Geometry:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
New York [u.a.]
Springer
2010
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 394 S. graph. Darst. |
ISBN: | 9781441930842 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039736693 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 111201s2010 gw d||| |||| 00||| ger d | ||
020 | |a 9781441930842 |c pbk |9 978-1-4419-3084-2 | ||
035 | |a (OCoLC)772868060 | ||
035 | |a (DE-599)BVBBV039736693 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-91G | ||
050 | 0 | |a QA445 | |
082 | 0 | |a 516 |2 21 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a MAT 500f |2 stub | ||
100 | 1 | |a Lang, Serge |d 1927-2005 |e Verfasser |0 (DE-588)119305119 |4 aut | |
245 | 1 | 0 | |a Geometry |c Serge Lang ; Gene Murrow |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2010 | |
300 | |a XII, 394 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Geometry | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Murrow, Gene |e Verfasser |4 aut | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024584457&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024584457 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804148621805879296 |
---|---|
adam_text | CONTENTS
PART I A CULTURAL HERITAGE
1 EARLY
BEGINNINGS..............................................................
3
1.1
PREHISTORY..............................................................
3
1.2 GEOMETRY IN THE NEW STONE AGE .....................................
4
1.3 EARLY MATHEMATICS AND ETHNOMATHEMATICS .......................... 6
2 THE GREAT RIVER CIVILIZATIONS
............................................... 7
2.1 CIVILIZATIONS LONG DEAD: AND YET ALIVE ............................
7
2.2 BIRTH OF GEOMETRY AS WE KNOW IT ...................................
11
2.3 GEOMETRY IN THE LAND OF THE PHARAOH ................................
12
2.4 BABYLONIAN GEOMETRY ................................................
15
2.5 THE (U,V) EXPLANATION OF PLIMPTON 322 ..............................
22
2.6 REGULAR RECIPROCAL PAIRS, BABYLONIAN NUMBER-WORK
ANDPLIMPTON322 ..................................................... 23
2.7 PARAMETRIZATION OF PYTHAGOREAN TRIPLES .............................
25
3 GREEK AND HELLENIC
GEOMETRY............................................... 31
3.1 EARLY GREEK GEOMETRY: THALES OF MILETUS ...........................
31
3.2 THE STORY OF PYTHAGORAS AND THE PYTHAGOREANS......................
34
3.3 THE GEOMETRY OF THE PYTHAGOREANS ..................................
44
3.4 THE DISCOVERY OF IRRATIONAL NUMBERS ................................
46
3.5 ORIGIN OF THE CLASSICAL PROBLEMS
..................................... 50
3.6 CONSTRUCTIONS BY COMPASS AND STRAIGHTEDGE ........................
54
3.7 SQUARING THE CIRCLE
................................................... 56
3.8 DOUBLING THE CUBE
.................................................... 56
3.9 TRISECTING ANY ANGLE
................................................. 60
3.10 PLATO AND THE PLATONIC SOLIDS
......................................... 61
3.11 ARCHYTAS AND DOUBLING THE CUBE.....................................
64
4 GEOMETRY IN THE HELLENISTIC ERA
............................................ 75
4.1 EUCLID AND EUCLID S ELEMENTS
........................................ 75
4.2 THE BOOKS OF EUCLID S ELEMENTS .....................................
77
4.2.1 EUCLID S DEFINITIONS ......................................... 77
4.2.2 EUCLID S POSTULATES .......................................... 78
XIII
XIV CONTENTS
4.2.3 ALTERNATIVE VERSIONS OF EUCLID S FIFTH POSTULATE ........... 80
4.2.4 EUCLID S COMMON NOTIONS OR AXIOMS ..................... 80
4.3 THE ROMAN EMPIRE ...................................................
85
4.4
ARCHIMEDES............................................................
