Extractive metallurgy of copper:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2011
|
Ausgabe: | 5. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIV, 455 S. Ill., graph. Darst., Kt. |
ISBN: | 9780080967899 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039695245 | ||
003 | DE-604 | ||
005 | 20120116 | ||
007 | t | ||
008 | 111111s2011 abd| |||| 00||| eng d | ||
020 | |a 9780080967899 |9 978-0-08-096789-9 | ||
024 | 3 | |a 9780080967899 | |
035 | |a (OCoLC)740894094 | ||
035 | |a (DE-599)BSZ34549590X | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 | ||
084 | |a ZK 7500 |0 (DE-625)156820: |2 rvk | ||
084 | |a ZM 4610 |0 (DE-625)157051: |2 rvk | ||
245 | 1 | 0 | |a Extractive metallurgy of copper |c Mark E. Schlesinger ... |
250 | |a 5. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2011 | |
300 | |a XXIV, 455 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Extraktion |0 (DE-588)4016062-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metallurgie |0 (DE-588)4074756-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kupfer |0 (DE-588)4033734-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Metallurgie |0 (DE-588)4074756-6 |D s |
689 | 0 | 1 | |a Extraktion |0 (DE-588)4016062-2 |D s |
689 | 0 | 2 | |a Kupfer |0 (DE-588)4033734-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Schlesinger, Mark E. |e Sonstige |4 oth | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024543913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024543913 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804148566164242432 |
