appendix 1. Total positivity -- Appendix 2. Test for increasing failure rate -- Appendix 3. Tables giving bounds on distributions with monotone failure rate -- References -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph presents a survey of mathematical models useful in solving reliability problems. It includes a detailed discussion of life distributions corresponding to wearout and their use in determining maintenance policies, and covers important topics such as the theory of increasing (decreasing) failure rate distributions, optimum maintenance policies, and the theory of coherent systems. The emphasis throughout the book is on making minimal assumptions--and only those based on plausible physical considerations--so that the resulting mathematical deductions may be safely made about a large variety of commonly occurring reliability situations. The first part of the book is concerned with component reliability, while the second part covers system reliability, including problems that are as important today as they were in the 1960s. Mathematical reliability refers to a body of ideas, mathematical models, and methods directed toward the solution of problems in predicting, estimating, or optimizing the probability of survival, mean life, or, more generally, life distribution of components and systems. The enduring relevance of the subject of reliability and the continuing demand for a graduate-level book on this topic are the driving forces behind its republication. Unavailable since its original publication in 1965, Mathematical Theory of Reliability now joins a growing list of volumes in SIAM's Classics series. Although contemporary reliability books are now available, few provide as mathematically rigorous a treatment of the required probability background as this one</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reliability (Engineering) / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zuverlässigkeitstheorie</subfield><subfield code="0">(DE-588)4195525-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zuverlässigkeit</subfield><subfield code="0">(DE-588)4059245-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zuverlässigkeitstheorie</subfield><subfield code="0">(DE-588)4195525-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zuverlässigkeit</subfield><subfield code="0">(DE-588)4059245-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Proschan, Frank</subfield><subfield code="d">1921-2003</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)172314488</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hunter, Larry Clifton</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898713692</subfield><subfield code="w">(DE-604)BV011050095</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898713695</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">17</subfield><subfield code="w">(DE-604)BV040633091</subfield><subfield code="9">17</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611971194</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594847</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971194</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971194</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971194</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971194</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747316 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898713692 9780898713695 |
language | English |
lccn | 96013952 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594847 |
oclc_num | 775728890 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xv, 258 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | Classics in applied mathematics |
series2 | Classics in applied mathematics |
spelling | Barlow, Richard E. 1931- Verfasser (DE-588)170529533 aut Mathematical theory of reliability Richard E. Barlow, Frank Proschan with contributions by Larry C. Hunter Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1996 1 Online-Ressource (xv, 258 Seiten) txt rdacontent c rdamedia cr rdacarrier Classics in applied mathematics 17 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 243-250) and indexes Preface to the Classics edition -- Preface -- Chapter 1. Introduction. historical background of the mathematical theory of reliability -- Chapter 2. Failure distributions -- Chapter 3. Operating characteristics of maintenance policies -- Chapter 4. Optimum maintenance policies -- Chapter 5. Stochastic models for complex systems -- Chapter 6. Redundancy optimization -- Chapter 7. Qualitative relationships for multicomponent structures -- Appendix 1. Total positivity -- Appendix 2. Test for increasing failure rate -- Appendix 3. Tables giving bounds on distributions with monotone failure rate -- References -- Index This monograph presents a survey of mathematical models useful in solving reliability problems. It includes a detailed discussion of life distributions corresponding to wearout and their use in determining maintenance policies, and covers important topics such as the theory of increasing (decreasing) failure rate distributions, optimum maintenance policies, and the theory of coherent systems. The emphasis throughout the book is on making minimal assumptions--and only those based on plausible physical considerations--so that the resulting mathematical deductions may be safely made about a large variety of commonly occurring reliability situations. The first part of the book is concerned with component reliability, while the second part covers system reliability, including problems that are as important today as they were in the 1960s. Mathematical reliability refers to a body of ideas, mathematical models, and methods directed toward the solution of problems in predicting, estimating, or optimizing the probability of survival, mean life, or, more generally, life distribution of components and systems. The enduring relevance of the subject of reliability and the continuing demand for a graduate-level book on this topic are the driving forces behind its republication. Unavailable since its original publication in 1965, Mathematical Theory of Reliability now joins a growing list of volumes in SIAM's Classics series. Although contemporary reliability books are now available, few provide as mathematically rigorous a treatment of the required probability background as this one Mathematisches Modell Reliability (Engineering) / Mathematical models Mathematical statistics Probabilities Zuverlässigkeitstheorie (DE-588)4195525-0 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Zuverlässigkeit (DE-588)4059245-5 gnd rswk-swf Zuverlässigkeitstheorie (DE-588)4195525-0 s DE-604 Statistik (DE-588)4056995-0 s Zuverlässigkeit (DE-588)4059245-5 s 1\p DE-604 Proschan, Frank 1921-2003 Sonstige (DE-588)172314488 oth Hunter, Larry Clifton Sonstige oth Erscheint auch als Druck-Ausgabe, Paperback 0898713692 (DE-604)BV011050095 Erscheint auch als Druck-Ausgabe, Paperback 9780898713695 Classics in applied mathematics 17 (DE-604)BV040633091 17 https://doi.org/10.1137/1.9781611971194 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Barlow, Richard E. 1931- Mathematical theory of reliability Classics in applied mathematics Mathematisches Modell Reliability (Engineering) / Mathematical models Mathematical statistics Probabilities Zuverlässigkeitstheorie (DE-588)4195525-0 gnd Statistik (DE-588)4056995-0 gnd Zuverlässigkeit (DE-588)4059245-5 gnd |
subject_GND | (DE-588)4195525-0 (DE-588)4056995-0 (DE-588)4059245-5 |
title | Mathematical theory of reliability |
title_auth | Mathematical theory of reliability |
title_exact_search | Mathematical theory of reliability |
title_full | Mathematical theory of reliability Richard E. Barlow, Frank Proschan with contributions by Larry C. Hunter |
title_fullStr | Mathematical theory of reliability Richard E. Barlow, Frank Proschan with contributions by Larry C. Hunter |
title_full_unstemmed | Mathematical theory of reliability Richard E. Barlow, Frank Proschan with contributions by Larry C. Hunter |
title_short | Mathematical theory of reliability |
title_sort | mathematical theory of reliability |
topic | Mathematisches Modell Reliability (Engineering) / Mathematical models Mathematical statistics Probabilities Zuverlässigkeitstheorie (DE-588)4195525-0 gnd Statistik (DE-588)4056995-0 gnd Zuverlässigkeit (DE-588)4059245-5 gnd |
topic_facet | Mathematisches Modell Reliability (Engineering) / Mathematical models Mathematical statistics Probabilities Zuverlässigkeitstheorie Statistik Zuverlässigkeit |
url | https://doi.org/10.1137/1.9781611971194 |
volume_link | (DE-604)BV040633091 |
work_keys_str_mv | AT barlowricharde mathematicaltheoryofreliability AT proschanfrank mathematicaltheoryofreliability AT hunterlarryclifton mathematicaltheoryofreliability |