Geometric probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1978
|
Schriftenreihe: | CBMS-NSF regional conference series in applied mathematics
28 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references Buffon needle problem, extensions, and estimation of pi -- Density and measure for random geometric elements -- Random lines in the plane and applications -- Covering a circle circumference and a sphere surface -- Crofton's theorem and Sylvester's problem in two and three dimensions -- Random chords in the circle and the sphere Topics include: ways modern statistical procedures can yield estimates of pi more precisely than the original Buffon procedure traditionally used; the question of density and measure for random geometric elements that leave probability and expectation statements invariant under translation and rotation; the number of random line intersections in a plane and their angles of intersection; developments due to W.L. Stevens's ingenious solution for evaluating the probability that n random arcs of size a cover a unit circumference completely; the development of M.W. Crofton's mean value theorem and its applications in classical problems; and an interesting problem in geometrical probability presented by a karyograph |
Beschreibung: | 1 Online-Ressource (vii, 172 Seiten) |
ISBN: | 0898710251 9780898710250 |
DOI: | 10.1137/1.9781611970418 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747259 | ||
003 | DE-604 | ||
005 | 20210120 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1978 sz |||| o||u| ||||||eng d | ||
010 | |a 78108226 | ||
020 | |a 0898710251 |c pbk. |9 0898710251 | ||
020 | |a 9780898710250 |c pbk. |9 9780898710250 | ||
024 | 7 | |a 10.1137/1.9781611970418 |2 doi | |
035 | |a (OCoLC)873886182 | ||
035 | |a (DE-599)BVBBV039747259 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
100 | 1 | |a Solomon, Herbert |d 1919-2004 |e Verfasser |0 (DE-588)119115956 |4 aut | |
245 | 1 | 0 | |a Geometric probability |c Herbert Solomon |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1978 | |
300 | |a 1 Online-Ressource (vii, 172 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a CBMS-NSF regional conference series in applied mathematics |v 28 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references | ||
500 | |a Buffon needle problem, extensions, and estimation of pi -- Density and measure for random geometric elements -- Random lines in the plane and applications -- Covering a circle circumference and a sphere surface -- Crofton's theorem and Sylvester's problem in two and three dimensions -- Random chords in the circle and the sphere | ||
500 | |a Topics include: ways modern statistical procedures can yield estimates of pi more precisely than the original Buffon procedure traditionally used; the question of density and measure for random geometric elements that leave probability and expectation statements invariant under translation and rotation; the number of random line intersections in a plane and their angles of intersection; developments due to W.L. Stevens's ingenious solution for evaluating the probability that n random arcs of size a cover a unit circumference completely; the development of M.W. Crofton's mean value theorem and its applications in classical problems; and an interesting problem in geometrical probability presented by a karyograph | ||
650 | 4 | |a Geometric probabilities | |
650 | 0 | 7 | |a Integralgeometrie |0 (DE-588)4161911-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Wahrscheinlichkeit |0 (DE-588)4156727-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Wahrscheinlichkeit |0 (DE-588)4156727-4 |D s |
689 | 0 | 1 | |a Integralgeometrie |0 (DE-588)4161911-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898710251 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898710250 |
830 | 0 | |a CBMS-NSF regional conference series in applied mathematics |v 28 |w (DE-604)BV046682627 |9 28 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970418 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594790 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970418 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970418 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970418 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970418 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637474750464 |
---|---|
any_adam_object | |
author | Solomon, Herbert 1919-2004 |
author_GND | (DE-588)119115956 |
author_facet | Solomon, Herbert 1919-2004 |
author_role | aut |
author_sort | Solomon, Herbert 1919-2004 |
author_variant | h s hs |
building | Verbundindex |
bvnumber | BV039747259 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886182 (DE-599)BVBBV039747259 |
doi_str_mv | 10.1137/1.9781611970418 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03875nmm a2200637zcb4500</leader><controlfield tag="001">BV039747259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210120 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1978 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">78108226</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898710251</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898710251</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898710250</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898710250</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970418</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Solomon, Herbert</subfield><subfield code="d">1919-2004</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119115956</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric probability</subfield><subfield code="c">Herbert Solomon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1978</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 172 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">CBMS-NSF regional conference series in applied mathematics</subfield><subfield code="v">28</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Buffon needle