---|---|
adam_text | IMAGE 1
CONTENTS
PREFACE XV
PREFACE TO THE FOURTH EDITION XVII
PREFACE TO THE THIRD EDITION XIX
PREFACE TO THE SECOND EDITION XXI
PREFACE TO THE FIRST EDITION XXIII
1. OVERVIEW I
1.1. INTRODUCTION 1
1.2. EXTRACTING COPPER FROM COPPER-IRON-SULFIDE ORES 2
1.2.1. CONCENTRATION BY FROTH FLOTATION 4
1.2.2. MATTE SMELTING 4
1.2.3. CONVERTING 5
1.2.4. DIRECT-TO-COPPER SMELTING 7
1.2.5. FIRE REFINING AND ELECTROREFINING OF BLISTER COPPER 7
1.3. HYDROMETALLURGICAL EXTRACTION OF COPPER 8
1.3.1. SOLVENT EXTRACTION 8
1.3.2. ELECTROWINNING 9
1.4. MELTING AND CASTING CATHODE COPPER 10
1.4.1. TYPES OF COPPER PRODUCT 10
1.5. RECYCLE OF COPPER AND COPPER-ALLOY SCRAP 11
1.6. SUMMARY 12
REFERENCE 12
SUGGESTED READING 12
2. PRODUCTION AND USE 13
2.1. COPPER MINERALS AND CUT-OFF GRADES 14
2.2. LOCATION OF EXTRACTION PLANTS 1 7
2.3. PRICE OF COPPER 29
2.4. SUMMARY 29
REFERENCES 29
3. PRODUCTION OF HIGH COPPER CONCENTRATES - INTRODUCTION AND COMMINUTION
31
3.1. CONCENTRATION FLOWSHEET 31
3.2. THE COMMINUTION PROCESS 31
3.3. BLASTING 32
3.3.1. ORE-SIZE DETERMINATION 34
3.3.2. AUTOMATED ORE-TOUGHNESS MEASUREMENTS 34
3.4. CRUSHING 35
3.5. GRINDING 35
3.5.1. GRIND SIZE AND LIBERATION OF COPPER MINERALS 35
IMAGE 2
CONTENTS
3.5.2. GRINDING EQUIPMENT 36
3.5.3. PARTICLE-SIZE CONTROL OF FLOTATION FEED 36
3.5.4. INSTRUMENTATION AND CONTROL 43
3.6. RECENT DEVELOPMENTS IN COMMINUTION 46
3.6.1. HIGH PRESSURE ROLL CRUSHING 46
3.6.2. AUTOMATED MINERALOGICAL ANALYSIS 47
3.7. SUMMARY 47
REFERENCES 48
SUGGESTED READING 48
4. PRODUCTION OF CU CONCENTRATE FROM FINELY GROUND CU ORE 51 4.1. FROTH
FLOTATION 51
4.2. FLOTATION CHEMICALS 52
4.2.1. COLLECTORS 52
4.2.2. SELECTIVITY IN FLOTATION 53
4.2.3. DIFFERENTIAL FLOTATION - MODIFIERS 54
4.2.4. FROTHERS 55
4.3. SPECIFIC FLOTATION PROCEDURES FOR CU ORES 55
4.4. FLOTATION CELLS 56
4.4.1. COLUMN CELLS 56
4.5. SENSORS, OPERATION, AND CONTROL 64
4.5.1. CONTINUOUS CHEMICAL ANALYSIS OF PROCESS STREAMS 65
4.5.2. MACHINE VISION SYSTEMS 67
4.6. THE FLOTATION PRODUCTS 67
4.6.1. THICKENING AND DEWATERING 67
4.6.2. TAILINGS 68
4.7. OTHER FLOTATION SEPARATIONS 68
4.7.1. GOLD FLOTATION 68
4.8. SUMMARY 69
REFERENCES 69
SUGGESTED READING 70
5. MATTE SMELTING FUNDAMENTALS 73
5.1. WHY SMELTING? 73
5.2. MATTE AND SLAG 74
5.2.1. SLAG 74
5.2.2. CALCIUM FERRITE AND OLIVINE SLAGS 79
5.2.3. MATTE 81
5.3. REACTIONS DURING MATTE SMELTING 82
5.4. THE SMELTING PROCESS: GENERAL CONSIDERATIONS 83
5.5. SMELTING PRODUCTS: MATTE, SLAG AND OFFGAS 84
5.5.1. MATTE 84
