Introduction to matrix analytic methods in stochastic modeling:
Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Latouche, Guy (VerfasserIn), Ramaswami, V. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1999
Schriftenreihe:ASA-SIAM series on statistics and applied probability 5
Schlagworte:
Online-Zugang:TUM01
UBW01
UBY01
UER01
Volltext
Beschreibung:Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader
Includes bibliographical references (p. 313-324) and index
Preface -- Part I. Quasi-birth-and-death processes -- 1. Examples -- Part II. The method of phases -- 2. PH distributions -- 3. Markovian point processes -- Part III. The matrix-geometric distribution -- 4. Birth-and-death processes -- 5. Processes under a taboo -- 6. Homogeneous QBDs -- 7. Stability condition -- Part IV. Algorithms -- 8. Algorithms for the rate matrix -- 9. Spectral analysis -- 10. Finite QBDs -- 11. First passage times -- Part V. Beyond simple QBDs -- 12. Nonhomogeneous QBDs -- 13. Processes, skip-free in one direction -- 14. Tree processes -- 15. Product form networks -- 16. Nondenumerable states -- Bibliography -- Index
Matrix analytic methods are popular as modeling tools because they give one the ability to construct and analyze a wide class of queuing models in a unified and algorithmically tractable way. The authors present the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner. In the current literature, a mixed bag of techniques is used-some probabilistic, some from linear algebra, and some from transform methods. Here, many new proofs that emphasize the unity of the matrix analytic approach are included
Beschreibung:1 Online-Ressource (xiv, 334 Seiten)
ISBN:0898714257
9780898714258
DOI:10.1137/1.9780898719734

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen