Analytical and numerical methods for Volterra equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1985
|
Schriftenreihe: | SIAM studies in applied mathematics
7 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographies and index Some applications of Volterra equations -- Linear Volterra equations of the second kind -- Nonlinear equations of the second kind -- Equations of the first kind -- Convolution equations -- The numerical solution of equations of the second kind -- Product integration methods for equations of the second kind -- Equations of the first kind with differentiable kernels -- Equations of the Abel type -- Integrodifferential equations -- Some computer programs -- Case studies Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises |
Beschreibung: | 1 Online-Ressource (xiii, 227 Seiten) |
ISBN: | 0898711983 9780898711981 |
DOI: | 10.1137/1.9781611970852 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747225 | ||
003 | DE-604 | ||
005 | 20210408 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1985 sz |||| o||u| ||||||eng d | ||
010 | |a 84051968 | ||
020 | |a 0898711983 |c print |9 0898711983 | ||
020 | |a 9780898711981 |c print |9 9780898711981 | ||
020 | |z 9781611970852 |c electronic bk. |9 9781611970852 | ||
024 | 7 | |a 10.1137/1.9781611970852 |2 doi | |
035 | |a (OCoLC)873886312 | ||
035 | |a (DE-599)BVBBV039747225 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a SK 640 |0 (DE-625)143250: |2 rvk | ||
100 | 1 | |a Linz, Peter |e Verfasser |0 (DE-588)1016793693 |4 aut | |
245 | 1 | 0 | |a Analytical and numerical methods for Volterra equations |c Peter Linz |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1985 | |
300 | |a 1 Online-Ressource (xiii, 227 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a SIAM studies in applied mathematics |v 7 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographies and index | ||
500 | |a Some applications of Volterra equations -- Linear Volterra equations of the second kind -- Nonlinear equations of the second kind -- Equations of the first kind -- Convolution equations -- The numerical solution of equations of the second kind -- Product integration methods for equations of the second kind -- Equations of the first kind with differentiable kernels -- Equations of the Abel type -- Integrodifferential equations -- Some computer programs -- Case studies | ||
500 | |a Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises | ||
650 | 4 | |a Volterra equations / Numerical solutions | |
650 | 0 | 7 | |a Volterra-Integralgleichung |0 (DE-588)4234593-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integralgleichung |0 (DE-588)4027229-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Volterra-Integralgleichung |0 (DE-588)4234593-5 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Integralgleichung |0 (DE-588)4027229-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Volterra-Integralgleichung |0 (DE-588)4234593-5 |D s |
689 | 1 | 1 | |a Volterra-Gleichungen |0 (DE-588)4137459-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 0898711983 |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 9780898711981 |
830 | 0 | |a SIAM studies in applied mathematics |v 7 |w (DE-604)BV047229985 |9 7 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970852 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594756 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970852 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970852 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970852 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970852 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637416030208 |
---|---|
any_adam_object | |
author | Linz, Peter |
author_GND | (DE-588)1016793693 |
author_facet | Linz, Peter |
author_role | aut |
author_sort | Linz, Peter |
author_variant | p l pl |
building | Verbundindex |
bvnumber | BV039747225 |
classification_rvk | SK 640 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)873886312 (DE-599)BVBBV039747225 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9781611970852 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04191nmm a2200661zcb4500</leader><controlfield tag="001">BV039747225</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210408 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1985 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">84051968</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898711983</subfield><subfield code="c">print</subfield><subfield code="9">0898711983</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898711981</subfield><subfield code="c">print</subfield><subfield code="9">9780898711981</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781611970852</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">9781611970852</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970852</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873886312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747225</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 640</subfield><subfield code="0">(DE-625)143250:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Linz, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1016793693</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical and numerical methods for Volterra equations</subfield><subfield code="c">Peter Linz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 227 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">SIAM studies in applied mathematics</subfield><subfield code="v">7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographies and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Some applications of Volterra equations -- Linear Volterra equations of the second kind -- Nonlinear equations of the second kind -- Equations of the first kind -- Convolution equations -- The numerical solution of equations of the second kind -- Product integration methods for equations of the second kind -- Equations of the first kind with differentiable kernels -- Equations of the Abel type -- Integrodifferential equations -- Some computer programs -- Case studies</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volterra equations / Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Integralgleichung</subfield><subfield code="0">(DE-588)4234593-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Volterra-Integralgleichung</subfield><subfield code="0">(DE-588)4234593-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Integralgleichung</subfield><subfield code="0">(DE-588)4027229-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Volterra-Integralgleichung</subfield><subfield code="0">(DE-588)4234593-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Volterra-Gleichungen</subfield><subfield code="0">(DE-588)4137459-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0898711983</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">9780898711981</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">SIAM studies in applied mathematics</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV047229985</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970852</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594756</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970852</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970852</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970852</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970852</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747225 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898711983 9780898711981 |
language | English |
lccn | 84051968 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594756 |
oclc_num | 873886312 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xiii, 227 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | SIAM studies in applied mathematics |
series2 | SIAM studies in applied mathematics |
spelling | Linz, Peter Verfasser (DE-588)1016793693 aut Analytical and numerical methods for Volterra equations Peter Linz Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1985 1 Online-Ressource (xiii, 227 Seiten) txt rdacontent c rdamedia cr rdacarrier SIAM studies in applied mathematics 7 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographies and index Some applications of Volterra equations -- Linear Volterra equations of the second kind -- Nonlinear equations of the second kind -- Equations of the first kind -- Convolution equations -- The numerical solution of equations of the second kind -- Product integration methods for equations of the second kind -- Equations of the first kind with differentiable kernels -- Equations of the Abel type -- Integrodifferential equations -- Some computer programs -- Case studies Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises Volterra equations / Numerical solutions Volterra-Integralgleichung (DE-588)4234593-5 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Volterra-Gleichungen (DE-588)4137459-9 gnd rswk-swf Integralgleichung (DE-588)4027229-1 gnd rswk-swf Volterra-Integralgleichung (DE-588)4234593-5 s Numerisches Verfahren (DE-588)4128130-5 s Integralgleichung (DE-588)4027229-1 s 1\p DE-604 Volterra-Gleichungen (DE-588)4137459-9 s 2\p DE-604 Erscheint auch als Druckausgabe 0898711983 Erscheint auch als Druckausgabe 9780898711981 SIAM studies in applied mathematics 7 (DE-604)BV047229985 7 https://doi.org/10.1137/1.9781611970852 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Linz, Peter Analytical and numerical methods for Volterra equations SIAM studies in applied mathematics Volterra equations / Numerical solutions Volterra-Integralgleichung (DE-588)4234593-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd Integralgleichung (DE-588)4027229-1 gnd |
subject_GND | (DE-588)4234593-5 (DE-588)4128130-5 (DE-588)4137459-9 (DE-588)4027229-1 |
title | Analytical and numerical methods for Volterra equations |
title_auth | Analytical and numerical methods for Volterra equations |
title_exact_search | Analytical and numerical methods for Volterra equations |
title_full | Analytical and numerical methods for Volterra equations Peter Linz |
title_fullStr | Analytical and numerical methods for Volterra equations Peter Linz |
title_full_unstemmed | Analytical and numerical methods for Volterra equations Peter Linz |
title_short | Analytical and numerical methods for Volterra equations |
title_sort | analytical and numerical methods for volterra equations |
topic | Volterra equations / Numerical solutions Volterra-Integralgleichung (DE-588)4234593-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Volterra-Gleichungen (DE-588)4137459-9 gnd Integralgleichung (DE-588)4027229-1 gnd |
topic_facet | Volterra equations / Numerical solutions Volterra-Integralgleichung Numerisches Verfahren Volterra-Gleichungen Integralgleichung |
url | https://doi.org/10.1137/1.9781611970852 |
volume_link | (DE-604)BV047229985 |
work_keys_str_mv | AT linzpeter analyticalandnumericalmethodsforvolterraequations |