5.5.2. SLAG 84
5.5.3. OFFGAS 86
5.6. SUMMARY 86
REFERENCES 86
SUGGESTED READING 88
6. FLASH SMELTING 89
6.1. OUTOTEC FLASH FURNACE 89
6.1.1. CONSTRUCTION DETAILS 90
IMAGE 3
CONTENTS
6.1.2. COOLING JACKETS 94
6.1.3. CONCENTRATE BURNER 95
6.1.4. SUPPLEMENTARY HYDROCARBON FUEL BURNERS 95
6.1.5. MATTE AND SLAG TAPHOLES 96
6.2. PERIPHERAL EQUIPMENT 96
6.2.1. CONCENTRATE BLENDING SYSTEM 96
6.2.2. SOLIDS FEED DRYER 97
6.2.3. BIN AND FEED SYSTEM 97
6.2.4. OXYGEN PLANT 98
6.2.5. BLAST HEATER (OPTIONAL) 98
6.2.6. HEAT RECOVERY BOILER 98
6.2.7. DUST RECOVERY AND RECYCLE SYSTEM 98
6.3. FLASH FURNACE OPERATION 99
6.3.1. STARTUP AND SHUTDOWN 99
6.3.2. STEADY-STATE OPERATION 99
6.4. CONTROL 100
6.4.1. CONCENTRATE THROUGHPUT RATE AND MATTE GRADE CONTROLS 100 6.4.2.
SLAG COMPOSITION CONTROL 101
6.4.3. TEMPERATURE CONTROL 101
6.4.4. REACTION SHAFT AND HEARTH CONTROL 101
6.5. IMPURITY BEHAVIOR 102
6.5.1. NON-RECYCLE OF IMPURITIES IN DUST 102
6.5.2. OTHER INDUSTRIAL METHODS OF CONTROLLING IMPURITIES 103
6.6. OUTOTEC FLASH SMELTING RECENT DEVELOPMENTS AND FUTURE TRENDS 103
6.7. INCO FLASH SMELTING 103
6.7.1. FURNACE DETAILS 104
6.7.2. CONCENTRATE BURNER 104
6.7.3. WATER COOLING 104
6.7.4. MATTE AND SLAG TAPHOLES 105
6.7.5. GAS UPTAKE 105
6.7.6. AUXILIARY EQUIPMENT 105
6.7.7. SOLIDS FEED DRYER 106
6.7.8. CONCENTRATE BURNER FEED SYSTEM 106
6.7.9. OFFGAS COOLING AND DUST RECOVERY SYSTEMS 106
6.8. INCO FLASH FURNACE SUMMARY 106
6.9. INCO VS. OUTOTEC FLASH SMELTING 107
6.10. SUMMARY 107
REFERENCES 107
SUGGESTED READING 1 10
7. SUBMERGED TUYERE SMELTING: NORANDA, TENIENTE, AND VANYUKOV 111 7.1.
NORANDA PROCESS 111
7.2. REACTION MECHANISMS 114
7.2.1. SEPARATION OF MATTE AND SLAG 114
7.2.2. CHOICE OF MATTE GRADE 115
7.2.3. IMPURITY BEHAVIOR 115
7.2.4. SCRAP AND RESIDUE SMELTING 115
7.3. OPERATION AND CONTROL 11 6
7.3.1. CONTROL 116
7.4. PRODUCTION RATE ENHANCEMENT 117
7.5. TENIENTE SMELTING 11 7
7.5.1. SEED MATTE 117
IMAGE 4
CONTENTS
7.6. PROCESS DESCRIPTION 118
7.7. OPERATION 118
7.8. CONTROL 120
7.8.1. TEMPERATURE CONTROL 120
7.8.2. SLAG AND MATTE COMPOSITION CONTROL 120
7.8.3. MATTE AND SLAG DEPTH CONTROL 120
7.9. IMPURITY DISTRIBUTION 120
7.10. DISCUSSION 121
7.10.1. SUPER-HIGH MATTE GRADE AND SO2 CAPTURE EFFICIENCY 121 7.10.2.
CAMPAIGN LIFE AND HOT TUYERE REPAIRING 121
7.10.3. FURNACE COOLING 121
7.10.4. OFFGAS HEAT RECOVERY 122
7.11. VANYUKOV SUBMERGED TUYERE SMELTING 122
7.12. SUMMARY 123
REFERENCES 124
SUGGESTED READING 125
8. CONVERTING OF COPPER MATTE 127
