Numerical solution of boundary value problems for ordinary differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1995
|
Ausgabe: | Originally published: Englewood Cliffs, N.J. : Prentice-Hall, 1988. (Prentice Hall series in computational mathematics) |
Schriftenreihe: | Classics in applied mathematics
13 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 534-585) and index List of examples -- Preface -- Chapter 1. Introduction -- Chapter 2. Review of numerical analysis and mathematical background -- Chapter 3. Theory of ordinary differential equations -- Chapter 4. Initial value methods -- Chapter 5. Finite difference methods -- Chapter 6. Decoupling -- Chapter 7. Solving linear equations -- Chapter 8. Solving nonlinear equations -- Chapter 9. Mesh selection -- Chapter 10. Singular perturbations -- Chapter 11. Special topics -- Appendix A. A multiple shooting code -- Appendix B. A collocation code -- References -- Bibliography -- Index This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner |
Beschreibung: | 1 Online-Ressource (xxv, 595 Seiten) |
ISBN: | 0898713544 9780898713541 |
DOI: | 10.1137/1.9781611971231 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747312 | ||
003 | DE-604 | ||
005 | 20240214 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1995 sz |||| o||u| ||||||eng d | ||
010 | |a 95033340 | ||
020 | |a 0898713544 |c pbk. |9 0898713544 | ||
020 | |a 9780898713541 |c pbk. |9 9780898713541 | ||
024 | 7 | |a 10.1137/1.9781611971231 |2 doi | |
035 | |a (OCoLC)873886356 | ||
035 | |a (DE-599)BVBBV039747312 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Ascher, Uri M. |d 1946- |e Verfasser |0 (DE-588)136140823 |4 aut | |
245 | 1 | 0 | |a Numerical solution of boundary value problems for ordinary differential equations |c Uri M. Ascher, Robert M.M. Mattheij, Robert D. Russell |
250 | |a Originally published: Englewood Cliffs, N.J. : Prentice-Hall, 1988. (Prentice Hall series in computational mathematics) | ||
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1995 | |
300 | |a 1 Online-Ressource (xxv, 595 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Classics in applied mathematics |v 13 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 534-585) and index | ||
500 | |a List of examples -- Preface -- Chapter 1. Introduction -- Chapter 2. Review of numerical analysis and mathematical background -- Chapter 3. Theory of ordinary differential equations -- Chapter 4. Initial value methods -- Chapter 5. Finite difference methods -- Chapter 6. Decoupling -- Chapter 7. Solving linear equations -- Chapter 8. Solving nonlinear equations -- Chapter 9. Mesh selection -- Chapter 10. Singular perturbations -- Chapter 11. Special topics -- Appendix A. A multiple shooting code -- Appendix B. A collocation code -- References -- Bibliography -- Index | ||
500 | |a This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner | ||
650 | 4 | |a Boundary value problems / Numerical solutions | |
650 | 0 | 7 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Grenzwertberechnung |0 (DE-588)4158161-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Mattheij, Robert M. M. |d 1947- |e Sonstige |0 (DE-588)143451413 |4 oth | |
700 | 1 | |a Russell, Robert D. |e Sonstige |0 (DE-588)113926014 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898713544 |w (DE-604)BV010582922 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898713541 |
830 | 0 | |a Classics in applied mathematics |v 13 |w (DE-604)BV040633091 |9 13 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611971231 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594843 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611971231 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971231 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971231 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971231 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637585899520 |
---|---|
any_adam_object | |
author | Ascher, Uri M. 1946- |
author_GND | (DE-588)136140823 (DE-588)143451413 (DE-588)113926014 |
author_facet | Ascher, Uri M. 1946- |
author_role | aut |
author_sort | Ascher, Uri M. 1946- |
author_variant | u m a um uma |
building | Verbundindex |
bvnumber | BV039747312 |
classification_rvk | SK 920 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886356 (DE-599)BVBBV039747312 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611971231 |
edition | Originally published: Englewood Cliffs, N.J. : Prentice-Hall, 1988. (Prentice Hall series in computational mathematics) |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05361nmm a2200781zcb4500</leader><controlfield tag="001">BV039747312</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240214 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1995 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">95033340</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898713544</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898713544</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898713541</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898713541</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611971231</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886356</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747312</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ascher, Uri M.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136140823</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical solution of boundary value problems for ordinary differential equations</subfield><subfield code="c">Uri M. Ascher, Robert M.M. Mattheij, Robert D. Russell</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Originally published: Englewood Cliffs, N.J. : Prentice-Hall, 1988. (Prentice Hall series in computational mathematics)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxv, 595 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 534-585) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">List of examples -- Preface -- Chapter 1. Introduction -- Chapter 2. Review of numerical analysis and mathematical background -- Chapter 3. Theory of ordinary differential equations -- Chapter 4. Initial value methods -- Chapter 5. Finite difference methods -- Chapter 6. Decoupling -- Chapter 7. Solving linear equations -- Chapter 8. Solving nonlinear equations -- Chapter 9. Mesh selection -- Chapter 10. Singular perturbations -- Chapter 11. Special topics -- Appendix A. A multiple shooting code -- Appendix B. A collocation code -- References -- Bibliography -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary value problems / Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Grenzwertberechnung</subfield><subfield code="0">(DE-588)4158161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mattheij, Robert M. M.