problem, extensions, and estimation of pi -- Density and measure for random geometric elements -- Random lines in the plane and applications -- Covering a circle circumference and a sphere surface -- Crofton's theorem and Sylvester's problem in two and three dimensions -- Random chords in the circle and the sphere</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Topics include: ways modern statistical procedures can yield estimates of pi more precisely than the original Buffon procedure traditionally used; the question of density and measure for random geometric elements that leave probability and expectation statements invariant under translation and rotation; the number of random line intersections in a plane and their angles of intersection; developments due to W.L. Stevens's ingenious solution for evaluating the probability that n random arcs of size a cover a unit circumference completely; the development of M.W. Crofton's mean value theorem and its applications in classical problems; and an interesting problem in geometrical probability presented by a karyograph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric probabilities</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgeometrie</subfield><subfield code="0">(DE-588)4161911-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4156727-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Wahrscheinlichkeit</subfield><subfield code="0">(DE-588)4156727-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integralgeometrie</subfield><subfield code="0">(DE-588)4161911-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898710251</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898710250</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">CBMS-NSF regional conference series in applied mathematics</subfield><subfield code="v">28</subfield><subfield code="w">(DE-604)BV046682627</subfield><subfield code="9">28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970418</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594790</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970418</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970418</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970418</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970418</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747259 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898710251 9780898710250 |
language | English |
lccn | 78108226 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594790 |
oclc_num | 873886182 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (vii, 172 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1978 |
publishDateSearch | 1978 |
publishDateSort | 1978 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | CBMS-NSF regional conference series in applied mathematics |
series2 | CBMS-NSF regional conference series in applied mathematics |
spelling | Solomon, Herbert 1919-2004 Verfasser (DE-588)119115956 aut Geometric probability Herbert Solomon Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1978 1 Online-Ressource (vii, 172 Seiten) txt rdacontent c rdamedia cr rdacarrier CBMS-NSF regional conference series in applied mathematics 28 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references Buffon needle problem, extensions, and estimation of pi -- Density and measure for random geometric elements -- Random lines in the plane and applications -- Covering a circle circumference and a sphere surface -- Crofton's theorem and Sylvester's problem in two and three dimensions -- Random chords in the circle and the sphere Topics include: ways modern statistical procedures can yield estimates of pi more precisely than the original Buffon procedure traditionally used; the question of density and measure for random geometric elements that leave probability and expectation statements invariant under translation and rotation; the number of random line intersections in a plane and their angles of intersection; developments due to W.L. Stevens's ingenious solution for evaluating the probability that n random arcs of size a cover a unit circumference completely; the development of M.W. Crofton's mean value theorem and its applications in classical problems; and an interesting problem in geometrical probability presented by a karyograph Geometric probabilities Integralgeometrie (DE-588)4161911-0 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Geometrische Wahrscheinlichkeit (DE-588)4156727-4 s Integralgeometrie (DE-588)4161911-0 s DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 1\p DE-604 Geometrie (DE-588)4020236-7 s 2\p DE-604 Erscheint auch als Druck-Ausgabe, Paperback 0898710251 Erscheint auch als Druck-Ausgabe, Paperback 9780898710250 CBMS-NSF regional conference series in applied mathematics 28 (DE-604)BV046682627 28 https://doi.org/10.1137/1.9781611970418 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Solomon, Herbert 1919-2004 Geometric probability CBMS-NSF regional conference series in applied mathematics Geometric probabilities Integralgeometrie (DE-588)4161911-0 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4161911-0 (DE-588)4064324-4 (DE-588)4156727-4 (DE-588)4020236-7 |
title | Geometric probability |
title_auth | Geometric probability |
title_exact_search | Geometric probability |
title_full | Geometric probability Herbert Solomon |
title_fullStr | Geometric probability Herbert Solomon |
title_full_unstemmed | Geometric probability Herbert Solomon |
title_short | Geometric probability |
title_sort | geometric probability |
topic | Geometric probabilities Integralgeometrie (DE-588)4161911-0 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Geometrische Wahrscheinlichkeit (DE-588)4156727-4 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Geometric probabilities Integralgeometrie Wahrscheinlichkeitsrechnung Geometrische Wahrscheinlichkeit Geometrie |
url | https://doi.org/10.1137/1.9781611970418 |
volume_link | (DE-604)BV046682627 |
work_keys_str_mv | AT solomonherbert geometricprobability |