Multiphase flow dynamics: 5 Nuclear thermal hydraulics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2011
|
Ausgabe: | 2. ed. |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Nebent.: Thermal hydraulics |
Beschreibung: | XXXIV, 815 S. Ill., graph. Darst. |
ISBN: | 9783642206009 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV039723656 | ||
003 | DE-604 | ||
005 | 20160504 | ||
007 | t | ||
008 | 111124s2011 gw ad|| |||| 00||| eng d | ||
020 | |a 9783642206009 |c Gb. : EUR 213.95 |9 978-3-642-20600-9 | ||
035 | |a (OCoLC)731922087 | ||
035 | |a (DE-599)BVBBV039723656 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 | ||
100 | 1 | |a Kolev, Nikolay Ivanov |d 1951- |e Verfasser |0 (DE-588)110653262 |4 aut | |
245 | 1 | 0 | |a Multiphase flow dynamics |n 5 |p Nuclear thermal hydraulics |c Nikolay I. Kolev |
246 | 1 | 3 | |a Thermal hydraulics |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2011 | |
300 | |a XXXIV, 815 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Nebent.: Thermal hydraulics | ||
773 | 0 | 8 | |w (DE-604)BV014569143 |g 5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-20601-6 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024571698&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024571698 |
Datensatz im Suchindex
_version_ | 1804148603342553088 |
---|---|
adam_text | IMAGE 1
TABLE OF CONTENTS
1 HEAT RELEASE IN THE REACTOR CORE 1
1.1 THERMAL POWER AND THERMAL POWER DENSITY 1
1.2 THERMAL POWER DENSITY AND FUEL MATERIAL 4
1.3 THERMAL POWER DENSITY AND MODERATOR TEMPERATURE 5
1.4 SPATIAL DISTRIBUTION OF THE THERMAL POWER DENSITY 6
1.5 EQUALIZING OF THE SPATIAL DISTRIBUTION OF THE THERMAL POWER DENSITY
8 1.6 NOMENCLATURE 13
REFERENCES 14
2 TEMPERATURE INSIDE THE FUEL ELEMENTS 15
2.1 STEADY-STATE TEMPERATURE FIELD 17
2.2 TRANSIENT TEMPERATURE FIELD 29
2.3 INFLUENCE OF THE CLADDING OXIDATION, HYDROGEN DIFFUSION, AND
CORROSION PRODUCT DEPOSITION 36
2.3.1 CLADDING OXIDATION 36
2.3.2 HYDROGEN DIFFUSION 40
2.3.3 DEPOSITION 40
2.4 NOMENCLATURE 41
REFERENCES 42
3 THE SIMPLE STEADY BOILING FLOW IN A PIPE 45
3.1 MASS CONSERVATION 47
3.2 MIXTURE MOMENTUM EQUATION 48
3.3 ENERGY CONSERVATION 51
3.4 THE IDEA OF MECHANICAL AND THERMODYNAMIC EQUILIBRIUM 53 3.5 RELAXING
THE ASSUMPTION OF MECHANICAL EQUILIBRIUM 54
3.6 RELAXING THE ASSUMPTION OF THERMODYNAMIC EQUILIBRIUM 55 3.7 THE
RELAXATION METHOD 57
3.8 THE BOUNDARY LAYER TREATMENT 61
3.9 THE BOUNDARY LAYER TREATMENT WITH CONSIDERED VARIABLE EFFECTIVE
BUBBLE SIZE 64
3.10 SATURATED FLOW BOILING HEAT TRANSFER 67
3.11 COMBINING THE ASYMPTOTIC METHOD WITH BOUNDARY LAYER TREATMENT
ALLOWED FOR VARIABLE EFFECTIVE BUBBLE SIZE 71
3.12 SEPARATED MOMENTUM EQUATIONS AND BUBBLE DYNAMICS 72 3.13
NOMENCLATURE 79
REFERENCES 83
