Nonlinear programming:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics
1994
|
Ausgabe: | Originally published: New York : McGraw-Hill, 1969, in series: McGraw-Hill series in systems science |
Schriftenreihe: | Classics in applied mathematics
10 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 205-212) and indexes Preface to the Classic edition -- Chapter 1. The nonlinear programming problem, preliminary concepts, and notation -- Chapter 2. Linear inequalities and theorems of the alternative -- Chapter 3. Convex sets in Rn -- Chapter 4. Convex and concave functions -- Chapter 5. Saddlepoint optimality criteria in nonlinear programming without differentiability -- Chapter 6. Differentiable convex and concave functions -- Chapter 7. Optimality criteria in nonlinear programming with differentiability -- Chapter 8. Duality in nonlinear programming -- Chapter 9. Generalizations of convex functions. quasiconvex, strictly quasiconvex, and pseudoconvex functions -- Chapter 10. Optimality and duality for generalized convex and concave functions -- Chapter 11. Optimality and duality in the presence of nonlinear equality constraints -- Appendix A. Vectors and matrices -- Appendix B. Resume of some topological properties of Rn -- Appendix C. Continuous and semicontinuous functions, minima and infima -- Appendix D. Differentiable functions, mean-value and implicit function theorems -- Bibliography -- Name index -- Subject index This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions |
Beschreibung: | 1 Online-Ressource (xv, 220 Seiten) |
ISBN: | 0898713412 9780898713411 |
DOI: | 10.1137/1.9781611971255 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747310 | ||
003 | DE-604 | ||
005 | 20210223 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1994 sz |||| o||u| ||||||eng d | ||
010 | |a 94036844 | ||
020 | |a 0898713412 |c pbk. |9 0898713412 | ||
020 | |a 9780898713411 |c pbk. |9 9780898713411 | ||
024 | 7 | |a 10.1137/1.9781611971255 |2 doi | |
035 | |a (OCoLC)873886418 | ||
035 | |a (DE-599)BVBBV039747310 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a QH 400 |0 (DE-625)141571: |2 rvk | ||
084 | |a QH 421 |0 (DE-625)141575: |2 rvk | ||
084 | |a QH 425 |0 (DE-625)141579: |2 rvk | ||
084 | |a SD 1970 |0 (DE-625)142704: |2 rvk | ||
084 | |a SK 870 |0 (DE-625)143265: |2 rvk | ||
100 | 1 | |a Mangasarian, Olvi L. |d 1934-2020 |e Verfasser |0 (DE-588)136623077 |4 aut | |
245 | 1 | 0 | |a Nonlinear programming |c Olvi L. Mangasarian |
250 | |a Originally published: New York : McGraw-Hill, 1969, in series: McGraw-Hill series in systems science | ||
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics |c 1994 | |
300 | |a 1 Online-Ressource (xv, 220 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Classics in applied mathematics |v 10 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 205-212) and indexes | ||
500 | |a Preface to the Classic edition -- Chapter 1. The nonlinear programming problem, preliminary concepts, and notation -- Chapter 2. Linear inequalities and theorems of the alternative -- Chapter 3. Convex sets in Rn -- Chapter 4. Convex and concave functions -- Chapter 5. Saddlepoint optimality criteria in nonlinear programming without differentiability -- Chapter 6. Differentiable convex and concave functions -- Chapter 7. Optimality criteria in nonlinear programming with differentiability -- Chapter 8. Duality in nonlinear programming -- Chapter 9. Generalizations of convex functions. quasiconvex, strictly quasiconvex, and pseudoconvex functions -- Chapter 10. Optimality and duality for generalized convex and concave functions -- Chapter 11. Optimality and duality in the presence of nonlinear equality constraints -- Appendix A. Vectors and matrices -- Appendix B. Resume of some topological properties of Rn -- Appendix C. Continuous and semicontinuous functions, minima and infima -- Appendix D. Differentiable functions, mean-value and implicit function theorems -- Bibliography -- Name index -- Subject index | ||
500 | |a This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions | ||
650 | 4 | |a Nonlinear programming | |
650 | 0 | 7 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898713412 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898713411 |
830 | 0 | |a Classics in applied mathematics |v 10 |w (DE-604)BV040633091 |9 10 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611971255 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594841 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611971255 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971255 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971255 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611971255 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637598482432 |
