Numerical linear algebra for high-performance computers:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics
1998
|
Schriftenreihe: | Software, environments, tools
7 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 301-328) and index About the authors -- Preface -- Introduction -- 1. High performance computing -- 2. Overview of current high-performance computers -- 3. Implementation details and overhead -- 4. Performance, analysis, modeling, and measurements -- 5. Building blocks in linear algebra -- 6. Direct solution of sparse linear systems -- 7. Krylov subspaces, projection -- 8. Iterative methods for linear systems -- 9. Preconditioning and parallel preconditioning -- 10. Linear eigenvalue problems Ax=lx -- 11. The generalized eigenproblem -- Appendix A. Acquiring mathematical software -- Appendix B. Glossary -- Appendix C. Level 1, 2, and 3 BLAS quick reference -- Appendix D. Operation counts for various BLAS and decompositions -- Bibliography -- Index This book presents a unified treatment of recently developed techniques and current understanding about solving systems of linear equations and large scale eigenvalue problems on high-performance computers. It provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications. Topics include major elements of advanced-architecture computers and their performance, recent algorithmic development, and software for direct solution of dense matrix problems, direct solution of sparse systems of equations, iterative solution of sparse systems of equations, and solution of large sparse eigenvalue problems |
Beschreibung: | 1 Online-Ressource (xviii, 342 Seiten) |
ISBN: | 0898714281 9780898714289 |
DOI: | 10.1137/1.9780898719611 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747156 | ||
003 | DE-604 | ||
005 | 20210224 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1998 sz |||| o||u| ||||||eng d | ||
010 | |a 98044444 | ||
020 | |a 0898714281 |c pbk. |9 0898714281 | ||
020 | |a 9780898714289 |c pbk. |9 9780898714289 | ||
024 | 7 | |a 10.1137/1.9780898719611 |2 doi | |
035 | |a (OCoLC)775728657 | ||
035 | |a (DE-599)BVBBV039747156 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a SK 915 |0 (DE-625)143271: |2 rvk | ||
245 | 1 | 0 | |a Numerical linear algebra for high-performance computers |c Jack J. Dongarra ; Iain S. Duff ; Danny C. Sorensen ; Danny C. Sorensen |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics |c 1998 | |
300 | |a 1 Online-Ressource (xviii, 342 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Software, environments, tools |v 7 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 301-328) and index | ||
500 | |a About the authors -- Preface -- Introduction -- 1. High performance computing -- 2. Overview of current high-performance computers -- 3. Implementation details and overhead -- 4. Performance, analysis, modeling, and measurements -- 5. Building blocks in linear algebra -- 6. Direct solution of sparse linear systems -- 7. Krylov subspaces, projection -- 8. Iterative methods for linear systems -- 9. Preconditioning and parallel preconditioning -- 10. Linear eigenvalue problems Ax=lx -- 11. The generalized eigenproblem -- Appendix A. Acquiring mathematical software -- Appendix B. Glossary -- Appendix C. Level 1, 2, and 3 BLAS quick reference -- Appendix D. Operation counts for various BLAS and decompositions -- Bibliography -- Index | ||
500 | |a This book presents a unified treatment of recently developed techniques and current understanding about solving systems of linear equations and large scale eigenvalue problems on high-performance computers. It provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications. Topics include major elements of advanced-architecture computers and their performance, recent algorithmic development, and software for direct solution of dense matrix problems, direct solution of sparse systems of equations, iterative solution of sparse systems of equations, and solution of large sparse eigenvalue problems | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a High performance computing | |
650 | 4 | |a Algebras, Linear / Data processing | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parallelrechner |0 (DE-588)4173280-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorrechner |0 (DE-588)4062470-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | 2 | |a Parallelrechner |0 (DE-588)4173280-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | 2 | |a Vektorrechner |0 (DE-588)4062470-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Dongarra, Jack |d 1950- |e Sonstige |0 (DE-588)136831621 |4 oth | |
700 | 1 | |a Duff, Iain S |e Sonstige |4 oth | |
700 | 1 | |a Sorensen, Danny C |e Sonstige |4 oth | |
700 | 1 | |a van der Vorst, Henk A. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780898714289 |