8.1. CHEMISTRY 127
8.1.1. COPPERMAKING REACTIONS 129
8.1.2. ELIMINATION OF IMPURITIES DURING CONVERTING 134
8.2. INDUSTRIAL PEIRCE-SMITH CONVERTING OPERATIONS 134
8.2.1. TUYERES AND OFFGAS COLLECTION 136
8.2.2. TEMPERATURE CONTROL 137
8.2.3. CHOICE OF TEMPERATURE 138
8.2.4. TEMPERATURE MEASUREMENT 138
8.2.5. SIAG AND FLUX CONTROL . 139
8.2.6. SLAG FORMATION RATE 139
8.2.7. END POINT DETERMINATIONS 139
8.3. OXYGEN ENRICHMENT OF PEIRCE-SMITH CONVERTER BLAST 140
8.4. MAXIMIZING CONVERTER PRODUCTIVITY 140
8.4.1. MAXIMIZING SOLIDS MELTING 141
8.4.2. SMELTING CONCENTRATES IN THE CONVERTER 142
8.4.3. MAXIMIZING CAMPAIGN LIFE 142
8.5. RECENT IMPROVEMENTS IN PEIRCE*SMITH CONVERTING 142
8.5.1. SHROUDED BLAST INJECTION 142
8.5.2. SCRAP INJECTION 143
8.5.3. CONVERTER SHELL DESIGN 143
8.6. ALTERNATIVES TO PEIRCE-SMITH CONVERTING 143
8.6.1. HOBOKEN CONVERTER 144
8.6.2. FLASH CONVERTING 144
8.6.3. SUBMERGED-TUYERE NORANDA CONTINUOUS CONVERTING 147 8.6.4. RECENT
DEVELOPMENTS IN PEIRCE-SMITH CONVERTING ALTERNATIVES 150 8.7. SUMMARY
150
REFERENCES 151
SUGGESTED READING 153
9. BATH MATTE SMELTING: AUSMELT/LSASMELT AND MITSUBISHI 155
9.1. BASIC OPERATIONS 155
9.2. FEED MATERIALS 156
9.3. THE TSL FURNACE AND LANCES 156
9.4. SMELTING MECHANISMS 163
9.4.1. IMPURITY ELIMINATION 163
IMAGE 5
CONTENTS
9.5. STARTUP AND SHUTDOWN 163
9.6. CURRENT INSTALLATIONS 164
9.7. COPPER CONVERTING USING TSL TECHNOLOGY 164
9.8. THE MITSUBISHI PROCESS 165
9.8.1. INTRODUCTION 165
9.8.2. THE MITSUBISHI PROCESS 165
9.8.3. SMELTING FURNACE DETAILS 166
9.8.4. ELECTRIC SLAG-CLEANING FURNACE DETAILS 167
9.8.5. CONVERTING FURNACE DETAILS 168
9.8.6. OPTIMUM MATTE GRADE 169
9.8.7. PROCESS CONTROLIN MITSUBISHI SMELTING/CONVERTING 169
9.9. THE MITSUBISHI PROCESS IN THE 2000S 1 74
9.10. SUMMARY 175
REFERENCES 176
SUGGESTED READING 177
10. DIRECT-TO-COPPER FLASH SMELTING 179
10.1. ADVANTAGES AND DISADVANTAGES 179
10.2. THE IDEAL DIRECT-TO-COPPER PROCESS 179
10.3. INDUSTRIAL SINGLE FURNACE DIRECT-TO-COPPER SMELTING 182
10.4. CHEMISTRY 184
10.5. EFFECT OF SLAG COMPOSITION ON % CU-IN-SLAG 185
10.6. INDUSTRIAL DETAILS 185
10.7. CONTROL 186
10.7.1. TARGET: NO MATTE LAYER TO AVOID FOAMING 186
10.7.2. HIGH % CU-IN-SLAG FROM NO-MATTE-LAYER STRATEGY 186
10.8. ELECTRIC FURNACE CU-FROM-SLAG RECOVERY 186
10.8.1. CLOGOW 187
10.8.2. OLYMPIC DAM 187
10.9. CU-IN-SLAG LIMITATION OF DIRECT-TO-COPPER SMELTING 187
10.10. DIRECT-TO-COPPER IMPURITIES 187
10.11. SUMMARY 188
REFERENCES 189
SUGGESTED READING 189
11. COPPER LOSS IN SLAG 191