---|---|
any_adam_object | |
author | Mangasarian, Olvi L. 1934-2020 |
author_GND | (DE-588)136623077 |
author_facet | Mangasarian, Olvi L. 1934-2020 |
author_role | aut |
author_sort | Mangasarian, Olvi L. 1934-2020 |
author_variant | o l m ol olm |
building | Verbundindex |
bvnumber | BV039747310 |
classification_rvk | QH 400 QH 421 QH 425 SD 1970 SK 870 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886418 (DE-599)BVBBV039747310 |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1137/1.9781611971255 |
edition | Originally published: New York : McGraw-Hill, 1969, in series: McGraw-Hill series in systems science |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05588nmm a2200685zcb4500</leader><controlfield tag="001">BV039747310</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210223 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1994 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">94036844</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898713412</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898713412</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898713411</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898713411</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611971255</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747310</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 400</subfield><subfield code="0">(DE-625)141571:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 421</subfield><subfield code="0">(DE-625)141575:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 425</subfield><subfield code="0">(DE-625)141579:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SD 1970</subfield><subfield code="0">(DE-625)142704:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 870</subfield><subfield code="0">(DE-625)143265:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mangasarian, Olvi L.</subfield><subfield code="d">1934-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136623077</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear programming</subfield><subfield code="c">Olvi L. Mangasarian</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Originally published: New York : McGraw-Hill, 1969, in series: McGraw-Hill series in systems science</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 220 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 205-212) and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface to the Classic edition -- Chapter 1. The nonlinear programming problem, preliminary concepts, and notation -- Chapter 2. Linear inequalities and theorems of the alternative -- Chapter 3. Convex sets in Rn -- Chapter 4. Convex and concave functions -- Chapter 5. Saddlepoint optimality criteria in nonlinear programming without differentiability -- Chapter 6. Differentiable convex and concave functions -- Chapter 7. Optimality criteria in nonlinear programming with differentiability -- Chapter 8. Duality in nonlinear programming -- Chapter 9. Generalizations of convex functions. quasiconvex, strictly quasiconvex, and pseudoconvex functions -- Chapter 10. Optimality and duality for generalized convex and concave functions -- Chapter 11. Optimality and duality in the presence of nonlinear equality constraints -- Appendix A. Vectors and matrices -- Appendix B. Resume of some topological properties of Rn -- Appendix C. Continuous and semicontinuous functions, minima and infima -- Appendix D. Differentiable functions, mean-value and implicit function theorems -- Bibliography -- Name index -- Subject index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898713412</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898713411</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Classics in applied mathematics</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV040633091</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611971255</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594841</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971255</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971255</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971255</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611971255</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV039747310 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898713412 9780898713411 |
language | English |
lccn | 94036844 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594841 |
oclc_num | 873886418 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xv, 220 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Society for Industrial and Applied Mathematics |