830 | 0 | |a Software, environments, tools |v 7 |w (DE-604)BV022382558 |9 7 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9780898719611 |x Verlag |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594687 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9780898719611 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9780898719611 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9780898719611 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9780898719611 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637282861056 |
---|---|
any_adam_object | |
author_GND | (DE-588)136831621 |
building | Verbundindex |
bvnumber | BV039747156 |
classification_rvk | SK 915 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)775728657 (DE-599)BVBBV039747156 |
discipline | Mathematik |
doi_str_mv | 10.1137/1.9780898719611 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04451nmm a2200709zcb4500</leader><controlfield tag="001">BV039747156</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210224 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1998 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">98044444</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898714281</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898714281</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898714289</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898714289</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9780898719611</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775728657</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747156</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 915</subfield><subfield code="0">(DE-625)143271:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical linear algebra for high-performance computers</subfield><subfield code="c">Jack J. Dongarra ; Iain S. Duff ; Danny C. Sorensen ; Danny C. Sorensen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 342 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Software, environments, tools</subfield><subfield code="v">7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 301-328) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">About the authors -- Preface -- Introduction -- 1. High performance computing -- 2. Overview of current high-performance computers -- 3. Implementation details and overhead -- 4. Performance, analysis, modeling, and measurements -- 5. Building blocks in linear algebra -- 6. Direct solution of sparse linear systems -- 7. Krylov subspaces, projection -- 8. Iterative methods for linear systems -- 9. Preconditioning and parallel preconditioning -- 10. Linear eigenvalue problems Ax=lx -- 11. The generalized eigenproblem -- Appendix A. Acquiring mathematical software -- Appendix B. Glossary -- Appendix C. Level 1, 2, and 3 BLAS quick reference -- Appendix D. Operation counts for various BLAS and decompositions -- Bibliography -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents a unified treatment of recently developed techniques and current understanding about solving systems of linear equations and large scale eigenvalue problems on high-performance computers. It provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications. Topics include major elements of advanced-architecture computers and their performance, recent algorithmic development, and software for direct solution of dense matrix problems, direct solution of sparse systems of equations, iterative solution of sparse systems of equations, and solution of large sparse eigenvalue problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High performance computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebras, Linear / Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parallelrechner</subfield><subfield code="0">(DE-588)4173280-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorrechner</subfield><subfield code="0">(DE-588)4062470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Parallelrechner</subfield><subfield code="0">(DE-588)4173280-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Vektorrechner</subfield><subfield code="0">(DE-588)4062470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dongarra, Jack</subfield><subfield code="d">1950-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136831621</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duff, Iain S</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sorensen, Danny C</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Vorst, Henk A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780898714289</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Software, environments, tools</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV022382558</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9780898719611</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594687</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9780898719611</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9780898719611</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9780898719611</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9780898719611</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747156 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898714281 9780898714289 |