88
4.5 ERATOSTHENES AND DOUBLING THE CUBE ................................
106
4.6 NICOMEDES AND HIS CONCHOID
........................................109
4.7 APOLLONIUS OF PERGA AND THE CONIC
SECTIONS.........................116
4.8 THE END OF THE REPUBLIC IN
ROME....................................120
4.9 THE FIRST EMPERORS
...................................................134
4.10 HERON OF ALEXANDRIA
..................................................135
4.11 NERO AND THE YEAR OF THE FOUR EMPERORS
............................138
4.12 FROM VESPASIAN TO MARCUS AURELIUS
.................................139
4.13 MENELAUS OF ALEXANDRIA
..............................................143
4.14 CLAUDIUS PTOLEMY
.....................................................144
4.15 THE RULE OF SINES AND THE LAW OF COSINES
..........................148
4.16 FROM COMMODUS TO THE END OF THE CRISIS
OFTHETHIRDCENTURY ..................................................149
4.17 DIOPHANTUS OF ALEXANDRIA
............................................151
4.18 PAPPUS OF ALEXANDRIA
.................................................153
4.19 THE LATE ROMAN
EMPIRE..............................................155
4.20 THE MURDER OF HYPATIA
...............................................158
4.21 FALL OF THE ROMAN EMPIRE
............................................165
4.22 BYZANTIUM
.............................................................165
4.23 PRESERVATION OF A HERITAGE
............................................167
5 ARABIC MATHEMATICS AND GEOMETRY
........................................173
5.1 THE ARAB EXPANSION
..................................................173
5.2 ARAB SCIENCE AND CULTURE
............................................177
5.3 THE FOUNDER OF THE HOUSE OF WISDOM IN BAGHDAD..................180
5.4 ABU JA FAR MUHAMMAD IBN MUSA AL KHWARIZMI ...................181
5.5 IBN QURRA AND AL-BATTANI
..............................................188
5.6 MUHAMMAD ABU AL WAFA AL-BUZJANI .................................189
5.7 ABU SAHL WIJAN BIN RUSTAM AL QUHI
.................................190
5.8 YUSUF AL MUTAMAN IBN HUD AND HIS LIBRARY
.........................193
5.9 OMAR AL-KHAYYAM
....................................................194
5.10 SHARAF AL-DIN
..........................................................201
5.11 NASIR AL-DIN AL-TUSI
...................................................207
6 THE GEOMETRY OF YESTERDAY AND TODAY
....................................211
6.1 THE DARK MIDDLE AGES
...............................................211
6.2 GEOMETRY REAWAKENING: A NEW DAWN IN EUROPE ..................216
6.3 ELEMENTARY GEOMETRY AND HIGHER GEOMETRY........................216
6.4 DESARGUES AND THE TWO PASCALS
......................................219
6.5 DESCARTES AND ANALYTIC
GEOMETRY....................................221
6.6 NEWTON AND LEIBNIZ
..................................................222
CONTENTS XV
6.7 GEOMETRY IN THE EIGHTEENTH CENTURY
.................................222
6.8 SOME FEATURES OF MODERN GEOMETRY ................................
228
6.9 ARCHIMEDEAN POLYHEDRA AND TESSELLATIONS
..........................233
7 GEOMETRY AND THE REAL WORLD
..............................................241
7.1 MATHEMATICS AND PREDICTING CATASTROPHES
...........................241
7.2 CATASTROPHE THEORY
...................................................243
7.3 GEOMETRIC SHAPES IN NATURE
..........................................245
7.4 FRACTAL STRUCTURES IN NATURE
..........................................247
PART II INTRODUCTION TO GEOMETRY
8 AXIOMATIC GEOMETRY
.........................................................253
8.1 THE POSTULATES OF EUCLID AND HILBERT S EXPLANATION
.................253
8.2 NON-EUCLIDIAN GEOMETRY
.............................................255
8.3 LOGIC AND INTUITIVE SET THEORY
.......................................256
8.4 AXIOMS, AXIOMATIC THEORIES AND MODELS ...........................257
8.5 GENERAL THEORY OF AXIOMATIC SYSTEMS
..............................262
9 AXIOMATIC PROJECTIVE GEOMETRY
.............................................265
9.1 PLANE PROJECTIVE GEOMETRY
...........................................265
9.2 AN UNSOLVED GEOMETRIC PROBLEM
....................................270
9.3 THE REAL PROJECTIVE PLANE
............................................273
10 MODELS FOR NON-EUCLIDIAN GEOMETRY
.......................................283
10.1 THREE TYPES OF GEOMETRY
............................................283
10.2 HYPERBOLIC GEOMETRY
.................................................283
10.3 ELLIPTIC GEOMETRY
.....................................................287
10.4 EUCLIDIAN AND NON-EUCLIDIAN GEOMETRY IN SPACE
...................288
10.5 RIEMANNIAN GEOMETRY
................................................292
11 MAKING THINGS PRECISE
.......................................................299
11.1 RELATIONS AND THEIR USES
.............................................299
11.2 IDENTIFICATION OF
POINTS................................................300
11.3 OUR NUMBER SYSTEM
..................................................302
11.4 COMPLEX NUMBERS AND TRIGONOMETRY ...............................307
12 PROJECTIVE SPACE
..............................................................313
12.1 COORDINATES IN THE PROJECTIVE PLANE
..................................313
12.2 PROJECTIVE N-SPACE
....................................................316
12.3 AFFINE AND PROJECTIVE COORDINATE
SYSTEMS...........................317
XVI CONTENTS
13 GEOMETRY IN THE AFFINE AND THE PROJECTIVE PLANE
.........................325
13.1 THE THEOREM OF DESARGUES
...........................................325
13.2 DUALITY FOR
P
2
.
