Spline models for observational data: Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics
1990
|
Schriftenreihe: | CBMS-NSF Regional Conference series in applied mathematics
59 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 153-165) Foreword -- Chapter 1. Background -- Chapter 2. More splines -- Chapter 3. Equivalence and perpendicularity, or, What's so special about splines? -- Chapter 4. Estimating the smoothing parameter -- Chapter 5. "Confidence intervals" -- Chapter 6. Partial spline models -- Chapter 7. Finite-dimensional approximating subspaces -- Chapter 8. Fredholm integral equations of the first kind -- Chapter 9. Further nonlinear generalizations -- Chapter 10. Additive and interaction splines -- Chapter 11. Numerical methods -- Chapter 12. Special topics -- Bibliography This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. The estimate is a polynomial smoothing spline. By placing this smoothing problem in the setting of reproducing kernel Hilbert spaces, a theory is developed which includes univariate smoothing splines, thin plate splines in d dimensions, splines on the sphere, additive splines, and interaction splines in a single framework. A straightforward generalization allows the theory to encompass the very important area of (Tikhonov) regularization methods for ill-posed inverse problems. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a wide variety of problems which fall within this framework. Methods for including side conditions and other prior information in solving ill-posed inverse problems are included. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals |
Beschreibung: | 1 Online-Ressource (xii, 169 Seiten) |
ISBN: | 0898712440 9780898712445 |
DOI: | 10.1137/1.9781611970128 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747288 | ||
003 | DE-604 | ||
005 | 20210210 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1990 sz |||| o||u| ||||||eng d | ||
010 | |a 89028687 | ||
020 | |a 0898712440 |c pbk. |9 0898712440 | ||
020 | |a 9780898712445 |c pbk. |9 9780898712445 | ||
024 | 7 | |a 10.1137/1.9781611970128 |2 doi | |
035 | |a (OCoLC)873886423 | ||
035 | |a (DE-599)BVBBV039747288 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SI 196 |0 (DE-625)143099: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
100 | 1 | |a Wahba, Grace |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spline models for observational data |b Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 |c Grace Wahba |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics |c 1990 | |
300 | |a 1 Online-Ressource (xii, 169 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a CBMS-NSF Regional Conference series in applied mathematics |v 59 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 153-165) | ||
500 | |a Foreword -- Chapter 1. Background -- Chapter 2. More splines -- Chapter 3. Equivalence and perpendicularity, or, What's so special about splines? -- Chapter 4. Estimating the smoothing parameter -- Chapter 5. "Confidence intervals" -- Chapter 6. Partial spline models -- Chapter 7. Finite-dimensional approximating subspaces -- Chapter 8. Fredholm integral equations of the first kind -- Chapter 9. Further nonlinear generalizations -- Chapter 10. Additive and interaction splines -- Chapter 11. Numerical methods -- Chapter 12. Special topics -- Bibliography | ||
500 | |a This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. The estimate is a polynomial smoothing spline. By placing this smoothing problem in the setting of reproducing kernel Hilbert spaces, a theory is developed which includes univariate smoothing splines, thin plate splines in d dimensions, splines on the sphere, additive splines, and interaction splines in a single framework. A straightforward generalization allows the theory to encompass the very important area of (Tikhonov) regularization methods for ill-posed inverse problems. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a wide variety of problems which fall within this framework. Methods for including side conditions and other prior information in solving ill-posed inverse problems are included. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals | ||
650 | 4 | |a Spline theory | |
650 | 4 | |a Mathematical statistics | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline-Approximation |0 (DE-588)4182394-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline |0 (DE-588)4182391-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1987 |z Columbus Ohio |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Spline |0 (DE-588)4182391-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Spline |0 (DE-588)4182391-6 |D s |
689 | 1 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Spline-Approximation |0 (DE-588)4182394-1 |D s |
689 | 2 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898712440 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898712445 |
830 | 0 | |a CBMS-NSF Regional Conference series in applied mathematics |v 59 |w (DE-604)BV046682627 |9 59 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970128 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594819 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970128 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970128 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970128 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970128 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637537665024 |
---|---|
any_adam_object | |
author | Wahba, Grace |
author_facet | Wahba, Grace |
author_role | aut |
author_sort | Wahba, Grace |
author_variant | g w gw |
building | Verbundindex |
bvnumber | BV039747288 |
classification_rvk | QH 233 SI 196 SK 830 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886423 (DE-599)BVBBV039747288 |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1137/1.9781611970128 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05142nmm a2200709zcb4500</leader><controlfield tag="001">BV039747288</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210210 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1990 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">89028687</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898712440</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898712440</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898712445</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898712445</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970128</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747288</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 196</subfield><subfield code="0">(DE-625)143099:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wahba, Grace</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spline models for observational data</subfield><subfield code="b">Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987</subfield><subfield code="c">Grace Wahba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 169 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">CBMS-NSF Regional Conference series in applied mathematics</subfield><subfield code="v">59</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 153-165)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Foreword -- Chapter 1. Background -- Chapter 2. More splines -- Chapter 3. Equivalence and perpendicularity, or, What's so special about splines? -- Chapter 4. Estimating the smoothing parameter -- Chapter 5. "Confidence intervals" -- Chapter 6. Partial spline models -- Chapter 7. Finite-dimensional approximating subspaces -- Chapter 8. Fredholm integral equations of the first kind -- Chapter 9. Further nonlinear generalizations -- Chapter 10. Additive and interaction splines -- Chapter 11. Numerical methods -- Chapter 12. Special topics -- Bibliography</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. The estimate is a polynomial smoothing spline. By placing this smoothing problem in the setting of reproducing kernel Hilbert spaces, a theory is developed which includes univariate smoothing splines, thin plate splines in d dimensions, splines on the sphere, additive splines, and interaction splines in a single framework. A straightforward generalization allows the theory to encompass the very important area of (Tikhonov) regularization methods for ill-posed inverse problems. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a wide variety of problems which fall within this framework. Methods for including side conditions and other prior information in solving ill-posed inverse problems are included. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spline theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1987</subfield><subfield code="z">Columbus Ohio</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Spline-Approximation</subfield><subfield code="0">(DE-588)4182394-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898712440</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898712445</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">CBMS-NSF Regional Conference series in applied mathematics</subfield><subfield code="v">59</subfield><subfield code="w">(DE-604)BV046682627</subfield><subfield code="9">59</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970128</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594819</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970128</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970128</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970128</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970128</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1987 Columbus Ohio gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift 1987 Columbus Ohio Konferenzschrift |
id | DE-604.BV039747288 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898712440 9780898712445 |
language | English |
lccn | 89028687 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594819 |
oclc_num | 873886423 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xii, 169 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Society for Industrial and Applied Mathematics |
record_format | marc |
series | CBMS-NSF Regional Conference series in applied mathematics |
series2 | CBMS-NSF Regional Conference series in applied mathematics |
spelling | Wahba, Grace Verfasser aut Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 Grace Wahba Philadelphia, Pa. Society for Industrial and Applied Mathematics 1990 1 Online-Ressource (xii, 169 Seiten) txt rdacontent c rdamedia cr rdacarrier CBMS-NSF Regional Conference series in applied mathematics 59 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 153-165) Foreword -- Chapter 1. Background -- Chapter 2. More splines -- Chapter 3. Equivalence and perpendicularity, or, What's so special about splines? -- Chapter 4. Estimating the smoothing parameter -- Chapter 5. "Confidence intervals" -- Chapter 6. Partial spline models -- Chapter 7. Finite-dimensional approximating subspaces -- Chapter 8. Fredholm integral equations of the first kind -- Chapter 9. Further nonlinear generalizations -- Chapter 10. Additive and interaction splines -- Chapter 11. Numerical methods -- Chapter 12. Special topics -- Bibliography This book serves well as an introduction into the more theoretical aspects of the use of spline models. It develops a theory and practice for the estimation of functions from noisy data on functionals. The simplest example is the estimation of a smooth curve, given noisy observations on a finite number of its values. The estimate is a polynomial smoothing spline. By placing this smoothing problem in the setting of reproducing kernel Hilbert spaces, a theory is developed which includes univariate smoothing splines, thin plate splines in d dimensions, splines on the sphere, additive splines, and interaction splines in a single framework. A straightforward generalization allows the theory to encompass the very important area of (Tikhonov) regularization methods for ill-posed inverse problems. Convergence properties, data based smoothing parameter selection, confidence intervals, and numerical methods are established which are appropriate to a wide variety of problems which fall within this framework. Methods for including side conditions and other prior information in solving ill-posed inverse problems are included. Data which involves samples of random variables with Gaussian, Poisson, binomial, and other distributions are treated in a unified optimization context. Experimental design questions, i.e., which functionals should be observed, are studied in a general context. Extensions to distributed parameter system identification problems are made by considering implicitly defined functionals Spline theory Mathematical statistics Statistik (DE-588)4056995-0 gnd rswk-swf Spline-Approximation (DE-588)4182394-1 gnd rswk-swf Spline (DE-588)4182391-6 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1987 Columbus Ohio gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content Spline (DE-588)4182391-6 s DE-604 Statistik (DE-588)4056995-0 s Spline-Approximation (DE-588)4182394-1 s Erscheint auch als Druck-Ausgabe, Paperback 0898712440 Erscheint auch als Druck-Ausgabe, Paperback 9780898712445 CBMS-NSF Regional Conference series in applied mathematics 59 (DE-604)BV046682627 59 https://doi.org/10.1137/1.9781611970128 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wahba, Grace Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 CBMS-NSF Regional Conference series in applied mathematics Spline theory Mathematical statistics Statistik (DE-588)4056995-0 gnd Spline-Approximation (DE-588)4182394-1 gnd Spline (DE-588)4182391-6 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4182394-1 (DE-588)4182391-6 (DE-588)1071861417 |
title | Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 |
title_auth | Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 |
title_exact_search | Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 |
title_full | Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 Grace Wahba |
title_fullStr | Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 Grace Wahba |
title_full_unstemmed | Spline models for observational data Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 Grace Wahba |
title_short | Spline models for observational data |
title_sort | spline models for observational data based on a series of 10 lectures at ohio state university at columbus mar 23 27 1987 |
title_sub | Based on a series of 10 lectures at Ohio State University at Columbus, Mar. 23-27, 1987 |
topic | Spline theory Mathematical statistics Statistik (DE-588)4056995-0 gnd Spline-Approximation (DE-588)4182394-1 gnd Spline (DE-588)4182391-6 gnd |
topic_facet | Spline theory Mathematical statistics Statistik Spline-Approximation Spline Konferenzschrift 1987 Columbus Ohio Konferenzschrift |
url | https://doi.org/10.1137/1.9781611970128 |
volume_link | (DE-604)BV046682627 |
work_keys_str_mv | AT wahbagrace splinemodelsforobservationaldatabasedonaseriesof10lecturesatohiostateuniversityatcolumbusmar23271987 |