Multiphase flow dynamics: 3 Thermal interactions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2011
|
Ausgabe: | 4. ed. |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 679 S. Ill., graph. Darst. |
ISBN: | 9783642213717 3642213715 |
Internformat
MARC
LEADER | 00000nam a22000008cc4500 | ||
---|---|---|---|
001 | BV039734344 | ||
003 | DE-604 | ||
005 | 20120313 | ||
007 | t | ||
008 | 111130s2011 gw ad|| |||| 00||| eng d | ||
020 | |a 9783642213717 |9 978-3-642-21371-7 | ||
020 | |a 3642213715 |9 3-642-21371-5 | ||
035 | |a (OCoLC)788423237 | ||
035 | |a (DE-599)BVBBV039734344 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-91G | ||
082 | 0 | |a 620.1064 |2 23 | |
100 | 1 | |a Kolev, Nikolay Ivanov |d 1951- |e Verfasser |0 (DE-588)110653262 |4 aut | |
245 | 1 | 0 | |a Multiphase flow dynamics |n 3 |p Thermal interactions |c Nikolay I. Kolev |
250 | |a 4. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2011 | |
300 | |a XIX, 679 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
773 | 0 | 8 | |w (DE-604)BV014569143 |g 3 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024582155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024582155 |
Datensatz im Suchindex
_version_ | 1804148618294198272 |
---|---|
adam_text | IMAGE 1
TABLE OF CONTENTS
1 NUCLEATION IN LIQUIDS 1
1.1 INTRODUCTION 1
1.2 NUCLEATION ENERGY, EQUATION OF KELVIN AND LAPLACE 2
1.3 NUCLEUS CAPABLE OF GROWTH 3
1.4 SOME USEFUL FORMS OF THE CLAUSIUS-CLAPEYRON EQUATION, MEASURES OF
SUPERHEATING 5
1.5 NUCLEATION KINETICS 8
1.5.1 HOMOGENEOUS NUCLEATION 8
1.5.2 HETEROGENEOUS NUCLEATION 9
1.6 MAXIMUM SUPERHEAT 15
1.7 CRITICAL MASS FLOW RATE IN SHORT PIPES, ORIFICES AND NOZZLES 18 1.8
NUCLEATION IN THE PRESENCE OF NONCONDENSABLE GASES 19
1.9 ACTIVATED NUCLEATION-SITE DENSITY - STATE-OF-THE-ART 20
1.10. CONCLUSIONS AND RECOMMENDATIONS 28
NOMENCLATURE 28
REFERENCES 31
2 BUBBLE GROWTH IN SUPERHEATED LIQUID 35
2.1 INTRODUCTION 35
2.2 THE THERMALLY CONTROLLED BUBBLE GROWTH 36
2.3 THE MIKIC SOLUTION 39
2.4 HOW TO COMPUTE THE MASS SOURCE TERMS FOR THE AVERAGED CONSERVATION
EQUATIONS? 47
2.4.1 NONAVERAGED MASS SOURCE TERMS 47
2.4.2 THE AVERAGED MASS SOURCE TERMS 49
2.5 SUPERHEATED STEAM 54
2.6 DIFFUSION-CONTROLLED EVAPORATION INTO MIXTURE OF GASES INSIDE THE
BUBBLE 55
2.7 CONCLUSIONS 56
APPENDIX 2.1 RADIUS OF A SINGLE BUBBLE IN A SUPERHEATED LIQUID AS A
FUNCTION OF TIME 56
NOMENCLATURE 62
REFERENCES 65
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1011273381
DIGITALISIERT DURCH
IMAGE 2
XII TABLE OF CONTENTS
3 CONDENSATION OF A PURE STEAM BUBBLE IN A SUBCOOLED LIQUID 67 3.1
INTRODUCTION 67
3.2 STAGNANT BUBBLE 67
3.3 MOVING BUBBLE 69
3.4 NONAVERAGED SOURCE TERMS 74
3.5 AVERAGED SOURCE TERMS 75
3.6 CHANGE OF THE BUBBLE NUMBER DENSITY DUE TO CONDENSATION 76 3.7 PURE
STEAM BUBBLE DRIFTING IN TURBULENT CONTINUOUS LIQUID 77 3.8 CONDENSATION