R
/
.....................................................327
13.3 NAIVE DEFINITION AND FIRST EXAMPLES OF AFFINE PLANE CURVES
......328
13.4 STRAIGHT LINES
.........................................................328
13.5 CONIC SECTIONS IN THE AFFINE PLANE
R
2
...............................329
13.6 CONSTRUCTING POINTS ON CONIC SECTIONS
BYCOMPASSANDSTRAIGHTEDGE........................................
336
13.7 FURTHER PROPERTIES OF CONIC
SECTIONS.................................338
13.8 CONIC SECTIONS IN THE PROJECTIVE PLANE
...............................344
13.9 THE THEOREMS OF PAPPUS AND PASCAL
.................................347
14 ALGEBRAIC CURVES OF HIGHER DEGREES IN THE AFFINE PLANE
R
2
.............351
14.1 CURVES OF DEGREE 3 AND 4 IN
R
2
......................................351
14.2 AFFINE ALGEBRAIC CURVES
..............................................356
14.3 SINGULARITIES AND MULTIPLICITIES
.......................................360
14.4 TANGENCY
..............................................................362
15 HIGHER GEOMETRY IN THE PROJECTIVE PLANE
..................................367
15.1 PROJECTIVE CURVES
.....................................................367
15.2 PROJECTIVE CLOSURE AND AFFINE RESTRICTION
...........................368
15.3 SMOOTH AND SINGULAR POINTS ON AFFINE AND PROJECTIVE CURVES
......371
15.4 THE TANGENT TO A PROJECTIVE CURVE
...................................374
15.5 PROJECTIVE
EQUIVALENCE................................................381
15.6 ASYMPTOTES
............................................................386
15.7 GENERAL CONCHOIDS
....................................................387
15.8 THE DUAL CURVE
.......................................................390
15.9 THE DUAL OF PAPPUS THEOREM
.......................................393
15.10 PASCAL S MYSTERIUM HEXAGRAMMICUM
...............................394
16 SHARPENING THE SWORD OF ALGEBRA
..........................................397
16.1 ON RATIONAL POLYNOMIALS
.............................................397
16.2 THE MINIMAL POLYNOMIAL
.............................................400
16.3 THE EUCLIDIAN ALGORITHM
.............................................402
16.4 NUMBER FIELDS AND FIELD
EXTENSIONS.................................404
16.5 MORE ON FIELD EXTENSIONS
............................................408
17 CONSTRUCTIONS WITH STRAIGHTEDGE AND COMPASS
...........................413
17.1 REVIEW OF LEGAL CONSTRUCTIONS
.......................................413
17.2 CONSTRUCTIBLE POINTS
..................................................414
17.3 WHAT IS POSSIBLE?
.....................................................415
17.4 TRISECTING ANY ANGLE
.................................................420
17.5 DOUBLING THE CUBE AND CONSTRUCTING
THEREGULARHEPTAGON.................................................422
17.6 SQUARING THE CIRCLE
...................................................423
CONTENTS XVII
17.7 REGULAR POLYGONS
.....................................................424
17.8 CONSTRUCTIONS BY FOLDING
.............................................431
18 FRACTAL GEOMETRY
.............................................................435
18.1 FRACTALS AND THEIR DIMENSIONS
........................................435
18.2 THE VON KOCH SNOWFLAKE
CURVE......................................436
18.3 FRACTAL SHAPES IN NATURE
..............................................437
18.4 THE SIERPINSKI TRIANGLES
..............................................437
18.5 A CANTOR
SET...........................................................439
19 CATASTROPHE THEORY
..........................................................441
19.1 THE CUSP CATASTROPHE: GEOMETRY OF A CUBIC SURFACE ..............441
19.2 RUDIMENTS OF CONTROL THEORY
........................................443
20 GENERAL POLYHEDRA AND TESSELLATIONS, AND THEIR GROUPS OF SYMMETRY 445
20.1 ISOMETRIES OF
R
N
......................................................445
20.2 TOPOLOGICAL SPACES AND TOPOLOGICAL GROUPS
........................447
20.3 DISCRETE TRANSFORMATION GROUPS OF METRIC
SPACES..................449
20.4 ISOMETRIES OF
R
2
......................................................450
20.5 SYMMETRY OF PLANE ORNAMENTS
.......................................451