APPENDIX 3.1 SANI S (1960) DATA FOR BOILING FLOW IN A PIPE 85
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1010702866
DIGITALISIERT DURCH
IMAGE 2
XXVIII TABLE OF CONTENTS
THE SIMPLE STEADY THREE-FLUID BOILING FLOW IN A PIPE 87
4.1 FLOW REGIME TRANSITION FROM SLUG TO CHURN TURBULENT FLOW 88 4.2
INSTANTANEOUS LIQUID REDISTRIBUTION IN FILM AND DROPLETS 89
4.3 RELAXING THE ASSUMPTION FOR INSTANTANEOUS LIQUID REDISTRIBUTION IN
FILM AND DROPLETS, ENTRAINMENT, AND DEPOSITION 91
4.4 DRIFT FLUX CORRELATIONS 94
4.5 SEPARATED MOMENTUM EQUATION 96
4.6 DYNAMIC EVOLUTION OF THE MEAN DROPLET SIZE 99
4.6.1 DROPLET SIZE STABILITY LIMIT 99
4.6.2 DROPLET PRODUCTION RATE DUE TO FRAGMENTATION 100
4.6.3 DURATION OF THE FRAGMENTATION 100
4.6.4 COLLISION AND COALESCENCE 102
4.7 HEAT TRANSFER 103
4.8 MASS TRANSFER 105
4.9 COMPARISON WITH EXPERIMENTS 108
4.10 NOMENCLATURE 112
REFERENCES 115
CORE THERMAL HYDRAULICS 117
5.1 REACTOR PRESSURE VESSELS 117
5.2 STEADY-STATE FLOW IN HEATED ROD BUNDLES 131
5.2.1 THE NUPEC EXPERIMENT 131
5.2.2 THE SIEMENS VOID DATA FOR THE ATRIUM 10 FUEL BUNDLE 148 5.2.3 THE
FRIGG EXPERIMENTS 149
5.2.4 THE THTF EXPERIMENTS: HIGH PRESSURE AND LOW MASS FLOW 154 5.3
PRESSURE DROP FOR BOILING FLOW IN BUNDLES 156
5.4 TRANSIENT BOILING 159
5.4.1 THE NUPEC TRANSIENTS IN A CHANNEL SIMULATING ONE SUBCHANNEL OF A
PWR FUEL ASSEMBLY 159
5.4.2 THE NUPEC TRANSIENTS IN PWR 5 X5 FUEL ASSEMBLY 161 5.5
STEADY-STATE CRITICAL HEAT FLUX 164
5.5.1 INITIAL ZERO-DIMENSIONAL GUESS 165
5.5.2 THREE-DIMENSIONAL CHF ANALYSIS 170
5.5.3 UNCERTAINTIES 172
5.6 OUTLOOK - TOWARD LARGE-SCALE TURBULENCE MODELING IN BUNDLES 179 5.7
OUTLOOK - TOWARD FINE-RESOLUTION ANALYSIS 182
5.8 CORE ANALYSIS 183
5.9 NOMENCLATURE 185
REFERENCES 187
APPENDIX 5.1 SOME RELEVANT CONSTITUTIVE RELATIONSHIPS ADDRESSED IN THIS
ANALYSIS 193
FLOW BOILING AND CONDENSATION STABILITY ANALYSIS 195
6.1 STATE OF THE ART 195
6.2 AREVA BOILING STABILITY DATA FOR THE ATRIUM 10B FUEL BUNDLE 197 6.3
FLOW CONDENSATION STABILITY 203
REFERENCES 211
IMAGE 3
TABLE OF CONTENTS XXIX
7 CRITICAL MULTIPHASE FLOW 215
7.1 DEFINITION OF THE CRITICALITY CONDITION 215
7.2 GRID STRUCTURE 218
7.3 ITERATION STRATEGY 220
7.4 SINGLE PHASE FLOW IN PIPE 220
7.4.1 NO FRICTION ENERGY DISSIPATION, CONSTANT CROSS SECTION 220 7.4.2
GENERAL CASE, PERFECT GAS 227
7.5 SIMPLE TWO PHASE CASES FOR PIPES AND NOZZLES 229
7.5.1 SUBCOOLED CRITICAL MASS FLOW RATE IN SHORT PIPES, ORIFICES AND
NOZZLES 232
7.5.1 FROZEN HOMOGENEOUS NON-DEVELOPED FLOW 233
7.5.2 NON-HOMOGENEOUS DEVELOPED FLOW WITHOUT MASS EXCHANGE 236 7.5.3
EQUILIBRIUM HOMOGENEOUS FLOW 237
7.5.4 EQUILIBRIUM NON-HOMOGENEOUS FLOW 256
7.5.5 INHOMOGENEOUS DEVELOPING FLOW IN SHORT PIPES AND NUZZLES WITH
INFINITELY FAST HEAT EXCHANGE AND WITH LIMITED INTERFACIAL MASS TRANSFER