</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)143451413</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Russell, Robert D.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)113926014</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898713544</subfield><subfield code="w">(DE-604)BV010582922</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898713541</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV040633091</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611971231</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594843</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971231</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971231</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971231</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971231</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV039747312 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898713544 9780898713541 |
language | English |
lccn | 95033340 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594843 |
oclc_num | 873886356 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xxv, 595 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | Classics in applied mathematics |
series2 | Classics in applied mathematics |
spelling | Ascher, Uri M. 1946- Verfasser (DE-588)136140823 aut Numerical solution of boundary value problems for ordinary differential equations Uri M. Ascher, Robert M.M. Mattheij, Robert D. Russell Originally published: Englewood Cliffs, N.J. : Prentice-Hall, 1988. (Prentice Hall series in computational mathematics) Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1995 1 Online-Ressource (xxv, 595 Seiten) txt rdacontent c rdamedia cr rdacarrier Classics in applied mathematics 13 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 534-585) and index List of examples -- Preface -- Chapter 1. Introduction -- Chapter 2. Review of numerical analysis and mathematical background -- Chapter 3. Theory of ordinary differential equations -- Chapter 4. Initial value methods -- Chapter 5. Finite difference methods -- Chapter 6. Decoupling -- Chapter 7. Solving linear equations -- Chapter 8. Solving nonlinear equations -- Chapter 9. Mesh selection -- Chapter 10. Singular perturbations -- Chapter 11. Special topics -- Appendix A. A multiple shooting code -- Appendix B. A collocation code -- References -- Bibliography -- Index This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner Boundary value problems / Numerical solutions Grenzwertberechnung (DE-588)4158161-1 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Anfangsrandwertproblem (DE-588)4001990-1 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Randwertproblem (DE-588)4048395-2 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Differentialgleichung (DE-588)4012249-9 s 2\p DE-604 Grenzwertberechnung (DE-588)4158161-1 s 3\p DE-604 Anfangsrandwertproblem (DE-588)4001990-1 s 4\p DE-604 Mattheij, Robert M. M. 1947- Sonstige (DE-588)143451413 oth Russell, Robert D. Sonstige (DE-588)113926014 oth Erscheint auch als Druck-Ausgabe, Paperback 0898713544 (DE-604)BV010582922 Erscheint auch als Druck-Ausgabe, Paperback 9780898713541 Classics in applied mathematics 13 (DE-604)BV040633091 13 https://doi.org/10.1137/1.9781611971231 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ascher, Uri M. 1946- Numerical solution of boundary value problems for ordinary differential equations Classics in applied mathematics Boundary value problems / Numerical solutions Grenzwertberechnung (DE-588)4158161-1 gnd Differentialgleichung (DE-588)4012249-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Randwertproblem (DE-588)4048395-2 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
subject_GND | (DE-588)4158161-1 (DE-588)4012249-9 (DE-588)4128130-5 (DE-588)4048395-2 (DE-588)4001990-1 (DE-588)4020929-5 (DE-588)4143389-0 |
title | Numerical solution of boundary value problems for ordinary differential equations |
title_auth | Numerical solution of boundary value problems for ordinary differential equations |
title_exact_search | Numerical solution of boundary value problems for ordinary differential equations |
title_full | Numerical solution of boundary value problems for ordinary differential equations Uri M. Ascher, Robert M.M. Mattheij, Robert D. Russell |
title_fullStr | Numerical solution of boundary value problems for ordinary differential equations Uri M. Ascher, Robert M.M. Mattheij, Robert D. Russell |
title_full_unstemmed | Numerical solution of boundary value problems for ordinary differential equations Uri M. Ascher, Robert M.M. Mattheij, Robert D. Russell |
title_short | Numerical solution of boundary value problems for ordinary differential equations |
title_sort | numerical solution of boundary value problems for ordinary differential equations |
topic | Boundary value problems / Numerical solutions Grenzwertberechnung (DE-588)4158161-1 gnd Differentialgleichung (DE-588)4012249-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Randwertproblem (DE-588)4048395-2 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd |
topic_facet | Boundary value problems / Numerical solutions Grenzwertberechnung Differentialgleichung Numerisches Verfahren Randwertproblem Anfangsrandwertproblem Gewöhnliche Differentialgleichung Aufgabensammlung |
url | https://doi.org/10.1137/1.9781611971231 |
volume_link | (DE-604)BV040633091 |
work_keys_str_mv | AT ascherurim numericalsolutionofboundaryvalueproblemsforordinarydifferentialequations AT mattheijrobertmm numericalsolutionofboundaryvalueproblemsforordinarydifferentialequations AT russellrobertd numericalsolutionofboundaryvalueproblemsforordinarydifferentialequations |