FROM A GAS MIXTURE IN BUBBLES SURROUNDED BY SUBCOOLED LIQUID 79
3.8.1 THERMALLY CONTROLLED COLLAPSE 80
3.8.2 DIFFUSION-CONTROLLED COLLAPSE 80
NOMENCLATURE 81
REFERENCES 85
4 BUBBLE DEPARTURE DIAMETER 87
4.1 HOW ACCURATELY CAN WE PREDICT BUBBLE DEPARTURE DIAMETER FOR BOILING?
87
4.2 MODEL DEVELOPMENT 90
4.3 COMPARISON WITH EXPERIMENTAL DATA 95
4.4 SIGNIFICANCE 100
4.5 SUMMARY AND CONCLUSIONS 100
4.6 EXTENSION OF THE THEORY TO SUBCOOLED LIQUIDS 100
4.7 INFLUENCE OF THE WALL MATERIAL 103
NOMENCLATURE 104
REFERENCES 106
5 BUBBLE DYNAMICS IN SINGLE-COMPONENT FLUID 109
5.1 INTRODUCTION 109
5.2 THE SYSTEM OF PDES DESCRIBING THE PROBLEM 109
5.3 NUMERICAL SOLUTION METHOD 112
5.4 VALIDATION OF THE METHOD 113
5.4.1 BUBBLE COLLAPSE 113
5.4.2 BUBBLE GROWTH 118
5.5 USE IN COMPUTER CODES OPERATING WITH LARGE COMPUTATIONAL CELLS 121
5.6 COMPARISON WITH THE STATE-OF-THE-ART 122
APPENDIX 5.1 THE RALEIGH-PLESSET EQUATION 129
APPENDIX 5.2 THE LIQUID ENERGY-CONSERVATION EQUATION 134
APPENDIX 5.3 PRESSURE EQUATION FOR THE BUBBLE 136
APPENDIX 5.4 BUBBLE ENERGY CONSERVATION 138
NOMENCLATURE 138
REFERENCES 140
IMAGE 3
TABLE OF CONTENTS XIII
6 HOW ACCURATELY CAN WE PREDICT NUCLEATE BOILING? 143
6.1 INTRODUCTION 143
6.2 NEW PHENOMENOLOGICAL MODEL FOR NUCLEATE POOL BOILING 154 6.2.1 BASIC
ASSUMPTIONS 154
6.2.2 PROPOSED MODEL 156
6.3 DATA COMPARISON 158
6.3.1 NUCLEATION-SITE DENSITY AT HIGH PRESSURES 161
6.4 SYSTEMATIC INSPECTION OF ALL THE USED HYPOTHESES 162
6.5 SIGNIFICANCE 163
6.6 CONCLUSIONS 164
6.7 EXTENSION TO FORCED CONVECTION WITH NUCLEATE BOILING 165 APPENDIX
6.1 STATE-OF-THE-ART OF NUCLEATE POOL BOILING MODELING 167 NOMENCLATURE
173
REFERENCES 175
7 HETEROGENEOUS NUCLEATION AND FLASHING IN ADIABATIC PIPES 179 7.1
INTRODUCTION 179
7.2 BUBBLES GENERATED DUE TO NUCLEATION AT THE WALL 180
7.3 BUBBLE GROWTH IN THE BULK 181
7.4 BUBBLE FRAGMENTATION AND COALESCENCE 181
7.5 FILM FLASHING BUBBLE GENERATION IN ADIABATIC PIPE FLOW 183 7.6
VERIFICATION OF THE MODEL 184
7.7 SIGNIFICANCE AND CONCLUSIONS 189
NOMENCLATURE 190
REFERENCES 192
8 BOILING OF SUBCOOLED LIQUID 195
8.1 INTRODUCTION 195
8.2 INITIATION OF VISIBLE BOILING ON THE HEATED SURFACE 195
8.3 LOCAL EVAPORATION AND CONDENSATION 198
8.3.1 RELAXATION THEORY 198
8.3.2 BOUNDARY-LAYER TREATMENT 200
NOMENCLATURE 203
REFERENCES 204
9 NATURAL CONVECTION FILM BOILING 207
9.1 MINIMUM FILM BOILING TEMPERATURE 207
9.2 FILM BOILING IN HORIZONTAL UPWARDS-ORIENTED PLATES 208
9.3 HORIZONTAL CYLINDER 209
9.4 SPHERE 210
NOMENCLATURE 211
REFERENCES 212
IMAGE 4
XIV TABLE OF CONTENTS
10 FORCED CONVECTION BOILING 213
10.1 CONVECTIVE BOILING OF SATURATED LIQUID 213
10.2 FORCED-CONVECTION FILM BOILING 217
10.2.1 TUBES 219
10.2.2 ANNULAR CHANNEL 222
10.2.3 TUBES AND ANNULAR CHANNELS 222
10.2.4 VERTICAL FLOW AROUND ROD BUNDLES 223
10.3 TRANSITION BOILING 223
10.4 CRITICAL HEAT FLUX 225
10.4.1 THE HYDRODYNAMIC STABILITY THEORY OF FREE-CONVECTION DNB 226