269
7.6 RECENT STATE OF THE KNOWLEDGE FOR DESCRIBING CRITICAL FLOW 277 7.6.1
BUBBLES ORIGINATION 277
7.6.2 BUBBLE FRAGMENTATION 284
7.6.3 BUBBLE COALESCENCES 286
7.6.4 DROPLETS ORIGINATION 286
7.7 EXAMPLES FOR APPLICATION OF THE THEORY OF THE CRITICAL FLOW 287
7.7.1 BLOW DOWN FROM INITIALLY CLOSED PIPE 287
7.7.2 BLOW DOWN FROM INITIALLY CLOSED VESSEL 291
7.8 NOMENCLATURE 293
REFERENCES 297
8 STEAM GENERATORS 301
8.1 INTRODUCTION 301
8.2 SOME POPULAR DESIGNS OF STEAM GENERATORS 302
8.2.1 U-TUBETYPE 302
8.2.2 ONCE THROUGH TYPE 311
8.2.3 OTHER DESIGN TYPES 313
8.3 FREQUENT PROBLEMS, SOUND DESIGN PRACTICES 313
8.4 ANALYTICAL TOOLS 320
8.4.1 SOME PRELIMINARY REMARKS ON THE PHYSICAL PROBLEM TO BE SOLVED 320
8.4.2 SOME SIMPLE CONSERVATION PRINCIPLES 321
8.4.3 THREE-DIMENSIONAL ANALYSIS 323
8.5 VALIDATION EXAMPLES 326
8.5.1 BENCHMARK FOR HEAT EXCHANGER DESIGN WITH COMPLEX COMPUTER CODES
326
8.5.2 BENCHMARK FOR ONCE THROUGH STEAM GENERATOR DESIGN WITH COMPLEX
COMPUTER CODES 333
8.5.3 THREE-DIMENSIONAL BENCHMARKS - COMPARISON WITH PREDICTIONS OF
OLDER COMPUTER CODES 334
IMAGE 4
XXX TABLE OF CONTENTS
8.6 PRIMARY CIRCUITS OF PWRS UP TO 1976 338
8.7 PRIMARY CIRCUITS OF MODERN PWRS 341
APPENDIX 1 SOME USEFUL GEOMETRICAL RELATIONS IN PREPARING GEOMETRICAL
DATA FOR U-TUBE STEAM GENERATOR ANALYSIS 344 REFERENCES 350
9 MOISTURE SEPARATION 355
9.1 INTRODUCTION 355
9.2 MOISTURE CHARACTERISTICS 359
9.3 SIMPLE ENGINEERING METHODS FOR COMPUTATION OF THE EFFICIENCY OF THE
SEPARATION 362
9.3.1 CYCLONE SEPARATORS 363
9.3.2 VANE SEPARATORS 375
9.4 VELOCITY FIELD MODELING IN SEPARATORS 383
9.4.1 KREITH AND SONJU SOLUTION FOR THE DECAY OF TURBULENT SWIRL IN
PIPES 384
9.4.2 POTENTIAL GAS FLOW IN VANES 385
9.4.3 TRAJECTORY OF PARTICLES IN A KNOWN CONTINUUM FIELD 385 9.4.4
COMPUTATIONAL FLUID DYNAMICS ANALYSES OF CYCLONES 389 9.4.5
COMPUTATIONAL FLUID DYNAMICS ANALYSES OF VANE SEPARATORS 389 9.5
EXPERIMENTS 391
9.5.1 BWR CYCLONES, PWR STEAM GENERATOR CYCLONES 391
9.5.2 OTHER CYCLONE TYPES 403
9.5.3 VANE DRYERS 407
9.6 MOISTURE SEPARATION IN NPP WITH PWRS ANALYZED BY THREE-FLUID MODELS
420
9.6.1 SEPARATION EFFICIENCY OF THE SPECIFIC CYCLONE DESIGN 422 9.6.2
EFFICIENCY OF THE SPECIFIC VANE SEPARATOR DESIGN 424
9.6.3 UNIFORMITY OF THE FLOW PASSING THE VANE SEPARATORS 424 9.6.4
EFFICIENCY OF THE CONDENSATE REMOVAL LOCALLY AND INTEGRALLY 425 9.7
NOMENCLATURE 426
REFERENCES 430
10 PIPE NETWORKS 433
10.1 SOME BASIC DEFINITIONS 435
PIPES 435
AXIS IN THE SPACE 437
DIAMETERS OF PIPE SECTIONS 438
REDUCTIONS 439
ELBOWS 439
CREATING A LIBRARY OF PIPES 440
SUB SYSTEM NETWORK 440
DISCRETIZATION OF PIPES 441
KNOTS 442
10.2 THE 1983-INTERATOME EXPERIMENTS 444
10.2.1 EXPERIMENT 1.2 445
10.2.2 EXPERIMENT 1.3 446
10. 10. 10. 10. 10. 10. 10. 10. 10.
