Nanotechnology of the life sciences: 8 Nanomaterials for biosensors
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH-Verl.
2011
|
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 408 S. Ill., graph. Darst. |
ISBN: | 9783527331383 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV039691971 | ||
003 | DE-604 | ||
005 | 20120126 | ||
007 | t | ||
008 | 111109s2011 gw ad|| |||| 00||| eng d | ||
015 | |a 11,A38 |2 dnb | ||
016 | 7 | |a 1014987849 |2 DE-101 | |
020 | |a 9783527331383 |9 978-3-527-33138-3 | ||
035 | |a (OCoLC)918160079 | ||
035 | |a (DE-599)DNB1014987849 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-634 | ||
084 | |a 570 |2 sdnb | ||
084 | |a 620 |2 sdnb | ||
245 | 1 | 0 | |a Nanotechnology of the life sciences |n 8 |p Nanomaterials for biosensors |c ed. by Challa S. S. R. Kumar |
264 | 1 | |a Weinheim |b Wiley-VCH-Verl. |c 2011 | |
300 | |a XXI, 408 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
700 | 1 | |a Kumar, Challa S. S. R. |0 (DE-588)129740470 |4 edt | |
773 | 0 | 8 | |w (DE-604)BV039691867 |g 8 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024540722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-024540722 |
Datensatz im Suchindex
_version_ | 1805145525566046208 |
---|---|
adam_text |
IMAGE 1
VIL
CONTENTS
PREFACE XV
LIST OF AUTHORS X IX
1 BIOSENSING USING CARBON NANOTUBE FIELD-EFFECT TRANSISTORS 1
PADMAKAR D. KICHAMBARE AND ALEXANDER STAR
1.1 OVERVIEW 1
1.2 INTRODUCTION 1
1.3 CARBON NANOTUBE FIELD-EFFECT TRANSISTORS (NTFETS) 3 1.3.1 CARBON
NANOTUBES 3 1.3.2 NANOTUBE SYNTHESIS 4 1.3.3 FABRICATION OF NTFETS 6 1.4
SENSOR APPLICATIONS OF NTFETS 9 1.4.1 SENSITIVITY OF NTFETS TO CHEMICAL
ENVIRONMENT 9 1.4.2 BIOCONJUGATES OF CARBON NANOTUBES 12 1.4.3 PROTEIN
DETECTION 14 1.4.4 DETECTION OF ANTIBODY-ANTIGEN INTERACTIONS 15 1.4.5
DNA DETECTION 17 1.4.6 ENZYMATIC REACTIONS 19 1.4.7 GLUCOSE DETECTION 20
1.5 CONCLUSION AND OUTLOOK 21
REFERENCES 21
2 CARBON NANOTUBE-BASED SENSOR 27
JIAN-SHAN YE AND FWU-SHAN SHEU
2.1 OVERVIEW 27
2.2 INTRODUCTION OF CARBON NANOTUBES 27 2.3 GROWTH OF CARBON NANOTUBES
29 2.4 METHODS TO PREPARE CNTS-BASED SENSORS AND BIOSENSORS 29 2.4.1
INDIVIDUAL MWCNTS AS NANOELECTRODES 29 2.4.2 RANDOMLY DISTRIBUTED CNT
ELECTRODES 30 2.4.3 WELL-ALIGNED CARBON NANOTUBE ELECTRODES 30 2.4.4
CARBON NANOTUBE PASTE ELECTRODES 31
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1014987849
DIGITALISIERT DURCH
IMAGE 2
VIII CONTENTS
2.4.5 SCREEN-PRINTING CARBON NANOTUBES 32
2.4.6 SELF-ASSEMBLY OF CARBON NANOTUBES 33 2.4.7 CARBON
NANOTUBE-PACKAGED MICROELECTRODES 34 2.5 APPLICATION OF CNTS-BASED
ELECTROCHEMICAL SENSORS AND BIOSENSORS 34
2.5.1 ELECTROCHEMICAL AND ELECTROCATALYTICAL PROPERTIES OF CARBON