11.1. COPPER IN SLAGS 191
11.2. DECREASING COPPER IN SLAG I: MINIMIZING SLAG GENERATION 193
11.3. DECREASING COPPER IN SLAG II: MINIMIZING COPPER CONCENTRATION IN
SLAG 193
11.4. DECREASING COPPER IN SLAG III: PYROMETALLURGICAL SLAG
SETTLING/REDUCTION 194
11.5. DECREASING COPPER IN SLAG IV: SLAG MINERALS PROCESSING 197 11.6.
SUMMARY 201
REFERENCES 201
SUGGESTED READING 203
12. CAPTURE AND FIXATION OF SULFUR 205
12.1. OFFGASES FROM SMELTING AND CONVERTING PROCESSES 206
12.1.1. SULFUR CAPTURE EFFICIENCIES 207
12.2. SULFURIC ACID MANUFACTURE 208
IMAGE 6
CONTENTS
12.3. SMELTER OFFGAS TREATMENT 208
12.3.1. GAS COOLING AND HEAT RECOVERY 210
12.3.2. ELECTROSTATIC PRECIPITATION OF DUST 211
12.3.3. WATER QUENCHING, SCRUBBING, AND COOLING 211
12.3.4. MERCURY REMOVAL 211
12.3.5. THE QUENCHING LIQUID, ACID PLANT BBWDOWN 212
12.4. GAS DRYING 212
12.4.1. DRYING TOWER 212
12.4.2. MAIN ACID PLANT BLOWERS 213
12.5. ACID PLANT CHEMICAL REACTIONS 214
12.5.1. OXIDATION OF SO 2 TO SO 3 214
12.6. INDUSTRIAL SULFURIC ACID MANUFACTURE 218
12.6.1. CATALYTIC CONVERTER 224
12.6.2. SO 2 -+ SO 3 CONVERSION REACTION PATHS 224
12.6.3. REACTION PATH CHARACTERISTICS 225
12.6.4. ABSORPTION TOWERS 226
12.6.5. GAS TO GAS HEAT EXCHANGERS AND ACID COOLERS 227
12.6.6. GRADES OF PRODUCT ACID 227
12.7. ALTERNATIVE SULFURIC ACID MANUFACTURING METHODS 227
12.7.1. HA!DORTOPS0E WSA 227
12.7.2. SULFACID 228
12.8. RECENT AND FUTURE DEVELOPMENTS IN SULFURIC ACID MANUFACTURE 229
12.8.1. MAXIMIZING FEED GAS SO2 CONCENTRATIONS 229
12.8.2. MAXIMIZING HEAT RECOVERY 230
12.9. ALTERNATIVE SULFUR PRODUCTS 231
12.10. FUTURE IMPROVEMENTS IN SULFUR CAPTURE 231
12.11. SUMMARY 231
REFERENCES 232
SUGGESTED READING 234
13. FIRE REFINING (S AND O REMOVAL) AND ANODE CASTING 237
13.1. INDUSTRIAL METHODS OF FIRE REFINING 237
13.1.1. ROTARY FURNACE REFINING 238
13.1.2. HEARTH FURNACE REFINING 240
13.2. CHEMISTRY OF FIRE REFINING 240
13.2.1. SULFUR REMOVAL: THE C U - O -S SYSTEM 240
13.2.2. OXYGEN REMOVAL: THE C U - C - H -O SYSTEM 241
13.3. CHOICE OF HYDROCARBON FOR DEOXIDATION 241
13.4. CASTING ANODES 241
13.4.1. ANODE MOLDS 243
13.4.2. ANODE UNIFORMITY 243
13.4.3. ANODE PREPARATION 243
13.5. CONTINUOUS ANODE CASTING 244
13.6. NEW ANODES FROM REJECTS AND ANODE SCRAP 245
13.7. REMOVAL OF IMPURITIES DURING FIRE REFINING 245
13.8. SUMMARY 247
REFERENCES 247
SUGGESTED READING 248
14. ELECTROLYTIC REFINING 251
14.1. THE ELECTROREFINING PROCESS 251
IMAGE 7
CONTENTS
14.2. CHEMISTRY OF ELECTROREFINING AND BEHAVIOR OF ANODE IMPURITIES 252