10.4.2 FORCED-CONVECTION DNB AND DO CORRELATIONS 229 10.4.3 THE 1995 AND
2005 LOOK-UP TABLES 232
NOMENCLATURE 238
REFERENCES 241
11 FILM BOILING ON VERTICAL PLATES AND SPHERES 245
11.1 PLATE 245
11.1.1 INTRODUCTION 245
11.1.2 STATE-OF-THE-ART 246
11.1.3 PROBLEM DEFINITION 247
11.1.4 SIMPLIFYING ASSUMPTIONS 248
11.1.5 ENERGY BALANCE AT THE VAPORFLIQUID INTERFACE, VAPOR FILM
THICKNESS, AVERAGE HEAT-TRANSFER COEFFICIENT 251
11.1.6 ENERGY BALANCE OF THE LIQUID BOUNDARY LAYER, LAYER THICKNESS
RATIO 254
11.1.7 AVERAGED HEAT FLUXES 257
1.1.8 EFFECT OF THE INTERFACIAL DISTURBANCES 258
1.1.9 COMPARISON OF THE THEORY WITH THE RESULTS OF OTHER AUTHORS 259
1.1.10 VERIFICATION USING THE EXPERIMENTAL DATA 261
1.1.11 CONCLUSIONS 262
1.1.12 PRACTICAL SIGNIFICANCE 263
11.2 SPHERE 263
.2.1 INTRODUCTION 263
.2.2 PROBLEM DEFINITION 263
.2.3 SOLUTION METHOD 263
.2.4 MODEL 264
.2.5 DATA COMPARISON 272
.2.6 CONCLUSIONS 276
APPENDIX 11.1 NATURAL CONVECTION AT VERTICAL PLATE 276
APPENDIX 11.2 PREDOMINANT FORCED CONVECTION ONLY AT VERTICAL PLATE 276
NOMENCLATURE 277
REFERENCES 281
IMAGE 5
TABLE OF CONTENTS XV
12 LIQUID DROPLETS 283
12.1 SPONTANEOUS CONDENSATION OF PURE SUBCOOLED STEAM - NUCLEATION 283
12.1.1 CRITICAL NUCLEATION SIZE 284
12.1.2 NUCLEATION KINETICS, HOMOGENEOUS NUCLEATION 286 12.1.3 DROPLET
GROWTH 288
12.1.4 SELF-CONDENSATION STOP 290
12.2 HEAT TRANSFER ACROSS DROPLET INTERFACE WITHOUT MASS TRANSFER 291
12.3 DIRECT CONTACT CONDENSATION OF PURE STEAM ON SUBCOOLED DROPLET...
297 12.4 SPONTANEOUS FLASHING OF SUPERHEATED DROPLET 299
12.5 EVAPORATION OF SATURATED DROPLETS IN SUPERHEATED GAS 303 12.6
DROPLET EVAPORATION IN GAS MIXTURE 306
NOMENCLATURE 312
REFERENCES 315
13 HEAT AND MASS TRANSFER AT THE FILM/GAS INTERFACE 319
13.1 GEOMETRICAL FILM-GAS CHARACTERISTICS 319
13.2 CONVECTIVE HEAT TRANSFER 321
13.2.1 GAS-SIDE HEAT TRANSFER 321
13.2.2 LIQUID-SIDE HEAT TRANSFER DUE TO CONDUCTION 325
13.2.3 LIQUID-SIDE HEAT CONDUCTION DUE TO TURBULENCE 326 13.3
SPONTANEOUS FLASHING OF SUPERHEATED FILM 333
13.4 EVAPORATION OF SATURATED FILM IN SUPERHEATED GAS 334
13.5 CONDENSATION OF PURE STEAM ON SUBCOOLED FILM 335
13.6 EVAPORATION OR CONDENSATION IN PRESENCE OF NONCONDENSABLE GASES 336
13.6.1 USEFUL DEFINITIONS FOR DESCRIBING THE DIFFUSION MASS TRANSFER 336
13.6.2 MODIFICATION OF THE VELOCITY PROFILE IN THE BOUNDARY LAYER DUE TO
DIFFUSION MASS TRANSFER, ACKERMAN S MULTIPLIER 338 13.6.3 STEFAN S
THEORY OF DIFFUSION MASS TRANSPORT 342
13.6.4 ENERGY TRANSPORT INTO OR FROM THE BULK FLOW DUE TO THE DIFFUSION
MASS FLOW RATE 346
13.6.5 MODIFICATION OF THE TEMPERATURE BOUNDARY LAYER DUE TO THE
DIFFUSION MASS FLOW RATE 347
13.6.6 SOME PRACTICAL RECIPES 349
NOMENCLATURE 353
REFERENCES 356
14 CONDENSATION AT COOLED WALLS 359
14.1 PURE STEAM CONDENSATION 359
14.1.1 ONSET OF THE CONDENSATION 359
14.1.2 GRAVITATION FILMS ON PLATES 359
14.1.3 GRAVITATION FILMS ON PIPES 368
IMAGE 6
XVI TABLE OF CONTENTS