LI 1.2 1.3 .4
1.5 1.6 1.7 1.8 1.9
IMAGE 5
TABLE OF CONTENTS XXXI
10.2.3 EXPERIMENT 10.6 449
10.2.4 EXPERIMENT 11.3 450
10.2.5 EXPERIMENT 21 452
10.2.6 EXPERIMENT5 454
10.2.7 EXPERIMENT 15 456
REFERENCES 458
11 SOME AUXILIARY SYSTEMS 461
11.1 HIGH PRESSURE REDUCTION STATION 461
11.2 GAS RELEASE IN RESEARCH REACTORS PIPING 464
11.2.1 SOLUBILITY OF O 2 , N 2 AND H 2 UNDER 1 BAR PRESSURE 465 11.2.2
SOME GENERAL REMARKS ON THE GAS RELEASE- AND ABSORPTION DYNAMICS 466
11.2.3 GAS RELEASE IN THE SIPHON SAFETY PIPE 467
11.2.4 RADIOLYSIS GASES: GENERATION, ABSORPTION AND RELEASE 468 11.2.5
MIXING IN THE WATER POOL 471
11.2.6 COMPUTATIONAL ANALYSES 471
REFERENCES 477
12 EMERGENCY CONDENSERS 479
12.1 INTRODUCTION 479
12.2 SIMPLE MATHEMATICAL ILLUSTRATION OF THE OPERATION OF THE SYSTEM 480
12.3 PERFORMANCE OF THE CONDENSER AS A FUNCTION OF THE WATER LEVEL AND
PRESSURE 483
12.4 CONDENSATE REMOVAL 483
12.5 AIR-COOLED CONDENSER, STEAM REHEATER 484
12.5.1 HEAT EXCHANGER POWER 484
12.5.2 INTENSIFYING HEAT TRANSFER BY FINS 488
12.5.3 HEAT TRANSFER AT FINNED TUBES 489
12.5.4 HEAT CONDUCTION THROUGH FINNED PIPE 492
12.5.5 CONDENSATION INSIDE A PIPE 493
12.6 NOMENCLATURE 494
12.7 REFERENCES 496
13 CORE DEGRADATION 497
13.1 PROCESSES DURING THE CORE DEGRADATION DEPENDING ON THE STRUCTURE
TEMPERATURE 497
13.2 ANALYTICAL TOOLS FOR ESTIMATION OF THE CORE DEGRADATION 498
14 MELT-COOLANT INTERACTION 503
14.1 MELT-COOLANT INTERACTION ANALYSIS FOR THE BOILING WATER REACTOR
KARENA 504
14.1.1 INTERACTION INSIDE THE GUIDE TUBES 510
14.1.2 MELT-RELOCATION THROUGH THE LOWER CORE GRID 512
14.1.3 SIDE MELT-RELOCATION THROUGH THE CORE BARREL 513
14.1.4 LATE WATER INJECTION 513
IMAGE 6
XXXII TABLE OF CONTENTS
14.2 PRESSURE INCREASE DUE TO THE VAPOR GENERATION AT THE SURFACE OF THE
MELT POOL 513
14.3 CONDITIONS FOR WATER PENETRATION INTO MELT 514
14.4 VESSEL INTEGRITY DURING THE CORE RELOCATION PHASE 515
REFERENCES 517
15 COOLABILITY OF LAYERS OF MOLTEN REACTOR MATERIAL 521
15.1 INTRODUCTION 523
15.2 PROBLEM DEFINITION 523
15.3 SYSTEM OF DIFFERENTIAL EQUATIONS DESCRIBING THE PROCESS 524 15.3.1
SIMPLIFYING ASSUMPTIONS 524
15.3.2 MASS CONSERVATION 525
15.3.3 GAS RELEASE AND GAS VOLUME FACTION 527
15.3.4 VISCOUS LAYER 528
15.3.5 CRUST FORMATION 530
15.3.6 MELT ENERGY CONSERVATION 532
15.3.7 BUOYANCY DRIVEN CONVECTION 534
15.3.8 FILM BOILING 536
15.4 HEAT CONDUCTING STRUCTURES 537
15.4.1 HEAT CONDUCTION THROUGH THE STRUCTURES 537
15.4.2 BOUNDARY CONDITIONS 538
15.4.3 OXIDE CRUST FORMATION ON COLDER HEAT CONDUCTING STRUCTURES 539
15.5 METAL LAYER 542
15.6 TEST CASE 542
15.6.1 OXIDE OVER METAL 543
15.6.2 OXIDE BESIDES METAL 546
15.7 GRAVITATIONAL FLOODING OF HOT SOLID HORIZONTAL SURFACE BY WATER 547
15.7.1 SIMPLIFYING ASSUMPTIONS 548
15.7.2 CONSERVATION OF MASS AND MOMENTUM, SCALING 550 15.7.3 EIGEN
VALUES, EIGEN VECTORS AND CANONICAL FORMS 553 15.7.4 STEADY STATE 557
15.8 NOMENCLATURE 559