14.2.1. AU AND PLATINUM-GROUP METAIS 253
14.2.2. SEANDTE 253
14.2.3. PB AND SN 254
14.2.4. AS, BI, CO, FE, NI, S, AND SB 254
14.2.5. AG 255
14.2.6. O 255
14.2.7. SUMMARY OF IMPURITY BEHAVIOR 256
14.3. EQUIPMENT 257
14.3.1. ANODES 258
14.3.2. CATHODES 258
14.3.3. CELLS 259
14.3.4. ELECTRICAL COMPONENTS 260
14.4. TYPICAL REFINING CYCLE 260
14.5. ELECTROLYTE 261
14.5.1. ADDITION AGENTS 262
14.5.2. ELECTROLYTE TEMPERATURE 266
14.5.3. ELECTROLYTE FILTRATION 266
14.5.4. REMOVAL OF IMPURITIES FROM THE ELECTROLYTE 266
14.6. MAXIMIZING COPPER CATHODE PURITY 267
14.6.1. PHYSICAL FACTORS AFFECTING CATHODE PURITY 267
14.6.2. CHEMICAL FACTORS AFFECTING CATHODE PURITY 267
14.6.3. ELECTRICAL FACTORS AFFECTING CATHODE PURITY 268
14.7. MINIMIZING ENERGY CONSUMPTION 269
14.8. INDUSTRIAL ELECTROREFINING 269
14.9. RECENT DEVELOPMENTS AND EMERGING TRENDS IN COPPER ELECTROREFINING
274
14.10. SUMMARY 275
REFERENCES 275
SUGGESTED READING 279
15. HYDROMETALLURGICAL COPPER EXTRACTION: INTRODUCTION
AND LEACHING 281
15.1. COPPER RECOVERY BY HYDROMETALLURGICAL FLOWSHEETS 281 15.2.
CHEMISTRY OF THE LEACHING OF COPPER MINERALS 282
15.2.1. LEACHING OF COPPER OXIDE MINERALS 282
15.2.2. LEACHING OF COPPER SULFIDE MINERALS 283
15.3. LEACHING METHODS 285
15.4. HEAP AND DUMP LEACHING 287
15.4.1. CHEMISTRY OF HEAP AND DUMP LEACHING 288
15.4.2. INDUSTRIAL HEAP LEACHING 290
15.4.3. INDUSTRIAL DUMP LEACHING 301
15.5. VAT LEACHING 301
15.6. AGITATION LEACHING 303
15.6.1. OXIDE MINERALS 303
15.6.2. SULFIDE MINERALS 304
15.7. PRESSURE OXIDATION LEACHING 304
15.7.1. ECONOMIC AND PROCESS DRIVERS FOR A HYDROMETALLURGICAL PROCESS
FOR CHALCOPYRITE 304
15.7.2. ELEVATED TEMPERATURE AND PRESSURE LEACHING 308
15.8. FUTURE DEVELOPMENTS 315
IMAGE 8
CONTENTS
15.9. SUMMARY 316
REFERENCES 317
SUGGESTED READING 322
16. SOLVENT EXTRACTION 323
16.1. THE SOLVENT-EXTRACTION PROCESS 323
16.2. CHEMISTRY OF COPPER SOLVENT EXTRACTION 324
16.3. COMPOSITION OF THE ORGANIC PHASE 325
16.3.1. EXTRACTANTS 325
16.3.2. DILUENTS 327
16.4. MINIMIZING IMPURITY TRANSFER AND MAXIMIZING ELECTROLYTE PURITY 328
16.5. EQUIPMENT 329
16.5.1. MIXER DESIGNS 329
16.5.2. SETTLER DESIGNS 330
16.6. CIRCUIT CONFIGURATIONS 331
16.6.1. SERIES CIRCUIT 331
16.6.2. PARALLEL AND SERIES-PARALLEL CIRCUITS 333
16.6.3. INCLUSION OF A WASH STAGE 333
16.7. QUANTITATIVE DESIGN OF A SERIES CIRCUIT 333
16.7.1. DETERMINATION OF EXTRACTANT CONCENTRATION REQUIRED 333 16.7.2.
DETERMINATION OF EXTRACTION AND STRIPPING ISOTHERMS 334 16.7.3.