NANOTUBES 34 2.5.2 CNTS-BASED ELECTROCHEMICAL BIOSENSORS 37 2.6
FUNCTIONALIZATION OF CNTS 39
2.6.1 BIOLOGICAL FUNCTIONALIZATION OF CNTS 39 2.6.2 SELF-ASSEMBLY OF
SURFACTANT AND LIPID MOLECULES AT CNTS 39 2.6.3 ELECTROCHEMICAL
FUNCTIONALIZATION OF CNTS 42 2.6.4 ELECTROCHEMICAL APPLICATION OF
FUNCTIONALIZED CNTS 43 2.6.4.1 APPLICATION OF LIPID-CNT NANOMATERIALS IN
ELECTROCHEMICAL
SENSORS 43
2.6.4.2 ACHIEVING DIRECT ELECTRON TRANSFER TO REDOX PROTEINS BY
FUNCTIONAL CNTS 44 2.6.4.3 BIOMOLECULE-FUNCTIONALIZED CNTS FOR
ELECTROCHEMICAL SENSORS AND BIOSENSORS 45
2.7 CONCLUSIONS AND FUTURE PROSPECTS 48 ACKNOWLEDGMENTS 49 REFERENCES 49
3 NANOTUBES, NANOWIRES, AND NANOCANTILEVERS IN BIOSENSOR DEVELOPMENT 56
JUN WANG, GUODONG LIU, AND YUEHE LIN 3.1 INTRODUCTION 56
3.2 CARBON NANOTUBES IN BIOSENSOR DEVELOPMENT 57 3.2.1 PREPARATION AND
PURIFICATION OF CNTS 58 3.2.2 CONSTRUCTION OF CNT-BASED BIOSENSORS 60
3.2.2.1 DISPERSION AND STABILIZATION BY OXIDATIVE ACIDS 60 3.2.2.2
DISPERSION BY SURFACTANT INTERACTION 61
3.2.2.3 POLYMER-ASSISTED SOLUBILIZATION 63 3.2.2.4 CNT ADSORPTION ON THE
TRANSDUCER SUBSTRATE 61 3.2.2.5 SURFACE FUNCTIONALIZATION OF CNTS 62
3.2.2.6 COMPOSITE ENTRAPMENT AND CNTS BULKY ELECTRODE MATERIAL 63
3.2.2.7 MORE SOPHISTICATED SURFACE TAILORING BASED ON COMBINATION OF
CO-ADSORPTION, INTEGRATION, PROHIBITION, SPACING, LINKAGE, SANDWICH,
TAGGING, AND OTHER ANCHORING APPROACHES 66 3.2.3 CNT-BASED
ELECTROCHEMICAL BIOSENSORS 69 3.2.3.1 DIRECT ELECTROCHEMISTRY OF
BIOMOLECULES ON CARBON NANOTUBES 69 3.2.3.2 ENZYME/CNTS BIOSENSORS 72
3.2.3.3 DNA AND PROTEIN BIOSENSORS 73
3.2.3.4 IMMUNOSENSORS 74 3.2.4 FLOW-INJECTION ANALYSIS 75 3.2.5 CARBON
NANOTUBE ARRAY-BASED BIOSENSORS 76
3.2.6 CHEMILUMINESCENCE 80
IMAGE 3
CONTENTS IX
3.2.7 FIELD-EFFECT TRANSISTOR AND BIOELECTRONICS 83
3.3 NANOWIRES IN BIOSENSOR DEVELOPMENT 84 3.3.1 SILICON NANOWIRE-BASED
BIOSENSORS 84 3.3.2 CONDUCTING POLYMER NANOWIRE-BASED BIOSENSORS 86
3.3.3 METAL OXIDE NANOWIRE-BASED BIOSENSORS 89 3.4 NANOCANTILEVERS FOR
BIOSENSORS 89 3.5 SUMMARY 90
ACKNOWLEDGMENTS 91 GLOSSARY 93 ABBREVIATIONS 92 REFERENCES 93
4 FULLERENE-BASED ELECTROCHEMICAL DETECTION METHODS FOR BIOSENSING 101
NIKOS CHANIOTAKIS
4.1 INTRODUCTION 101
4.2 AIMS OF THE CHAPTER 303
4.3 ELECTROCHEMICAL BIOSENSING 103 4.3.1 MAKING A BIOSENSOR 105 4.4
EVOLUTION OF BIOSENSORS 105 4.5 MEDIATION PROCESS IN BIOSENSORS 306
4.5.1 CASE A: NON-MEDIATED BIOSENSOR 107 4.5.2 CASE B: MEDIATED
BIOSENSOR 108 4.6 FULLERENES 309
4.6.1 SYNTHESIS OF FULLERENES 109 4.6.2 BIOFUNCTIONALIZATION OF
FULLERENES 309 4.6.3 ELECTROCHEMISTRY OF FULLERENES 113 4.7
FULLERENE-MEDIATED BIOSENSING 334
4.8 CONCLUSIONS 338
REFERENCES 338
5 OPTICAL BIOSENSING BASED ON METAL AND SEMICONDUCTOR COLLOIDAL
NANOCRYSTALS 323
