Interior-point polynomial algorithms in convex programming:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics
1994
|
Schriftenreihe: | SIAM studies in applied mathematics
13 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 387-402) and index Chapter 1: Self-concordant functions and Newton method -- Chapter 2: Path-following interior-point methods -- Chapter 3: Potential reduction interior-point methods -- Chapter 4: How to construct self- concordant barriers -- Chapter 5: Applications in convex optimization -- Chapter 6: Variational inequalities with monotone operators -- Chapter 7: Acceleration for linear and linearly constrained quadratic problems -- Bibliography -- Appendix 1 -- Appendix 2 Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice |
Beschreibung: | 1 Online-Ressource (ix, 405 Seiten) |
ISBN: | 0898715156 9780898715156 |
DOI: | 10.1137/1.9781611970791 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747231 | ||
003 | DE-604 | ||
005 | 20210408 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1994 sz |||| o||u| ||||||eng d | ||
010 | |a 93038912 | ||
020 | |a 0898715156 |c print |9 0898715156 | ||
020 | |a 9780898715156 |c print |9 9780898715156 | ||
020 | |z 9781611970791 |c electronic bk. |9 9781611970791 | ||
024 | 7 | |a 10.1137/1.9781611970791 |2 doi | |
035 | |a (OCoLC)775728764 | ||
035 | |a (DE-599)BVBBV039747231 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
100 | 1 | |a Nesterov, Jurij |e Verfasser |4 aut | |
245 | 1 | 0 | |a Interior-point polynomial algorithms in convex programming |c Yurii Nesterov and Arkadii Nemirovskii |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics |c 1994 | |
300 | |a 1 Online-Ressource (ix, 405 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a SIAM studies in applied mathematics |v 13 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 387-402) and index | ||
500 | |a Chapter 1: Self-concordant functions and Newton method -- Chapter 2: Path-following interior-point methods -- Chapter 3: Potential reduction interior-point methods -- Chapter 4: How to construct self- concordant barriers -- Chapter 5: Applications in convex optimization -- Chapter 6: Variational inequalities with monotone operators -- Chapter 7: Acceleration for linear and linearly constrained quadratic problems -- Bibliography -- Appendix 1 -- Appendix 2 | ||
500 | |a Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice | ||
650 | 4 | |a Interior-point methods | |
650 | 4 | |a Convex programming | |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Innerer Punkt |0 (DE-588)4336760-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynomialzeitalgorithmus |0 (DE-588)4199652-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | 1 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 0 | 2 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Innerer Punkt |0 (DE-588)4336760-4 |D s |
689 | 1 | 1 | |a Polynomialzeitalgorithmus |0 (DE-588)4199652-5 |D s |
689 | 1 | 2 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Nemirovskij, Arkadij S. |d 1947- |e Sonstige |0 (DE-588)12209395X |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 0898715156 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 9780898715156 |
830 | 0 | |a SIAM studies in applied mathematics |v 13 |w (DE-604)BV047229985 |9 13 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970791 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594762 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970791 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970791 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970791 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970791 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637431758848 |
---|---|
any_adam_object | |
author | Nesterov, Jurij |
author_GND | (DE-588)12209395X |
author_facet | Nesterov, Jurij |
author_role | aut |
author_sort | Nesterov, Jurij |
author_variant | j n jn |
building | Verbundindex |
bvnumber | BV039747231 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)775728764 (DE-599)BVBBV039747231 |
doi_str_mv | 10.1137/1.9781611970791 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04251nmm a2200697zcb4500</leader><controlfield tag="001">BV039747231</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210408 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1994 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">93038912</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898715156</subfield><subfield code="c">print</subfield><subfield code="9">0898715156</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898715156</subfield><subfield code="c">print</subfield><subfield code="9">9780898715156</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781611970791</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">9781611970791</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970791</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775728764</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747231</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nesterov, Jurij</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interior-point polynomial algorithms in convex programming</subfield><subfield code="c">Yurii Nesterov and Arkadii Nemirovskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 405 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">SIAM studies in applied mathematics</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 387-402) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1: Self-concordant functions and Newton method -- Chapter 2: Path-following interior-point methods -- Chapter 3: Potential reduction interior-point methods -- Chapter 4: How to construct self- concordant barriers -- Chapter 5: Applications in convex optimization -- Chapter 6: Variational inequalities with monotone operators -- Chapter 7: Acceleration for linear and linearly constrained quadratic problems -- Bibliography -- Appendix 1 -- Appendix 2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interior-point methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex programming</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Innerer Punkt</subfield><subfield code="0">(DE-588)4336760-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynomialzeitalgorithmus</subfield><subfield code="0">(DE-588)4199652-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Innerer Punkt</subfield><subfield code="0">(DE-588)4336760-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Polynomialzeitalgorithmus</subfield><subfield code="0">(DE-588)4199652-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nemirovskij, Arkadij S.