DETERMINATION OF EXTRACTION EFFICIENCY 334
1 6.7.4. DETERMINATION OF EQUILIBRIUM STRIPPED ORGANIC CU CONCENTRATION
334
16.7.5. TRANSFER OF CU EXTRACTION INTO ORGANIC PHASE 335
16.7.6. DETERMINATION OF ELECTROLYTE FLOWRATE REQUIRED TO STRIP CU
TRANSFERRED 335
16.7.7. ALTERNATIVE APPROACH 336
16.8. QUANTITATIVE COMPARISON OF SERIES AND SERIES-PARALLEL CIRCUITS 336
16.9. OPERATIONAL CONSIDERATIONS 336
16.9.1. STABILITY OF OPERATION 336
16.9.2. CRUD 337
16.9.3. PHASE CONTINUITY 339
16.9.4. ORGANIC LOSSES AND RECOVERY 339
16.10. INDUSTRIAL SOLVENT-EXTRACTION PLANTS 339
16.11. SUMMARY 344
REFERENCES * 344
SUGGESTED READING 346
17. ELECTROWINNING 349
17.1. THE ELECTROWINNING PROCESS 349
17.2. CHEMISTRY OF COPPER ELECTROWINNING 349
17.3. ELECTRICAL REQUIREMENTS 350
17.4. EQUIPMENT AND OPERATIONAL PRACTICE 351
17.4.1. CATHODES 351
17.4.2. ANODES 351
17.4.3. CELL DESIGN 353
17.4.4. CURRENT DENSITY 355
17.4.5. ACID MIST SUPPRESSION 356
17.4.6. ELECTROLYTE 356
17.4.7. ELECTROLYTE ADDITIVES 360
IMAGE 9
CONTENTS
17.5. MAXIMIZING COPPER PURITY 360
17.6. MAXIMIZING ENERGY EFFICIENCY 361
17.7. MODERN INDUSTRIAL ELECTROWINNING PLANTS 362
17.8. ELECTROWINNING FROM AGITATED LEACH SOLUTIONS 362
17.9. CURRENT AND FUTURE DEVELOPMENTS 368
17.10. SUMMARY 369
REFERENCES 369
SUGGESTED READING 371
18. COLLECTION AND PROCESSING OF RECYCLED COPPER 373
18.1. THE MATERIALS CYCLE 373
18.1.1. HOME SCRAP 373
18.1.2. NEW SCRAP 374
18.1.3. OLD SCRAP 375
18.2. SECONDARY COPPER GRADES AND DEFINITIONS 379
18.3. SCRAP PROCESSING AND BENEFICIATION 380
18.3.1. WIRE AND CABLE PROCESSING 380
18.3.2. AUTOMOTIVE COPPER RECOVERY 382
18.3.3. ELECTRONIC SCRAP TREATMENT 384
18.4. SUMMARY 385
REFERENCES 385
SUGGESTED READING 387
19. CHEMICAL METALLURGY OF COPPER RECYCLING 389
19.1. CHARACTERISTICS OF SECONDARY COPPER 389
19.2. SCRAP PROCESSING IN PRIMARY COPPER SMELTERS 389
19.2.1. SCRAP USE IN SMELTING FURNACES 390
1 9.2.2. SCRAP ADDITIONS TO CONVERTERS AND ANODE FURNACES 391 19.3. THE
SECONDARY COPPER SMELTER 391
19.3.1. HIGH-GRADE SECONDARY SMELTING 391
19.3.2. SMELTING TO BLACK COPPER 391
19.3.3. CONVERTING BLACK COPPER 393
19.3.4. FIRE REFINING AND ELECTROREFINING 394
19.4. SUMMARY 394
REFERENCES 395
SUGGESTED READING 396
20. MELTING AND CASTING 397
20.1. PRODUCT GRADES AND QUALITY 397
20.2. MELTING TECHNOLOGY 399
20.2.1. FURNACE TYPES 399
20.2.2. HYDROGEN AND OXYGEN MEASUREMENT/CONTROL 403
20.3. CASTING MACHINES 403
20.3.1. BILLET CASTING 404
20.3.2. BAR AND ROD CASTING 404
20.3.3. OXYGEN-FREE COPPER CASTING 409
20.3.4. STRIP CASTING 409
20.4. SUMMARY 410
REFERENCES 411
SUGGESTED READING 412
IMAGE 10
CONTENTS
21. BYPRODUCT AND WASTE STREAMS 415
21.1. MOLYBDENITE RECOVERY AND PROCESSING 415
21.2. FLOTATION REAGENTS 415
21.3. OPERATION 415
21.4. OPTIMIZATION 417
21.5. ANODE SLIMES 418
21.5.1. ANODE SLIME COMPOSITION 418
21.5.2. THE SLIME TREATMENT FLOWSHEET 421
21.6. DUST TREATMENT 422
21.7. USE OR DISPOSAL OF SLAG 423
21.8. SUMMARY 425
REFERENCES 425
SUGGESTED READING 426
22. COSTS OF COPPER PRODUCTION 427
22.1. OVERALL INVESTMENT COSTS: MINE THROUGH REFINERY 427
22.1.1. VARIATION IN INVESTMENT COSTS 429
22.1.2. ECONOMIC SIZES OF PLANTS 429
22.2. OVERALL DIRECT OPERATING COSTS: MINE THROUGH REFINERY 429 22.2.1.
VARIATIONS IN DIRECT OPERATING COSTS 430
22.3. TOTAL PRODUCTION COSTS, SELLING PRICES, PROFITABILITY 430 22.3.1.
BYPRODUCT CREDITS 431
22.4. CONCENTRATING COSTS 431
22.5. SMELTING COSTS 433
22.6. ELECTROREFINING COSTS 435
22.7. PRODUCTION OF COPPER FROM SCRAP 435
22.8. LEACH/SOLVENT EXTRACTION/ELECTROWINNING COSTS 436
22.9. PROFITABILITY 438
22.10. SUMMARY 438
REFERENCES 438
SUGGESTED READING 439
INDEX 441
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV039695245 |
classification_rvk | ZK 7500 ZM 4610 |
ctrlnum | (OCoLC)740894094 (DE-599)BSZ34549590X |
discipline | Bergbau / Hüttenwesen Werkstoffwissenschaften / Fertigungstechnik |