ROBERTO COMPARELLI, MARIA LUCIA CURRI, PANTALEO DAVIDE COZZOLI,
AND MARINELLA STRICCOLI
5.1 OVERVIEW 123
5.2 INTRODUCTION 123
5.3 COLLOIDAL NANOCRYSTALS 127 5.3.1 SIZE-DEPENDENT OPTICAL PROPERTIES
327 5.3.2 CHEMICAL SYNTHESIS 333 5.4 NANOCRYSTAL FUNCTIONALIZATION FOR
BIOSENSING 334 5.4.1 SURFACE CAPPING EXCHANGE 135 5.4.2 COATING WITH A
SILICA SHELL 137 5.4.3 SURFACE MODIFICATION THROUGH HYDROPHOBIE
INTERACTIONS 137 5.5 OPTICAL TECHNIQUES 139
5.5.1 COLORIMETRIC TESTS 139
IMAGE 4
XI CONTENTS
5.5.2 FLUORESCENCE 139
5.5.3 FLUORESCENCE RESONANCE ENERGY TRANSFER 141 5.5.4 FLUORESCENCE
LIFETIME 142 5.5.5 MULTIPHOTON TECHNIQUES 145 5.5.6 METAL-ENHANCED
FLUORESCENCE 345
5.5.7 SURFACE PLASMON RESONANCE 346 5.5.8 SURFACE-ENHANCED RESONANCE
SPECTROSCOPY 149 5.6 ADVANTAGES AND DISADVANTAGES OF NANOCRYSTALS IN
OPTICAL DETECTION 352 5.7 APPLICATIONS 153
5.7.1 BIOSENSING WITH SEMICONDUCTOR NANOCRYSTALS 353 5.7.2 BIOSENSING
WITH METALLIC NANOPARTICLES 357 5.8 TOWARDS MARKETING 162 5.9
CONCLUSIONS 364
REFERENCES 364
6 QUANTUM DOT-BASED NANOBIOHYBRIDS FOR FLUORESCENT DETECTION OF
MOLECULAR AND CELLULAR BIOLOGICAL TARGETS 375
ZHIVKO ZHELEV, RUMIANA BAKALOVA, HIDEKI OHBA, AND YOSHINOBU BABA
6.1 INTRODUCTION 375
6.2 QUANTUM DOTS - BASIC PRINCIPLES OF DESIGN AND SYNTHESIS, OPTICAL
PROPERTIES, AND ADVANTAGES OVER CLASSICAL FLUOROPHORES 376 6.2.1 BASIC
PRINCIPLES OF DESIGN AND SYNTHESIS OF QUANTUM DOTS 176 6.2.2 OPTICAL AND
CHEMICAL PROPERTIES - ADVANTAGES COMPARED WITH CLASSICAL
FLUOROPHORES 378 6.3 QUANTUM DOTS FOR FLUORESCENT LABELING AND IMAGING
383 6.3.1 STRUCTURE OF QUANTUM DOT NANOBIOHYBRIDS FOR FLUORESCENT
MICROSCOPIC IMAGING 383 6.3.2 QUANTUM DOTS FOR FLUORESCENT CELL IMAGING
382 6.3.3 QUANTUM DOTS FOR FLUORESCENT DEEP-TISSUE IMAGING IN VIVO 184
6.3.4 POTENTIAL OF QUANTUM DOTS FOR POSITRON EMISSION TOMOGRAPHY (PET)
AND FUNCTIONAL MAGNETIC RESONANCE IMAGING (FMRI) 191 6.4 QUANTUM DOTS
FOR IMMUNOBLOT ANALYSIS WITH FLUORESCENT DETECTION 392 6.4.1 BASIC
PRINCIPLES OF CLASSICAL AND QD-BASED IMMUNOBLOT ANALYSES 392 6.4.2
QD-BASED IMMUNOBLOT ANALYSIS OF "TRACER" PROTEINS - PRIVILEGES OVER
CLASSICAL IMMUNOBLOT ANALYSIS 394 6.5 QUANTUM DOTS FOR FRET ANALYSES,
TIME-RESOLVED FLUORIMETRY, AND DEVELOPMENT OF OPTICAL RECOGNITION-BASED
BIOSENSORS 396 6.5.1 QUANTUM DOTS FOR FRET-BASED BIOANALYSES 396
6.5.2 QUANTUM DOTS FOR TIME-RESOLVED FLUORIMETRY 197 6.5.3 QUANTUM DOTS
FOR DEVELOPMENT OF NEW GENERATION OPTICAL RECOGNITION- BASED BIOSENSORS
197 6.6 QUANTUM DOTS AS NEW FLUORESCENT STANDARDS FOR THE THIN
CALIBRATION OF
FLUORESCENT INSTRUMENTATION 203 REFERENCES 203
IMAGE 5
CONTENTS I XI
7 DETECTION OF BIOLOGICAL MATERIALS BY COLD NANO-BIOSENSOR-BASED
ELECTROCHEMICAL METHOD 208
