Lie-Bäcklund transformations in applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1979
|
Schriftenreihe: | SIAM studies in applied mathematics
1 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (p. 119-121) and index Introduction -- Classical foundations -- Surface-transformations: Lie's first questions; Finite-order generalization; Infinite-order structure -- Tranformation of families of surfaces: Lie's second question; Bianchi-Lie tranformation; Backlund transformations -- Examples of Backlund transformations: Invariance transformations -- Transformations relating different differential equations -- Tangent transformation groups: Finite-order tangent tranformations; Tangent transformation groups of Sophus Lie; Higher-order tangent transformation groups; Infinite-order tangent transformations -- Lie-Backlund tangent transformation groups; Lie-Backlund equations -- Application to differential equations: Defining equations -- Group theoretical nature of conservation laws; Lie via Lie-Backlund for ordinary differential equations; Group theoretical equivalence of quantum-mechanical systems -- Some applications of Backlund transformations: Nonlinear optics; Solitons and the KdV equation; Constants of the motion and conservation laws; Weakly dispersive shallow-water waves in two space dimensions This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity |
Beschreibung: | 1 Online Resource (x, 124 Seiten) |
ISBN: | 9780898711516 |
DOI: | 10.1137/1.9781611970913 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV039747219 | ||
003 | DE-604 | ||
005 | 20210408 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1979 sz |||| o||u| ||||||eng d | ||
020 | |a 9780898711516 |c print |9 9780898711516 | ||
020 | |z 9781611970913 |c electronic bk. |9 9781611970913 | ||
024 | 7 | |a 10.1137/1.9781611970913 |2 doi | |
035 | |a (OCoLC)775728751 | ||
035 | |a (DE-599)BVBBV039747219 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
100 | 1 | |a Anderson, Robert Leonard |d 1933- |e Verfasser |0 (DE-588)108926982X |4 aut | |
245 | 1 | 0 | |a Lie-Bäcklund transformations in applications |c Robert L. Anderson, Nail H. Ibragimov |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1979 | |
300 | |a 1 Online Resource (x, 124 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a SIAM studies in applied mathematics |v 1 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (p. 119-121) and index | ||
500 | |a Introduction -- Classical foundations -- Surface-transformations: Lie's first questions; Finite-order generalization; Infinite-order structure -- Tranformation of families of surfaces: Lie's second question; Bianchi-Lie tranformation; Backlund transformations -- Examples of Backlund transformations: Invariance transformations -- Transformations relating different differential equations -- Tangent transformation groups: Finite-order tangent tranformations; Tangent transformation groups of Sophus Lie; Higher-order tangent transformation groups; Infinite-order tangent transformations -- Lie-Backlund tangent transformation groups; Lie-Backlund equations -- Application to differential equations: Defining equations -- Group theoretical nature of conservation laws; Lie via Lie-Backlund for ordinary differential equations; Group theoretical equivalence of quantum-mechanical systems -- Some applications of Backlund transformations: Nonlinear optics; Solitons and the KdV equation; Constants of the motion and conservation laws; Weakly dispersive shallow-water waves in two space dimensions | ||
500 | |a This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity | ||
650 | 4 | |a Differential equations | |
650 | 4 | |a Bäcklund transformations | |
650 | 4 | |a Transformation groups | |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transformation |g Mathematik |0 (DE-588)4060637-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Bäcklund-Transformation |0 (DE-588)4297640-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Bäcklund-Transformation |0 (DE-588)4297640-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Transformation |g Mathematik |0 (DE-588)4060637-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
700 | 1 | |a Ibragimov, Nailʹ Ch. |d 1939- |e Sonstige |0 (DE-588)172164419 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 9780898711516 |
830 | 0 | |a SIAM studies in applied mathematics |v 1 |w (DE-604)BV047229985 |9 1 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970913 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594750 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970913 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970913 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970913 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970913 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637402398720 |
---|---|
any_adam_object | |
author | Anderson, Robert Leonard 1933- |
author_GND | (DE-588)108926982X (DE-588)172164419 |
author_facet | Anderson, Robert Leonard 1933- |
author_role | aut |
author_sort | Anderson, Robert Leonard 1933- |
author_variant | r l a rl rla |
building | Verbundindex |
bvnumber | BV039747219 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)775728751 (DE-599)BVBBV039747219 |
doi_str_mv | 10.1137/1.9781611970913 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04894nmm a2200685 cb4500</leader><controlfield tag="001">BV039747219</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210408 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1979 sz |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898711516</subfield><subfield code="c">print</subfield><subfield code="9">9780898711516</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781611970913</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">9781611970913</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970913</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775728751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747219</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, Robert Leonard</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108926982X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie-Bäcklund transformations in applications</subfield><subfield code="c">Robert L. Anderson, Nail H. Ibragimov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Resource (x, 124 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">SIAM studies in applied mathematics</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 119-121) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Introduction -- Classical foundations -- Surface-transformations: Lie's first questions; Finite-order generalization; Infinite-order structure -- Tranformation of families of surfaces: Lie's second question; Bianchi-Lie tranformation; Backlund transformations -- Examples of Backlund transformations: Invariance transformations -- Transformations relating different differential equations -- Tangent transformation groups: Finite-order tangent tranformations; Tangent