14.2 CONDENSATION FROM FORCED-CONVECTION TWO-PHASE FLOW AT LIQUID FILM
369
14.2.1 DOWN-FLOW OF VAPOR ACROSS HORIZONTAL TUBES 369
14.2.2 THE COLLIER CORRELATION 369
14.2.3 THE BOYKO AND KRUJILIN APPROACH 370
14.2.4 THE SHAH MODIFICATION OF THE BOYKO AND KRUJILIN APPROACH 371
14.2.5 FLOW REGIME ASSOCIATED MODELS 371
14.3 STEAM CONDENSATION FROM MIXTURE CONTAINING NONCONDENSING GASES 373
14.3.1 COMPUTATION OF THE MASS-TRANSFER COEFFICIENT 375 NOMENCLATURE..
377
REFERENCES 380
15 DISCRETE ORDINATE METHOD FOR RADIATION TRANSPORT IN MULTIPHASE
COMPUTER CODES 383
15.1 INTRODUCTION 383
15.1.1 DIMENSIONS OF THE PROBLEM 383
15.1.2 MICRO- VERSUS MACROINTERACTIONS 384
15.1.3 THE RADIATION-TRANSPORT EQUATION (RTE) 384
15.2 DISCRETE ORDINATE METHOD 385
15.2.1 DISCRETIZATION OF THE COMPUTATIONAL DOMAIN FOR THE DESCRIPTION OF
THE FLOW 387
15.2.2 FINITE-VOLUME REPRESENTATION OF THE RADIATION-TRANSPORT EQUATION
388
15.2.3 BOUNDARY CONDITIONS 393
15.3 MATERIAL PROPERTIES 395
15.3.1 SOURCE TERMS - EMISSION FROM HOT SURFACES WITH KNOWN TEMPERATURE
395
15.3.2 SPECTRAL ABSORPTION COEFFICIENT OF WATER 396
15.3.3 SPECTRAL ABSORPTION COEFFICIENT OF WATER VAPOR AND OTHER GASES
400
15.4 AVERAGED PROPERTIES FOR SOME PARTICULAR CASES OCCURRING IN
MELT-WATER INTERACTION 400
15.4.1 SPHERICAL CAVITY OF GAS INSIDE A MOLTEN MATERIAL 401 15.4.2
CONCENTRIC SPHERES OF WATER DROPLETS, SURROUNDED BY VAPOR, SURROUNDED BY
MOLTEN MATERIAL 402
15.4.3 CLOUDS OF SPHERICAL PARTICLES OF RADIATING MATERIAL SURROUNDED BY
A LAYER OF VAPOR SURROUNDED BY WATER - LANZENBERGER S SOLUTION 406
15.4.4 CHAIN OF INFINITE NUMBER OF WIGNER CELLS 419
15.4.5 APPLICATION OF LANZENBERGERS S SOLUTION 420
NOMENCLATURE 422
REFERENCES 423
IMAGE 7
TABLE OF CONTENTS XVII
16 VALIDATION OF MULTIPHASE FLOW MODELS 425
16.1 INTRODUCTION 426
16.2 QUICK LOOK AT IVA COMPUTER CODE 427
16.3 REFERENCES DOCUMENTING THE IVA-CODE DEVELOPMENT 435
16.4 IVA-VALIDATION DATABASE 444
16.5 REFERENCES OF DATA SOURCES AND REFERENCES DOCUMENTING THE
VALIDATION OF IVA 450
16.6 MATERIAL RELOCATION: GRAVITATIONAL WAVES (ID, 2D), DENSITY WAVES IN
BOILING AND CONDENSING SYSTEMS 459
16.6.1 FLOW THROUGH STRAIGHT MICROCHANNEL WITH CONSTANT CROSS-SECTION
459
16.6.2 CRITICAL GAS FLOW THROUGH NOZZLES AND PIPES WITH CONSTANT
CROSS-SECTION 460
16.6.3 U-TUBE BENCHMARKS 462
16.6.4 FLOW BOILING STABILITY 467
CONCLUSIONS 473
16.6.5 FLOW CONDENSATION STABILITY 473
16.6.6 GRAVITATIONAL 2D WAVES 480
REFERENCES 481
16.7 STEADY-STATE SINGLE-PHASE NOZZLE FLOW 485
REFERENCES 486
16.8 PRESSURE WAVES - SINGLE PHASE 487
16.8.1 GAS IN A SHOCK TUBE 488
16.8.2 WATER IN A SHOCK TUBE 491
16.8.3 THE 1983 INTERATOME EXPERIMENTS 493
16.8.4 PRESSURE-WAVE PROPAGATION IN A CYLINDRICAL VESSEL WITH FREE
SURFACE (2D) 507
REFERENCES 511
16.9 2D: N 2 EXPLOSION IN SPACE FILLED PREVIOUSLY WITH AIR 513
REFERENCES 515
16.10 2D: N 2 EXPLOSION IN SPACE WITH INTERNALS FILLED PREVIOUSLY WITH