15.9 NOMENCLATURE TO SECT. 15.7 561
REFERENCES 563
16 EXTERNAL COOLING OF REACTOR VESSELS DURING SEVERE ACCIDENT 565 16.1
INTRODUCTION 565
16.2 STATE OF THE ART 566
16.3 DRY CORE MELTING SCENARIO, MELT RELOCATION, WALL ATTACK, FOCUSING
EFFECT 568
16.4 MODEL ASSUMPTIONS AND BRIEF MODEL DESCRIPTION 569
16.4.1 MOLTEN POOL BEHAVIOR 570
16.4.2 TWO DIMENSIONAL HEAT CONDUCTION THROUGH THE VESSEL WALL... 571
16.4.3 BOUNDARY CONDITIONS 572
16.4.4 TOTAL HEAT FLOW FROM THE POOLS INTO THE VESSEL WALL 574 16.4.5
VESSEL WALL ABLATION 575
IMAGE 7
TABLE OF CONTENTS XXXIII
16.4.6 HEAT FLUXES AND CRUST FORMATION 576
16.4.7 BUOYANCY CONVECTION 577
16.5 CRITICAL HEAT FLUX 593
16.6 APPLICATION EXAMPLES OF THE MODEL 598
16.6.1 THE EFFECT OF VESSEL DIAMETER 599
16.6.2 THE EFFECT OF THE LOWER HEAD RADIUS 599
16.6.3 THE EFFECT OF THE RELOCATION TIME 601
16.6.4 THE EFFECT OF THE MASS OF THE INTERNAL STRUCTURES 601 16.6.5 SOME
IMPORTANT PARAMETERS CHARACTERIZING THE PROCESS 601 16.7 NOMENCLATURE
606
REFERENCES 608
APPENDIX 1: SOME GEOMETRICAL RELATIONS 613
17 THERMO-PHYSICAL PROPERTIES FOR SEVERE ACCIDENT ANALYSIS 617
17.1 INTRODUCTION 619
17.1.1 SUMMARY OF THE PROPERTIES AT THE MELTING LINE AT ATMOSPHERIC
PRESSURE 619
17.1.2 APPROXIMATION OF THE LIQUID STATE OF MELTS 621
17.1.3 NOMENCLATURE 624
REFERENCES 626
17.2 URANIUM DIOXIDE CALORIC AND TRANSPORT PROPERTIES 627
17.2.1 SOLID 628
17.2.2 LIQUID 636
17.2.3 VAPOR 644
REFERENCES 646
17.3 ZIRCONIUM DIOXIDE 649
17.3.1 SOLID 649
17.3.2 LIQUID 654
REFERENCES 657
17.4 STAINLESS STEEL 659
17.4.1 SOLID 659
17.4.2 LIQUID 666
17.4.3 VAPOR 673
REFERENCES 674
17.5 ZIRCONIUM 675
17.5.1 SOLID 675
17.5.2 LIQUID 681
REFERENCES 685
17.6 ALUMINUM 687
17.6.1 SOLID 687
17.6.2 LIQUID 689
REFERENCES 695
IMAGE 8
XXXIV TABLE OF CONTENTS
17.7 ALUMINUM OXIDE, ALO 3 697
17.7.1 SOLID 697
17.7.2 LIQUID 704
REFERENCES 707
17.8 SILICON DIOXIDE 709
17.8.1 SOLID 709
17.8.2 LIQUID 715
REFERENCES 718
17.9 IRON OXIDE 721
17.9.1 SOLID 721
17.9.2 LIQUID 723
REFERENCES 728
17.10 MOLYBDENUM 729
17.10.1 SOLID 729
17.10.2 LIQUID 733
REFERENCES 736
17.11 BORON OXIDE 737
17.11.1 SOLID 737
17.11.2 LIQUID 739
REFERENCES 745
17.12 REACTOR CORIUM 747
17.12.1 LIQUID 750
17.12.2 SOLID 752
REFERENCES 753
17.13 SODIUM 755
17.13.1 SOME BASIC CHARACTERISTICS 756
17.13.2 LIQUID 760
17.13.3 VAPOR 778
REFERENCES 798
APPENDIX 1 799
17.14 LEAD, BISMUTH AND LEAD-BISMUTH EUTECTIC ALLOY 801
REFERENCES 807
INDEX 809
|
any_adam_object | 1 |
author | Kolev, Nikolay Ivanov 1951- |
author_GND | (DE-588)110653262 |
author_facet | Kolev, Nikolay Ivanov 1951- |
author_role | aut |
author_sort | Kolev, Nikolay Ivanov 1951- |
author_variant | n i k ni nik |
building | Verbundindex |
bvnumber | BV039723656 |