JUAN JIANG, MANJU BASU, SARA SEGGERSON, ALBERT MILLER, MICHAEL PUGIA,
AND
SUBHASH BASU
7.1 INTRODUCTION 208
7.2 TEMPLATE SYNTHESIS OF GOLD NANO-WIRE ARRAYS FOR BIOSENSOR
APPLICATIONS 209 7.2.1 GENERAL TEMPLATE SYNTHESIS 209 7.2.2 TEMPLATE
FORMATION 212 7.2.3 FABRICATION OF GOLD NANO-WIRE ARRAYS (GNW) 214 7.3
SYNTHESIS OF A LINKER AND ITS ATTACHMENT TO GOLD POSTS OF GNW FOLLOWED
BY BINDING TO SPECIFIC ANTIBODIES 220 7 A DEVELOPMENT OF ELECTROCHEMICAL
NANO-BIOSENSOR FOR BACTERIA DETECTION 224 7'.4.1 GENERAL DETECTIONS FOR
BIOSENSORS 224 7.4.2 EXPERIMENTAL CONDITIONS 226 7.4.3 ELECTROCHEMICAL
IMPEDANCE (EIS) DETECTION OF E. COLI 227
7.4.3.1 EIS ON FLAT GOLD SURFACES 228 7.4.3.2 EIS ON GNW 230 7.4.3.3
EISONGNWWITHAL 2 O 3 230 7.4.4 SUMMARY OF EIS DETECTION OF E. COLI
BACTERIA 233 7.5 CONCLUSIONS 235
ACKNOWLEDGMENTS 235 REFERENCES 236
8 DENDRIMER-BASED ELECTROCHEMICAL DETECTION METHODS 240 HAK-SUNG KIM AND
HYUN C. YOON
8.1 OVERVIEW 240
8.2 INTRODUCTION 240
8.2.1 BACKGROUND 240 8.2.2 DENDRIMERS AS A NEW CONSTITUENT OF
BIOCOMPOSITE STRUCTURES 243 8.3 APPLICATIONS FOR BIOSENSORS 242 8.3.1
BIOELECTROCATALYTIC ENZYME ELECTRODES BASED ON LBL (LAYER-BY-LAYER)
ASSEMBLY WITH DENDRIMERS 243 8.3.2 BIOELECTROCATALYTIC IMMUNOSENSORS
BASED ON THE DENDRIMER-ASSOCIATED SAMS 244 8.3.2.1 AFFINITY RECOGNITION
SURFACE BASED ON THE DENDRIMER-ASSOCIATED
SAMS 244
8.3.2.2 ELECTROCHEMICAL SIGNALING FROM AFFINITY RECOGNITION REACTIONS
248 8.3.3 PROTEIN MICROPATTERNING ON SENSOR SURFACES FOR MULTIPLEXED
ANALYSIS 253
8.4 CONCLUSIONS 256
ACKNOWLEDGMENTS 256 REFERENCES 256
IMAGE 6
XII CONTENTS
9 COORDINATED BIOSENSORS: INTEGRATED SYSTEMS FOR ULTRASENSITIVE
DETECTION OF
BIOMARKERS 259
JOANNE I. YEH
9.1 OVERVIEW 259
9.2 INTRODUCTION 260
9.3 ELEMENTS OF A NANOBIOSENSOR 262 9.3.1 BIOMOLECULAR COMPONENTS 262
9.3.2 NANOPARTICLES 263 9.3.3 NANOELECTRODES 264 9.4 COORDINATED
BIOSENSORS 265 9.4.1 BIOMOLECULAR CONDUITS: SIGNAL TRANSDUCING MEDIATORS
265 9.4.2 NADH PEROXIDASE: THE BIOCATALYTIC ELEMENT 267 9.4.3 UNDECAGOLD
NANOPARTICLE: ROLE IN ALIGNMENT AND DIRECTING ELECTRON
FLOW 270
9.4.4 INTEGRATED SIGNALS 270 9.5 CONCLUSION 272
ACKNOWLEDGMENTS 274 REFERENCES 274
10 PROTEIN-BASED BIOSENSORS USING NANOMATERIALS 278 GENXI LI
10.1 INTRODUCTION 278
10.2 METAL NANOPARTICLES 279 10.2.1 GOLD NANOPARTICLES 279 10.2.2 SILVER
NANOPARTICLES 284 10.2.3 OTHER METAL NANOMATERIALS 285
10.3 METALLIC OXIDE NANOPARTICLES 285 10.4 CARBON NANOTUBES 286 10.5
NANOCOMPOSITE MATERIALS 292 10.6 NANOPARTICLES WITH SPECIAL FUNCTIONS
293 10.6.1 SEMICONDUCTOR NANOPARTICLES 293 10.6.2 MAGNETIC NANOPARTICLES
295 10.7 OTHER NANOMATERIALS 295 10.8 CONCLUSION 297
REFERENCES 297
11 BIOMIMETIC NANOSENSORS 333
RAZ JELINEK AND SOFIYA KOLUSHEVA
11.1 INTRODUCTION 333
