Multilevel projection methods for partial differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics
1992
|
Schriftenreihe: | CBMS-NSF regional conference series in applied mathematics
62 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references and index Chapter 1. Fundamentals. Introduction; Notation and conventions; Prototype problems; Discretization by projections; Realizability and nodal representations; Interlevel transfer matrices; Error measures -- Chapter 2. Multilevel projections methods. Abstract framework: the Multilevel Projection method (PML); The Multigrid method (MG); the Fast Adaptive Composite grid method (FAC); Prototype problems; Relaxation; Coarse-level realizability and recursiveness; Parallelization: Asynchronous FAC (AFAC); Other practical matters; Summary -- Chapter 3. Unigrid. Basic Unigrid scheme; Multgrid simulation; FAC simulation; Performance assessment; Caveats -- Chapter 4. Paradigms. Rayleigh-Ritz 1: parameter estimation; Rayleigh-Ritz 2: transport equations: Galerkin 1: general Eigenvalue problems; Galerkin 2: Riccati equations; Petrov-Galerkin 1: the Finite Volume Element method (FVE); Petrov-Galerkin 2: image reconstruction -- Chapter 5. Perspectives -- References -- Appendix A. Simple Unigrid code -- Appendix B. More efficient Unigrid code -- Appendix C. Modification to Unigrid code for local refinement The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick |
Beschreibung: | 1 Online-Ressource (vi, 114 Seiten) |
ISBN: | 0898712920 9780898712926 |
DOI: | 10.1137/1.9781611970098 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747291 | ||
003 | DE-604 | ||
005 | 20210210 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1992 sz |||| o||u| ||||||eng d | ||
010 | |a 91039536 | ||
020 | |a 0898712920 |c pbk. |9 0898712920 | ||
020 | |a 9780898712926 |c pbk. |9 9780898712926 | ||
024 | 7 | |a 10.1137/1.9781611970098 |2 doi | |
035 | |a (OCoLC)873886405 | ||
035 | |a (DE-599)BVBBV039747291 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a SI 196 |0 (DE-625)143099: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a McCormick, Stephen F. |d 1944- |e Verfasser |0 (DE-588)142774065 |4 aut | |
245 | 1 | 0 | |a Multilevel projection methods for partial differential equations |c Stephen F. McCormick |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics |c 1992 | |
300 | |a 1 Online-Ressource (vi, 114 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a CBMS-NSF regional conference series in applied mathematics |v 62 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references and index | ||
500 | |a Chapter 1. Fundamentals. Introduction; Notation and conventions; Prototype problems; Discretization by projections; Realizability and nodal representations; Interlevel transfer matrices; Error measures -- Chapter 2. Multilevel projections methods. Abstract framework: the Multilevel Projection method (PML); The Multigrid method (MG); the Fast Adaptive Composite grid method (FAC); Prototype problems; Relaxation; Coarse-level realizability and recursiveness; Parallelization: Asynchronous FAC (AFAC); Other practical matters; Summary -- Chapter 3. Unigrid. Basic Unigrid scheme; Multgrid simulation; FAC simulation; Performance assessment; Caveats -- Chapter 4. Paradigms. Rayleigh-Ritz 1: parameter estimation; Rayleigh-Ritz 2: transport equations: Galerkin 1: general Eigenvalue problems; Galerkin 2: Riccati equations; Petrov-Galerkin 1: the Finite Volume Element method (FVE); Petrov-Galerkin 2: image reconstruction -- Chapter 5. Perspectives -- References -- Appendix A. Simple Unigrid code -- Appendix B. More efficient Unigrid code -- Appendix C. Modification to Unigrid code for local refinement | ||
500 | |a The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick | ||
650 | 4 | |a Differential equations, Partial / Numerical solutions | |
650 | 4 | |a Multigrid methods (Numerical analysis) | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898712920 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898712926 |
830 | 0 | |a CBMS-NSF regional conference series in applied mathematics |v 62 |w (DE-604)BV046682627 |9 62 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970098 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594822 | ||
966 | e | |u https://doi.org/10.1137/1.9781611970098 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970098 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970098 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970098 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637535567872 |
---|---|
any_adam_object | |
author | McCormick, Stephen F. 1944- |
author_GND | (DE-588)142774065 |
author_facet | McCormick, Stephen F. 1944- |
author_role | aut |
author_sort | McCormick, Stephen F. 1944- |
author_variant | s f m sf sfm |
building | Verbundindex |
bvnumber | BV039747291 |
classification_rvk | SI 196 SK 920 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886405 (DE-599)BVBBV039747291 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611970098 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04407nmm a2200613zcb4500</leader><controlfield tag="001">BV039747291</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210210 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1992 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">91039536</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898712920</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898712920</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898712926</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898712926</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970098</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747291</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 196</subfield><subfield code="0">(DE-625)143099:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">McCormick, Stephen F.