WATER 517
REFERENCES 521
16.11 FILM ENTRAINMENT IN PIPE FLOW 523
REFERENCES 525
IMAGE 8
XVIII TABLE OF CONTENTS
16.12 WATER FLASHING IN NOZZLE FLOW 527
REFERENCES 530
16.13 PIPE BLOW-DOWN WITH FLASHING 533
16.13.1 SINGLE PIPE 533
16.13.2 COMPLEX PIPE NETWORK 537
REFERENCES 537
16.14 ID BOILING, CRITICAL HEAT FLUX, POSTCRITICAL HEAT FLUX HEAT
TRANSFER .... 539 REFERENCES 551
16.15 FLOW BOILING IN BUNDLES: 333 EXPERIMENTS FOR VARIETY OF BUNDLES,
FLOW REGIMES INCLUDING DRY OUT, STEADY STATE AND TRANSIENTS 553 16.15.1
INTRODUCTION 554
16.15.2 STEADY-STATE BOILING 554
16.15.3 TRANSIENT BOILING 579
16.15.4 STEADY-STATE CRITICAL HEAT FLUX 584
16.15.5 OUTLOOK- TOWARDS THE FINE-RESOLUTION ANALYSIS 599
16.15.6 CONCLUSIONS 600
APPENDIX 16.15.1 SOME RELEVANT CONSTITUTIVE RELATIONSHIP ADDRESSED IN
THIS ANALYSIS 601
NOMENCLATURE 602
REFERENCES 603
16.16 FILM BOILING 607
REFERENCES 609
16.17 BEHAVIOR OF CLOUDS OF COLD AND VERY HOT SPHERES IN WATER 611
REFERENCES 615
16.18 EXPERIMENTS WITH DYNAMIC FRAGMENTATION AND COALESCENCE 617 16.18.1
L14 EXPERIMENT 617
16.18.2 L20 AND L24 EXPERIMENTS 621
16.18.3 UNCERTAINTY IN THE PREDICTION OF NONEXPLOSIVE MELT-WATER
INTERACTIONS 622
16.18.4 CONCLUSIONS 623
16.18.5 L28, L31 EXPERIMENT 624
16.18.6 PREMIX-13 EXPERIMENT 628
16.18.7 PREMIX 17 AND 18 EXPERIMENTS 635
16.18.8 RIT AND IKE EXPERIMENTS 648
REFERENCES 649
16.19 ASSESSMENT FOR DETONATION ANALYSIS 651
REFERENCES 652
IMAGE 9
TABLE OF CONTENTS XIX
16.20 OTHER EXAMPLES OF 3D CAPABILITIES 653
16.20.1 CASE 1. RIGID-BODY STEADY-ROTATION PROBLEM 653
16.20.2 CASE 2. PURE RADIAL SYMMETRIC FLOW 654
16.20.3 CASE 3. RADIAL-AZIMUTHAL SYMMETRIC FLOW 656
16.20.4 CASE 4. SMALL-BREAK LOSS OF COOLANT 658
16.20.5 CASE 5. ASYMMETRIC STEAM-WATER INTERACTION IN A VESSEL 659
16.20.6 CASE 6. MELT RELOCATION IN A PRESSURE VESSEL 664
REFERENCES 666
16.21 GENERAL CONCLUSIONS: IS IT POSSIBLE TO DESIGN A UNIVERSAL
MULTIPHASE FLOW ANALYZER? 667
16.21.1 THE IDEA OF MULTIPLE VELOCITY FIELDS 668
16.21.2 DO WE HAVE ADEQUATE MATHEMATICAL REFLECTION OF THE CONSERVATION
LAWS BASED ON AVERAGING? 668
16.21.3 COEXISTING FIELDS 669
16.21.4 GEOMETRY DEFINITION 669
16.21.5 SOLVERS 669
16.21.6 SUMMARY OF THE IDEAS 670
16.21.7 IS THERE ANY CHANCE TO OVERCOME THE OVERWHELMING COMPLEXITY AND
DESIGN ALGORITHMS THAT ARE OF PRACTICAL USE? ....670 CONCLUSIONS 671
APPENDIX 1 KNOWLEDGE DATA BASE REQUIRED TO DESIGN A UNIVERSAL MULTIPHASE
FLOW ANALYZER 671
REFERENCES 672
INDEX 675
|
any_adam_object | 1 |
author | Kolev, Nikolay Ivanov 1951- |
author_GND | (DE-588)110653262 |
author_facet | Kolev, Nikolay Ivanov 1951- |
author_role | aut |
author_sort | Kolev, Nikolay Ivanov 1951- |
author_variant | n i k ni nik |
building | Verbundindex |
bvnumber | BV039734344 |
ctrlnum | (OCoLC)788423237 (DE-599)BVBBV039734344 |
dewey-full | 620.1064 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1064 |
dewey-search | 620.1064 |