language | English |
lccn | 98044444 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594687 |
oclc_num | 775728657 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xviii, 342 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Society for Industrial and Applied Mathematics |
record_format | marc |
series | Software, environments, tools |
series2 | Software, environments, tools |
spelling | Numerical linear algebra for high-performance computers Jack J. Dongarra ; Iain S. Duff ; Danny C. Sorensen ; Danny C. Sorensen Philadelphia, Pa. Society for Industrial and Applied Mathematics 1998 1 Online-Ressource (xviii, 342 Seiten) txt rdacontent c rdamedia cr rdacarrier Software, environments, tools 7 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 301-328) and index About the authors -- Preface -- Introduction -- 1. High performance computing -- 2. Overview of current high-performance computers -- 3. Implementation details and overhead -- 4. Performance, analysis, modeling, and measurements -- 5. Building blocks in linear algebra -- 6. Direct solution of sparse linear systems -- 7. Krylov subspaces, projection -- 8. Iterative methods for linear systems -- 9. Preconditioning and parallel preconditioning -- 10. Linear eigenvalue problems Ax=lx -- 11. The generalized eigenproblem -- Appendix A. Acquiring mathematical software -- Appendix B. Glossary -- Appendix C. Level 1, 2, and 3 BLAS quick reference -- Appendix D. Operation counts for various BLAS and decompositions -- Bibliography -- Index This book presents a unified treatment of recently developed techniques and current understanding about solving systems of linear equations and large scale eigenvalue problems on high-performance computers. It provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications. Topics include major elements of advanced-architecture computers and their performance, recent algorithmic development, and software for direct solution of dense matrix problems, direct solution of sparse systems of equations, iterative solution of sparse systems of equations, and solution of large sparse eigenvalue problems Datenverarbeitung High performance computing Algebras, Linear / Data processing Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Parallelrechner (DE-588)4173280-7 gnd rswk-swf Vektorrechner (DE-588)4062470-5 gnd rswk-swf Lineare Algebra (DE-588)4035811-2 s Numerisches Verfahren (DE-588)4128130-5 s Parallelrechner (DE-588)4173280-7 s 1\p DE-604 Vektorrechner (DE-588)4062470-5 s 2\p DE-604 Dongarra, Jack 1950- Sonstige (DE-588)136831621 oth Duff, Iain S Sonstige oth Sorensen, Danny C Sonstige oth van der Vorst, Henk A. Sonstige oth Erscheint auch als Druck-Ausgabe 9780898714289 Software, environments, tools 7 (DE-604)BV022382558 7 https://doi.org/10.1137/1.9780898719611 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Numerical linear algebra for high-performance computers Software, environments, tools Datenverarbeitung High performance computing Algebras, Linear / Data processing Lineare Algebra (DE-588)4035811-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Parallelrechner (DE-588)4173280-7 gnd Vektorrechner (DE-588)4062470-5 gnd |
subject_GND | (DE-588)4035811-2 (DE-588)4128130-5 (DE-588)4173280-7 (DE-588)4062470-5 |
title | Numerical linear algebra for high-performance computers |
title_auth | Numerical linear algebra for high-performance computers |
title_exact_search | Numerical linear algebra for high-performance computers |
title_full | Numerical linear algebra for high-performance computers Jack J. Dongarra ; Iain S. Duff ; Danny C. Sorensen ; Danny C. Sorensen |
title_fullStr | Numerical linear algebra for high-performance computers Jack J. Dongarra ; Iain S. Duff ; Danny C. Sorensen ; Danny C. Sorensen |
title_full_unstemmed | Numerical linear algebra for high-performance computers Jack J. Dongarra ; Iain S. Duff ; Danny C. Sorensen ; Danny C. Sorensen |
title_short | Numerical linear algebra for high-performance computers |
title_sort | numerical linear algebra for high performance computers |
topic | Datenverarbeitung High performance computing Algebras, Linear / Data processing Lineare Algebra (DE-588)4035811-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Parallelrechner (DE-588)4173280-7 gnd Vektorrechner (DE-588)4062470-5 gnd |
topic_facet | Datenverarbeitung High performance computing Algebras, Linear / Data processing Lineare Algebra Numerisches Verfahren Parallelrechner Vektorrechner |
url | https://doi.org/10.1137/1.9780898719611 |
volume_link | (DE-604)BV022382558 |
work_keys_str_mv | AT dongarrajack numericallinearalgebraforhighperformancecomputers AT duffiains numericallinearalgebraforhighperformancecomputers AT sorensendannyc numericallinearalgebraforhighperformancecomputers AT vandervorsthenka numericallinearalgebraforhighperformancecomputers |