record_format | marc |
series | Classics in applied mathematics |
series2 | Classics in applied mathematics |
spelling | Mangasarian, Olvi L. 1934-2020 Verfasser (DE-588)136623077 aut Nonlinear programming Olvi L. Mangasarian Originally published: New York : McGraw-Hill, 1969, in series: McGraw-Hill series in systems science Philadelphia, Pa. Society for Industrial and Applied Mathematics 1994 1 Online-Ressource (xv, 220 Seiten) txt rdacontent c rdamedia cr rdacarrier Classics in applied mathematics 10 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 205-212) and indexes Preface to the Classic edition -- Chapter 1. The nonlinear programming problem, preliminary concepts, and notation -- Chapter 2. Linear inequalities and theorems of the alternative -- Chapter 3. Convex sets in Rn -- Chapter 4. Convex and concave functions -- Chapter 5. Saddlepoint optimality criteria in nonlinear programming without differentiability -- Chapter 6. Differentiable convex and concave functions -- Chapter 7. Optimality criteria in nonlinear programming with differentiability -- Chapter 8. Duality in nonlinear programming -- Chapter 9. Generalizations of convex functions. quasiconvex, strictly quasiconvex, and pseudoconvex functions -- Chapter 10. Optimality and duality for generalized convex and concave functions -- Chapter 11. Optimality and duality in the presence of nonlinear equality constraints -- Appendix A. Vectors and matrices -- Appendix B. Resume of some topological properties of Rn -- Appendix C. Continuous and semicontinuous functions, minima and infima -- Appendix D. Differentiable functions, mean-value and implicit function theorems -- Bibliography -- Name index -- Subject index This reprint of the 1969 book of the same name is a concise, rigorous, yet accessible, account of the fundamentals of constrained optimization theory. Many problems arising in diverse fields such as machine learning, medicine, chemical engineering, structural design, and airline scheduling can be reduced to a constrained optimization problem. This book provides readers with the fundamentals needed to study and solve such problems. Beginning with a chapter on linear inequalities and theorems of the alternative, basics of convex sets and separation theorems are then derived based on these theorems. This is followed by a chapter on convex functions that includes theorems of the alternative for such functions. These results are used in obtaining the saddlepoint optimality conditions of nonlinear programming without differentiability assumptions. Properties of differentiable convex functions are derived and then used in two key chapters of the book, one on optimality conditions for differentiable nonlinear programs and one on duality in nonlinear programming. Generalizations of convex functions to pseudoconvex and quasiconvex functions are given and then used to obtain generalized optimality conditions and duality results in the presence of nonlinear equality constraints. The book has four useful self-contained appendices on vectors and matrices, topological properties of n-dimensional real space, continuity and minimization, and differentiable functions Nonlinear programming Nichtlineare Optimierung (DE-588)4128192-5 gnd rswk-swf Optimierung (DE-588)4043664-0 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Nichtlineare Optimierung (DE-588)4128192-5 s DE-604 Optimierung (DE-588)4043664-0 s 3\p DE-604 Erscheint auch als Druck-Ausgabe, Paperback 0898713412 Erscheint auch als Druck-Ausgabe, Paperback 9780898713411 Classics in applied mathematics 10 (DE-604)BV040633091 10 https://doi.org/10.1137/1.9781611971255 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mangasarian, Olvi L. 1934-2020 Nonlinear programming Classics in applied mathematics Nonlinear programming Nichtlineare Optimierung (DE-588)4128192-5 gnd Optimierung (DE-588)4043664-0 gnd |
subject_GND | (DE-588)4128192-5 (DE-588)4043664-0 (DE-588)4151278-9 (DE-588)4123623-3 |
title | Nonlinear programming |
title_auth | Nonlinear programming |
title_exact_search | Nonlinear programming |
title_full | Nonlinear programming Olvi L. Mangasarian |
title_fullStr | Nonlinear programming Olvi L. Mangasarian |
title_full_unstemmed | Nonlinear programming Olvi L. Mangasarian |
title_short | Nonlinear programming |
title_sort | nonlinear programming |
topic | Nonlinear programming Nichtlineare Optimierung (DE-588)4128192-5 gnd Optimierung (DE-588)4043664-0 gnd |
topic_facet | Nonlinear programming Nichtlineare Optimierung Optimierung Einführung Lehrbuch |
url | https://doi.org/10.1137/1.9781611971255 |
volume_link | (DE-604)BV040633091 |
work_keys_str_mv | AT mangasarianolvil nonlinearprogramming |