dewey-sort | 3620.1064 |
dewey-tens | 620 - Engineering and allied operations |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01177nam a22003258cc4500</leader><controlfield tag="001">BV039734344</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120313 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">111130s2011 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642213717</subfield><subfield code="9">978-3-642-21371-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642213715</subfield><subfield code="9">3-642-21371-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)788423237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039734344</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1064</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolev, Nikolay Ivanov</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110653262</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiphase flow dynamics</subfield><subfield code="n">3</subfield><subfield code="p">Thermal interactions</subfield><subfield code="c">Nikolay I. Kolev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 679 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV014569143</subfield><subfield code="g">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024582155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024582155</subfield></datafield></record></collection> |
id | DE-604.BV039734344 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:10:00Z |
institution | BVB |
isbn | 9783642213717 3642213715 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024582155 |
oclc_num | 788423237 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM |
owner_facet | DE-703 DE-91G DE-BY-TUM |
physical | XIX, 679 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
spelling | Kolev, Nikolay Ivanov 1951- Verfasser (DE-588)110653262 aut Multiphase flow dynamics 3 Thermal interactions Nikolay I. Kolev 4. ed. Berlin [u.a.] Springer 2011 XIX, 679 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier (DE-604)BV014569143 3 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024582155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kolev, Nikolay Ivanov 1951- Multiphase flow dynamics |
title | Multiphase flow dynamics |
title_auth | Multiphase flow dynamics |
title_exact_search | Multiphase flow dynamics |
title_full | Multiphase flow dynamics 3 Thermal interactions Nikolay I. Kolev |
title_fullStr | Multiphase flow dynamics 3 Thermal interactions Nikolay I. Kolev |
title_full_unstemmed | Multiphase flow dynamics 3 Thermal interactions Nikolay I. Kolev |
title_short | Multiphase flow dynamics |
title_sort | multiphase flow dynamics thermal interactions |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024582155&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014569143 |
work_keys_str_mv | AT kolevnikolayivanov multiphaseflowdynamics3 |