</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142774065</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multilevel projection methods for partial differential equations</subfield><subfield code="c">Stephen F. McCormick</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vi, 114 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">CBMS-NSF regional conference series in applied mathematics</subfield><subfield code="v">62</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1. Fundamentals. Introduction; Notation and conventions; Prototype problems; Discretization by projections; Realizability and nodal representations; Interlevel transfer matrices; Error measures -- Chapter 2. Multilevel projections methods. Abstract framework: the Multilevel Projection method (PML); The Multigrid method (MG); the Fast Adaptive Composite grid method (FAC); Prototype problems; Relaxation; Coarse-level realizability and recursiveness; Parallelization: Asynchronous FAC (AFAC); Other practical matters; Summary -- Chapter 3. Unigrid. Basic Unigrid scheme; Multgrid simulation; FAC simulation; Performance assessment; Caveats -- Chapter 4. Paradigms. Rayleigh-Ritz 1: parameter estimation; Rayleigh-Ritz 2: transport equations: Galerkin 1: general Eigenvalue problems; Galerkin 2: Riccati equations; Petrov-Galerkin 1: the Finite Volume Element method (FVE); Petrov-Galerkin 2: image reconstruction -- Chapter 5. Perspectives -- References -- Appendix A. Simple Unigrid code -- Appendix B. More efficient Unigrid code -- Appendix C. Modification to Unigrid code for local refinement</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial / Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multigrid methods (Numerical analysis)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898712920</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898712926</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">CBMS-NSF regional conference series in applied mathematics</subfield><subfield code="v">62</subfield><subfield code="w">(DE-604)BV046682627</subfield><subfield code="9">62</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970098</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594822</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970098</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970098</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970098</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970098</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747291 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898712920 9780898712926 |
language | English |
lccn | 91039536 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594822 |
oclc_num | 873886405 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (vi, 114 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Society for Industrial and Applied Mathematics |
record_format | marc |
series | CBMS-NSF regional conference series in applied mathematics |
series2 | CBMS-NSF regional conference series in applied mathematics |
spelling | McCormick, Stephen F. 1944- Verfasser (DE-588)142774065 aut Multilevel projection methods for partial differential equations Stephen F. McCormick Philadelphia, Pa. Society for Industrial and Applied Mathematics 1992 1 Online-Ressource (vi, 114 Seiten) txt rdacontent c rdamedia cr rdacarrier CBMS-NSF regional conference series in applied mathematics 62 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references and index Chapter 1. Fundamentals. Introduction; Notation and conventions; Prototype problems; Discretization by projections; Realizability and nodal representations; Interlevel transfer matrices; Error measures -- Chapter 2. Multilevel projections methods. Abstract framework: the Multilevel Projection method (PML); The Multigrid method (MG); the Fast Adaptive Composite grid method (FAC); Prototype problems; Relaxation; Coarse-level realizability and recursiveness; Parallelization: Asynchronous FAC (AFAC); Other practical matters; Summary -- Chapter 3. Unigrid. Basic Unigrid scheme; Multgrid simulation; FAC simulation; Performance assessment; Caveats -- Chapter 4. Paradigms. Rayleigh-Ritz 1: parameter estimation; Rayleigh-Ritz 2: transport equations: Galerkin 1: general Eigenvalue problems; Galerkin 2: Riccati equations; Petrov-Galerkin 1: the Finite Volume Element method (FVE); Petrov-Galerkin 2: image reconstruction -- Chapter 5. Perspectives -- References -- Appendix A. Simple Unigrid code -- Appendix B. More efficient Unigrid code -- Appendix C. Modification to Unigrid code for local refinement The multilevel projection method is a new formalism that provides a framework for the development of multilevel algorithms in a very general setting. This methodology guides the choices of all the major multilevel processes, including relaxation and coarsening, and it applies directly to global or locally-refined discretizations. This book was developed from lectures at the CBMS-NSF Regional Conference on Multigrid and Multilevel Adaptive Methods for Partial Differential Equations in June 1991, and is a supplement to Multilevel Adaptive Methods for Partial Differential Equations, also written by Stephen F. McCormick Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Mehrgitterverfahren (DE-588)4038376-3 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Mehrgitterverfahren (DE-588)4038376-3 s DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s Numerisches Verfahren (DE-588)4128130-5 s Erscheint auch als Druck-Ausgabe, Paperback 0898712920 Erscheint auch als Druck-Ausgabe, Paperback 9780898712926 CBMS-NSF regional conference series in applied mathematics 62 (DE-604)BV046682627 62 https://doi.org/10.1137/1.9781611970098 Verlag Volltext |
spellingShingle | McCormick, Stephen F. 1944- Multilevel projection methods for partial differential equations CBMS-NSF regional conference series in applied mathematics Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Partielle Differentialgleichung (DE-588)4044779-0 gnd Mehrgitterverfahren (DE-588)4038376-3 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4038376-3 (DE-588)4128130-5 |
title | Multilevel projection methods for partial differential equations |
title_auth | Multilevel projection methods for partial differential equations |
title_exact_search | Multilevel projection methods for partial differential equations |
title_full | Multilevel projection methods for partial differential equations Stephen F. McCormick |
title_fullStr | Multilevel projection methods for partial differential equations Stephen F. McCormick |
title_full_unstemmed | Multilevel projection methods for partial differential equations Stephen F. McCormick |
title_short | Multilevel projection methods for partial differential equations |
title_sort | multilevel projection methods for partial differential equations |
topic | Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Partielle Differentialgleichung (DE-588)4044779-0 gnd Mehrgitterverfahren (DE-588)4038376-3 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Differential equations, Partial / Numerical solutions Multigrid methods (Numerical analysis) Partielle Differentialgleichung Mehrgitterverfahren Numerisches Verfahren |
url | https://doi.org/10.1137/1.9781611970098 |
volume_link | (DE-604)BV046682627 |
work_keys_str_mv | AT mccormickstephenf multilevelprojectionmethodsforpartialdifferentialequations |