20.5.1 ROSETTE GROUPS ..............................................451
20.5.2 FRIEZE GROUPS................................................454
20.5.3 WALLPAPER GROUPS ...........................................458
20.5.4 THE 17 TYPES OF WALLPAPER GROUPS ........................460
20.6 SYMMETRIES IN
SPACE..................................................468
20.6.1 SYSTEMS OF ROTATIONAL SYMMETRIES IN SPACE ...............469
20.6.2 REFLECTION SYMMETRY ........................................472
20.6.3 PRISMATIC SYMMETRY TYPES .................................473
20.6.4 COMPOUND SYMMETRY AND THE
S
2N
SYMMETRY TYPE .......475
20.6.5 CUBIC SYMMETRY TYPES .....................................475
20.6.6 THE POSSIBLE SYMMETRY TYPES..............................478
21 HINTS AND SOLUTIONS TO SOME OF THE EXERCISES
.............................483
REFERENCES
...........................................................................503
INDEX
.................................................................................507
|
any_adam_object | 1 |
author | Lang, Serge 1927-2005 Murrow, Gene |
author_GND | (DE-588)119305119 |
author_facet | Lang, Serge 1927-2005 Murrow, Gene |
author_role | aut aut |
author_sort | Lang, Serge 1927-2005 |
author_variant | s l sl g m gm |
building | Verbundindex |
bvnumber | BV039736693 |
callnumber-first | Q - Science |
callnumber-label | QA445 |
callnumber-raw | QA445 |
callnumber-search | QA445 |
callnumber-sort | QA 3445 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 380 |
classification_tum | MAT 500f |
ctrlnum | (OCoLC)772868060 (DE-599)BVBBV039736693 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01642nam a2200445 c 4500</leader><controlfield tag="001">BV039736693</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">111201s2010 gw d||| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441930842</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-4419-3084-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)772868060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039736693</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA445</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 500f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lang, Serge</subfield><subfield code="d">1927-2005</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119305119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry</subfield><subfield code="c">Serge Lang ; Gene Murrow</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 394 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murrow, Gene</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024584457&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024584457</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV039736693 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:10:03Z |
institution | BVB |
isbn | 9781441930842 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024584457 |
oclc_num | 772868060 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | XII, 394 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
spelling | Lang, Serge 1927-2005 Verfasser (DE-588)119305119 aut Geometry Serge Lang ; Gene Murrow 2. ed. New York [u.a.] Springer 2010 XII, 394 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Geometry Geometrie (DE-588)4020236-7 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content 2\p (DE-588)4123623-3 Lehrbuch gnd-content Geometrie (DE-588)4020236-7 s DE-604 Murrow, Gene Verfasser aut SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024584457&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lang, Serge 1927-2005 Murrow, Gene Geometry Geometry Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4151278-9 (DE-588)4123623-3 |
title | Geometry |
title_auth | Geometry |
title_exact_search | Geometry |
title_full | Geometry Serge Lang ; Gene Murrow |
title_fullStr | Geometry Serge Lang ; Gene Murrow |
title_full_unstemmed | Geometry Serge Lang ; Gene Murrow |
title_short | Geometry |
title_sort | geometry |
topic | Geometry Geometrie (DE-588)4020236-7 gnd |
topic_facet | Geometry Geometrie Einführung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024584457&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT langserge geometry AT murrowgene geometry |