transformation groups of Sophus Lie; Higher-order tangent transformation groups; Infinite-order tangent transformations -- Lie-Backlund tangent transformation groups; Lie-Backlund equations -- Application to differential equations: Defining equations -- Group theoretical nature of conservation laws; Lie via Lie-Backlund for ordinary differential equations; Group theoretical equivalence of quantum-mechanical systems -- Some applications of Backlund transformations: Nonlinear optics; Solitons and the KdV equation; Constants of the motion and conservation laws; Weakly dispersive shallow-water waves in two space dimensions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bäcklund transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformation groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4060637-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Bäcklund-Transformation</subfield><subfield code="0">(DE-588)4297640-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Bäcklund-Transformation</subfield><subfield code="0">(DE-588)4297640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Transformation</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4060637-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ibragimov, Nailʹ Ch.</subfield><subfield code="d">1939-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)172164419</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">9780898711516</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">SIAM studies in applied mathematics</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV047229985</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970913</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594750</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970913</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970913</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970913</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970913</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747219 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 9780898711516 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594750 |
oclc_num | 775728751 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online Resource (x, 124 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | SIAM studies in applied mathematics |
series2 | SIAM studies in applied mathematics |
spelling | Anderson, Robert Leonard 1933- Verfasser (DE-588)108926982X aut Lie-Bäcklund transformations in applications Robert L. Anderson, Nail H. Ibragimov Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1979 1 Online Resource (x, 124 Seiten) txt rdacontent c rdamedia cr rdacarrier SIAM studies in applied mathematics 1 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (p. 119-121) and index Introduction -- Classical foundations -- Surface-transformations: Lie's first questions; Finite-order generalization; Infinite-order structure -- Tranformation of families of surfaces: Lie's second question; Bianchi-Lie tranformation; Backlund transformations -- Examples of Backlund transformations: Invariance transformations -- Transformations relating different differential equations -- Tangent transformation groups: Finite-order tangent tranformations; Tangent transformation groups of Sophus Lie; Higher-order tangent transformation groups; Infinite-order tangent transformations -- Lie-Backlund tangent transformation groups; Lie-Backlund equations -- Application to differential equations: Defining equations -- Group theoretical nature of conservation laws; Lie via Lie-Backlund for ordinary differential equations; Group theoretical equivalence of quantum-mechanical systems -- Some applications of Backlund transformations: Nonlinear optics; Solitons and the KdV equation; Constants of the motion and conservation laws; Weakly dispersive shallow-water waves in two space dimensions This title presents an introduction to the classical treatment of Backlund and general surface transformations; and includes detailed and accessible techniques for constructing both groups of tranformations which will be of great value to the scientist and engineer in the analysis of mathematical models of physical phenomena. Classical and recent examples of Backlund transformations as applied to geometry, nonlinear optics, turbulence models, nonlinear waves and quantum mechanics are given. The authors discuss applications of Lie-Backlund transformations in mechanics, quantum mechanics, gas dynamics, hydrodynamics, and relativity Differential equations Bäcklund transformations Transformation groups Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Transformation Mathematik (DE-588)4060637-5 gnd rswk-swf Lie-Bäcklund-Transformation (DE-588)4297640-6 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Lie-Bäcklund-Transformation (DE-588)4297640-6 s 1\p DE-604 Transformation Mathematik (DE-588)4060637-5 s 2\p DE-604 Numerische Mathematik (DE-588)4042805-9 s 3\p DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s 4\p DE-604 Ibragimov, Nailʹ Ch. 1939- Sonstige (DE-588)172164419 oth Erscheint auch als Druckausgabe 9780898711516 SIAM studies in applied mathematics 1 (DE-604)BV047229985 1 https://doi.org/10.1137/1.9781611970913 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Anderson, Robert Leonard 1933- Lie-Bäcklund transformations in applications SIAM studies in applied mathematics Differential equations Bäcklund transformations Transformation groups Numerische Mathematik (DE-588)4042805-9 gnd Transformation Mathematik (DE-588)4060637-5 gnd Lie-Bäcklund-Transformation (DE-588)4297640-6 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4042805-9 (DE-588)4060637-5 (DE-588)4297640-6 (DE-588)4044779-0 |
title | Lie-Bäcklund transformations in applications |
title_auth | Lie-Bäcklund transformations in applications |
title_exact_search | Lie-Bäcklund transformations in applications |
title_full | Lie-Bäcklund transformations in applications Robert L. Anderson, Nail H. Ibragimov |
title_fullStr | Lie-Bäcklund transformations in applications Robert L. Anderson, Nail H. Ibragimov |
title_full_unstemmed | Lie-Bäcklund transformations in applications Robert L. Anderson, Nail H. Ibragimov |
title_short | Lie-Bäcklund transformations in applications |
title_sort | lie backlund transformations in applications |
topic | Differential equations Bäcklund transformations Transformation groups Numerische Mathematik (DE-588)4042805-9 gnd Transformation Mathematik (DE-588)4060637-5 gnd Lie-Bäcklund-Transformation (DE-588)4297640-6 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Differential equations Bäcklund transformations Transformation groups Numerische Mathematik Transformation Mathematik Lie-Bäcklund-Transformation Partielle Differentialgleichung |
url | https://doi.org/10.1137/1.9781611970913 |
volume_link | (DE-604)BV047229985 |
work_keys_str_mv | AT andersonrobertleonard liebacklundtransformationsinapplications AT ibragimovnailʹch liebacklundtransformationsinapplications |