11.2 NANOSTRUCTURES IN BIOSENSOR DESIGN 312 11.3 NANOSENSORS FOR PROBING
BIOLOGICAL AND CELLULAR SYSTEMS 317 11.4 BIOLOGICAL COMPONENTS IN
NANOSENSORS 323 11.5 NANO-BIOTECHNOLOGY AND BIOMEDICAL DIAGNOSIS 327
11.6 CONCLUSIONS AND FUTURE DIRECTIONS 329
ABBREVIATIONS 330 REFERENCES 330
IMAGE 7
CONTENTS XIII
12 REAGENTLESS BIOSENSORS BASED ON NANOPARTICLES 337
DAVID E. BENSON
12.1 INTRODUCTION 337
12.2 SURFACE DIELECTRIC ENHANCEMENT 339 12.2.1 GOLD NANOPARTICLE
ENHANCED SURFACE PLASMON RESONANCE 340 12.2.2 CARBON NANOTUBE AND
SILICON NANOWIRE ENHANCED CONDUCTIVITY 343 12.2.3 ADVANTAGES AND CAVEATS
346 12.3 CATALYTIC ACTIVATION 346 12.3.1 ELECTROCATALYTIC DETECTION 347
12.3.2 CATALYTICALLY ENABLED OPTICAL AND MAGNETIC DETECTION 349 12.3.3
ADVANTAGES AND CAVEATS 350 12.4 BIOMOLECULE CONFORMATIONAL MODULATED
EFFECTS 351 12.4.1 BIOSENSORS BASED ON DNA CONFORMATION CHANGES 352
12.4.2 BIOSENSORS BASED ON PROTEIN CONFORMATION CHANGES 355 12.5
CONCLUSION 363
ACKNOWLEDGMENTS 362 REFERENCES 362
13 PICO/NANOLITER CHAMBER ARRAY CHIPS FOR SINGLE-CELL, DNA AND PROTEIN
ANALYSES 368
SHOHEI YAMAMURA, RAMACHANDRA RAO SATHULURI, AND EIICHI TAMIYA
13.1 INTRODUCTION 368
13.2 MULTIPLEXED POLYMERASE CHAIN REACTION FROM A SINGLE COPY DNA USING
NANOLITER-VOLUME MICROCHAMBER ARRAY 369 13.2.1 PCR MICROCHAMBER ARRAY
CHIP SYSTEM 373 13.2.1.1 MICROCHAMBER ARRAY CHIP FABRICATION 371
13.2.1.2 SAMPLE LOADING WITH A NANOLITER DISPENSER 372 13.2.2
MULTIPLEXED DETECTION OF DIFFERENT TARGET DNA ON A SINGLE CHIP 373
13.2.3 ON-CHIP QUANTIFICATION OF AMPLIFIED DNA 376 13.3 ON-CHIP
CELL-FREE PROTEIN SYNTHESIS USING A PICOLITER CHAMBER ARRAY 378 13.3.1
CELL-FREE PROTEIN SYNTHESIS CHIP FABRICATION 379 13.3.2 CELL-FREE
PROTEIN SYNTHESIS USING A MICROCHAMBER ARRAY 381 13.4 HIGH-THROUGHPUT
SINGLE-CELL ANALYSIS SYSTEM USING PICO-LITER
MICROARRAY 384
13.4.1 SINGLE-CELL MICROARRAY CHIP FABRICATION 386 13.4.2 PICO-LITER
MICROARRAY FOR SINGLE-CELL STUDIES 388 13.4.3 SINGLE-CELL MICROARRAY
SYSTEM FOR ANALYSIS OF ANTIGEN-SPECIFIC SINGLE B-CELLS 389
13.5 CONCLUSIONS 392 ACKNOWLEDGMENTS 393 REFERENCES 393
INDEX 398 |
any_adam_object | 1 |
author2 | Kumar, Challa S. S. R. |
author2_role | edt |
author2_variant | c s s r k cssr cssrk |
author_GND | (DE-588)129740470 |
author_facet | Kumar, Challa S. S. R. |
building | Verbundindex |
bvnumber | BV039691971 |
ctrlnum | (OCoLC)918160079 (DE-599)DNB1014987849 |