ctrlnum | (OCoLC)731922087 (DE-599)BVBBV039723656 |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01272nam a2200337 cc4500</leader><controlfield tag="001">BV039723656</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160504 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">111124s2011 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642206009</subfield><subfield code="c">Gb. : EUR 213.95</subfield><subfield code="9">978-3-642-20600-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)731922087</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039723656</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolev, Nikolay Ivanov</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110653262</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiphase flow dynamics</subfield><subfield code="n">5</subfield><subfield code="p">Nuclear thermal hydraulics</subfield><subfield code="c">Nikolay I. Kolev</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Thermal hydraulics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIV, 815 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nebent.: Thermal hydraulics</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV014569143</subfield><subfield code="g">5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-20601-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024571698&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024571698</subfield></datafield></record></collection> |
id | DE-604.BV039723656 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:09:45Z |
institution | BVB |
isbn | 9783642206009 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024571698 |
oclc_num | 731922087 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XXXIV, 815 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
spelling | Kolev, Nikolay Ivanov 1951- Verfasser (DE-588)110653262 aut Multiphase flow dynamics 5 Nuclear thermal hydraulics Nikolay I. Kolev Thermal hydraulics 2. ed. Berlin [u.a.] Springer 2011 XXXIV, 815 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nebent.: Thermal hydraulics (DE-604)BV014569143 5 Erscheint auch als Online-Ausgabe 978-3-642-20601-6 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024571698&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kolev, Nikolay Ivanov 1951- Multiphase flow dynamics |
title | Multiphase flow dynamics |
title_alt | Thermal hydraulics |
title_auth | Multiphase flow dynamics |
title_exact_search | Multiphase flow dynamics |
title_full | Multiphase flow dynamics 5 Nuclear thermal hydraulics Nikolay I. Kolev |
title_fullStr | Multiphase flow dynamics 5 Nuclear thermal hydraulics Nikolay I. Kolev |
title_full_unstemmed | Multiphase flow dynamics 5 Nuclear thermal hydraulics Nikolay I. Kolev |
title_short | Multiphase flow dynamics |
title_sort | multiphase flow dynamics nuclear thermal hydraulics |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024571698&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014569143 |
work_keys_str_mv | AT kolevnikolayivanov multiphaseflowdynamics5 AT kolevnikolayivanov thermalhydraulics |