</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)12209395X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0898715156</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">9780898715156</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">SIAM studies in applied mathematics</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV047229985</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970791</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594762</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970791</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970791</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970791</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970791</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747231 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898715156 9780898715156 |
language | English |
lccn | 93038912 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594762 |
oclc_num | 775728764 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (ix, 405 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Society for Industrial and Applied Mathematics |
record_format | marc |
series | SIAM studies in applied mathematics |
series2 | SIAM studies in applied mathematics |
spelling | Nesterov, Jurij Verfasser aut Interior-point polynomial algorithms in convex programming Yurii Nesterov and Arkadii Nemirovskii Philadelphia, Pa. Society for Industrial and Applied Mathematics 1994 1 Online-Ressource (ix, 405 Seiten) txt rdacontent c rdamedia cr rdacarrier SIAM studies in applied mathematics 13 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 387-402) and index Chapter 1: Self-concordant functions and Newton method -- Chapter 2: Path-following interior-point methods -- Chapter 3: Potential reduction interior-point methods -- Chapter 4: How to construct self- concordant barriers -- Chapter 5: Applications in convex optimization -- Chapter 6: Variational inequalities with monotone operators -- Chapter 7: Acceleration for linear and linearly constrained quadratic problems -- Bibliography -- Appendix 1 -- Appendix 2 Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice Interior-point methods Convex programming Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Innerer Punkt (DE-588)4336760-4 gnd rswk-swf Konvexe Optimierung (DE-588)4137027-2 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Polynomialzeitalgorithmus (DE-588)4199652-5 gnd rswk-swf Algorithmus (DE-588)4001183-5 s Polynom (DE-588)4046711-9 s Mathematische Methode (DE-588)4155620-3 s DE-604 Innerer Punkt (DE-588)4336760-4 s Polynomialzeitalgorithmus (DE-588)4199652-5 s Konvexe Optimierung (DE-588)4137027-2 s 1\p DE-604 Nemirovskij, Arkadij S. 1947- Sonstige (DE-588)12209395X oth Erscheint auch als Druckausgabe 0898715156 Erscheint auch als Druckausgabe 9780898715156 SIAM studies in applied mathematics 13 (DE-604)BV047229985 13 https://doi.org/10.1137/1.9781611970791 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nesterov, Jurij Interior-point polynomial algorithms in convex programming SIAM studies in applied mathematics Interior-point methods Convex programming Mathematische Methode (DE-588)4155620-3 gnd Polynom (DE-588)4046711-9 gnd Innerer Punkt (DE-588)4336760-4 gnd Konvexe Optimierung (DE-588)4137027-2 gnd Algorithmus (DE-588)4001183-5 gnd Polynomialzeitalgorithmus (DE-588)4199652-5 gnd |
subject_GND | (DE-588)4155620-3 (DE-588)4046711-9 (DE-588)4336760-4 (DE-588)4137027-2 (DE-588)4001183-5 (DE-588)4199652-5 |
title | Interior-point polynomial algorithms in convex programming |
title_auth | Interior-point polynomial algorithms in convex programming |
title_exact_search | Interior-point polynomial algorithms in convex programming |
title_full | Interior-point polynomial algorithms in convex programming Yurii Nesterov and Arkadii Nemirovskii |
title_fullStr | Interior-point polynomial algorithms in convex programming Yurii Nesterov and Arkadii Nemirovskii |
title_full_unstemmed | Interior-point polynomial algorithms in convex programming Yurii Nesterov and Arkadii Nemirovskii |
title_short | Interior-point polynomial algorithms in convex programming |
title_sort | interior point polynomial algorithms in convex programming |
topic | Interior-point methods Convex programming Mathematische Methode (DE-588)4155620-3 gnd Polynom (DE-588)4046711-9 gnd Innerer Punkt (DE-588)4336760-4 gnd Konvexe Optimierung (DE-588)4137027-2 gnd Algorithmus (DE-588)4001183-5 gnd Polynomialzeitalgorithmus (DE-588)4199652-5 gnd |
topic_facet | Interior-point methods Convex programming Mathematische Methode Polynom Innerer Punkt Konvexe Optimierung Algorithmus Polynomialzeitalgorithmus |
url | https://doi.org/10.1137/1.9781611970791 |
volume_link | (DE-604)BV047229985 |
work_keys_str_mv | AT nesterovjurij interiorpointpolynomialalgorithmsinconvexprogramming AT nemirovskijarkadijs interiorpointpolynomialalgorithmsinconvexprogramming |