discipline | Maschinenbau / Maschinenwesen Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cc4500</leader><controlfield tag="001">BV039691971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120126</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">111109s2011 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,A38</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1014987849</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527331383</subfield><subfield code="9">978-3-527-33138-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)918160079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1014987849</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanotechnology of the life sciences</subfield><subfield code="n">8</subfield><subfield code="p">Nanomaterials for biosensors</subfield><subfield code="c">ed. by Challa S. S. R. Kumar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH-Verl.</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 408 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Challa S. S. R.</subfield><subfield code="0">(DE-588)129740470</subfield><subfield code="4">edt</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV039691867</subfield><subfield code="g">8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024540722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024540722</subfield></datafield></record></collection> |
id | DE-604.BV039691971 |
illustrated | Illustrated |
indexdate | 2024-07-21T00:15:24Z |
institution | BVB |
isbn | 9783527331383 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024540722 |
oclc_num | 918160079 |
open_access_boolean | |
owner | DE-634 |
owner_facet | DE-634 |
physical | XXI, 408 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley-VCH-Verl. |
record_format | marc |
spelling | Nanotechnology of the life sciences 8 Nanomaterials for biosensors ed. by Challa S. S. R. Kumar Weinheim Wiley-VCH-Verl. 2011 XXI, 408 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Kumar, Challa S. S. R. (DE-588)129740470 edt (DE-604)BV039691867 8 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024540722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nanotechnology of the life sciences |
title | Nanotechnology of the life sciences |
title_auth | Nanotechnology of the life sciences |
title_exact_search | Nanotechnology of the life sciences |
title_full | Nanotechnology of the life sciences 8 Nanomaterials for biosensors ed. by Challa S. S. R. Kumar |
title_fullStr | Nanotechnology of the life sciences 8 Nanomaterials for biosensors ed. by Challa S. S. R. Kumar |
title_full_unstemmed | Nanotechnology of the life sciences 8 Nanomaterials for biosensors ed. by Challa S. S. R. Kumar |
title_short | Nanotechnology of the life sciences |
title_sort | nanotechnology of the life sciences nanomaterials for biosensors |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024540722&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV039691867 |
work_keys_str_mv | AT kumarchallassr nanotechnologyofthelifesciences8 |