edition | 5. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01629nam a2200421 c 4500</leader><controlfield tag="001">BV039695245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120116 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">111111s2011 abd| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080967899</subfield><subfield code="9">978-0-08-096789-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780080967899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)740894094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ34549590X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZK 7500</subfield><subfield code="0">(DE-625)156820:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 4610</subfield><subfield code="0">(DE-625)157051:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Extractive metallurgy of copper</subfield><subfield code="c">Mark E. Schlesinger ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 455 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extraktion</subfield><subfield code="0">(DE-588)4016062-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metallurgie</subfield><subfield code="0">(DE-588)4074756-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kupfer</subfield><subfield code="0">(DE-588)4033734-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Metallurgie</subfield><subfield code="0">(DE-588)4074756-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Extraktion</subfield><subfield code="0">(DE-588)4016062-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kupfer</subfield><subfield code="0">(DE-588)4033734-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlesinger, Mark E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024543913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024543913</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV039695245 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:09:10Z |
institution | BVB |
isbn | 9780080967899 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024543913 |
oclc_num | 740894094 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | XXIV, 455 S. Ill., graph. Darst., Kt. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Elsevier |
record_format | marc |
spelling | Extractive metallurgy of copper Mark E. Schlesinger ... 5. ed. Amsterdam [u.a.] Elsevier 2011 XXIV, 455 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Extraktion (DE-588)4016062-2 gnd rswk-swf Metallurgie (DE-588)4074756-6 gnd rswk-swf Kupfer (DE-588)4033734-0 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Metallurgie (DE-588)4074756-6 s Extraktion (DE-588)4016062-2 s Kupfer (DE-588)4033734-0 s DE-604 Schlesinger, Mark E. Sonstige oth SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024543913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Extractive metallurgy of copper Extraktion (DE-588)4016062-2 gnd Metallurgie (DE-588)4074756-6 gnd Kupfer (DE-588)4033734-0 gnd |
subject_GND | (DE-588)4016062-2 (DE-588)4074756-6 (DE-588)4033734-0 (DE-588)1071861417 |
title | Extractive metallurgy of copper |
title_auth | Extractive metallurgy of copper |
title_exact_search | Extractive metallurgy of copper |
title_full | Extractive metallurgy of copper Mark E. Schlesinger ... |
title_fullStr | Extractive metallurgy of copper Mark E. Schlesinger ... |
title_full_unstemmed | Extractive metallurgy of copper Mark E. Schlesinger ... |
title_short | Extractive metallurgy of copper |
title_sort | extractive metallurgy of copper |
topic | Extraktion (DE-588)4016062-2 gnd Metallurgie (DE-588)4074756-6 gnd Kupfer (DE-588)4033734-0 gnd |
topic_facet | Extraktion Metallurgie Kupfer Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024543913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schlesingermarke extractivemetallurgyofcopper |