Convective heat and mass transfer:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2011
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXIV, 524 S. Ill., graph. Darst. |
ISBN: | 9781107003507 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV039641716 | ||
003 | DE-604 | ||
005 | 20120312 | ||
007 | t | ||
008 | 111017s2011 xxkad|| |||| 00||| eng d | ||
020 | |a 9781107003507 |c hbk. |9 978-1-10-700350-7 | ||
035 | |a (OCoLC)698331460 | ||
035 | |a (DE-599)BVBBV039641716 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-634 |a DE-703 | ||
050 | 0 | |a QC327 | |
082 | 0 | |a 536/.25 | |
084 | |a UG 2700 |0 (DE-625)145620: |2 rvk | ||
100 | 1 | |a Ghiaasiaan, Seyed Mostafa |e Verfasser |4 aut | |
245 | 1 | 0 | |a Convective heat and mass transfer |c S. Mostafa Ghiaasiaan |
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2011 | |
300 | |a XXIV, 524 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Heat |x Convection | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Mechanical |2 bisacsh | |
650 | 0 | 7 | |a Konvektion |0 (DE-588)4117572-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stoffübertragung |0 (DE-588)4057696-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeübertragung |0 (DE-588)4064211-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvektion |0 (DE-588)4117572-4 |D s |
689 | 0 | 1 | |a Wärmeübertragung |0 (DE-588)4064211-2 |D s |
689 | 0 | 2 | |a Stoffübertragung |0 (DE-588)4057696-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-024491614 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804148496936206336 |
---|---|
adam_text | CONTENTS
Preface page
xv
Frequently Used Notation
xvii
1
Thermophysical and Transport Fundamentals
...................1
1.1
Conservation Principles
1
1.1.1
Lagrangian and Eulerian Frames
1
1.1.2
Mass Conservation
2
1.1.3
Conservation of Momentum
3
1.1.4
Conservation of Energy
6
1.2
Multicomponent Mixtures
11
1.2.1
Basic Definitions and Relations
11
1.2.2
Thermodynamic Properties
15
1.3
Fundamentals of Diffusive Mass Transfer
17
1.3.1
Species Mass Conservation
17
1.3.2
Diffusive Mass Flux and Fick s Law
18
1.3.3
Species Mass Conservation When Fick s Law Applies
19
1.3.4
Other Types of Diffusion
20
1.3.5
Diffusion in Multicomponent Mixtures
20
1.4
Boundary and
Interfacial
Conditions
22
1.4.1
General Discussion
22
1.4.2
Gas-Liquid
Interphase
24
1.4.3
Interfacial
Temperature
24
1.4.4
Sparingly Soluble Gases
27
1.4.5
Convention for Thermal and Mass Transfer Boundary
Conditions
30
1.5
Transport Properties
31
1.5.1
Mixture Rules
31
1.5.2
Transport Properties of Gases and the Gas-Kinetic Theory
32
1.5.3
Diffusion of Mass in Liquids
37
1.6
The Continuum Flow Regime and Size Convention for Flow
Passages
38
Problems
39
VII
viii Contents
2
Boundary Layers
.......................................44
2.1
Boundary Layer on a Flat Plate
44
2.2
Laminar Boundary-Layer Conservation Equations
48
2.3
Laminar Boundary-Layer Thicknesses
51
2.4
Boundary-Layer Separation
53
2.5
Nondimensionalization of Conservation Equations and
Similitude
54
Problems
58
3
External Laminar Flow: Similarity Solutions for Forced Laminar
Boundary Layers
.......................................61
3.1
Hydrodynamics of Flow Parallel to a Flat Plate
61
3.2
Heat and Mass Transfer During Low-Velocity Laminar Flow
Parallel to a Flat Plate
65
3.3
Heat Transfer During Laminar Parallel Flow Over a Flat Plate
With Viscous Dissipation
71
3.4
Hydrodynamics of Laminar Flow Past a Wedge
73
3.5
Heat Transfer During Laminar Flow Past a Wedge
78
3.6
Effects of Compressibility and Property Variations
80
Problems
85
4
Internal Laminar Flow
...................................90
4.1
Couette
and Poiseuille Flows
90
4.2
The Development of Velocity, Temperature, and Concentration
Profiles
94
4.2.1
The Development of Boundary Layers
94
4.2.2
Hydrodynamic Parameters of Developing Flow
97
4.2.3
The Development of Temperature and Concentration
Profiles
100
4.3
Hydrodynamics of Fully Developed Flow
103
4.4
Fully Developed Hydrodynamics and Developed Temperature or
Concentration Distributions
107
4.4.1
Circular Tube
107
4.4.2
Flat Channel
110
4.4.3
Rectangular Channel
113
4.4.4
Triangular Channel
113
4.4.5
Concentric Annular Duct
114
4.5
Fully Developed Hydrodynamics, Thermal or Concentration
Entrance Regions
117
4.5.1
Circular Duct With Uniform Wall Temperature Boundary
Conditions
117
4.5.2
Circular Duct With Arbitrary Wall Temperature
Distribution in the Axial Direction
124
4.5.3
Circular Duct With Uniform Wall Heat Flux
126
4.5.4
Circular Duct With Arbitrary Wall Heat Flux Distribution
in the Axial Coordinate
129
Contents
¡x
4.5.5
Flat Channel With Uniform Heat Flux Boundary
Conditions
130
4.5.6
Flat Channel With Uniform Wall Temperature Boundary
Conditions
132
4.5.7
Rectangular Channel
135
4.6
Combined Entrance Region
135
4.7
Effect of Fluid Property Variations
137
Appendix 4A: The Sturm-Liouville Boundary-Value Problems
141
Problems
141
5
Integral Methods
......................................151
5.1
Integral Momentum Equations
151
5.2
Solutions to the Integral Momentum Equation
153
5.2.1
Laminar Flow of an Incompressible Fluid Parallel to a Flat
Plate Without Wall Injection
153
5.2.2
Turbulent Flow of an Incompressible Fluid Parallel to a
Flat Plate Without Wall Injection
156
5.2.3
Turbulent Flow of an Incompressible Fluid Over a Body of
Revolution
158
5.3
Energy Integral Equation
159
5.4
Solutions to the Energy Integral Equation
161
5.4.1
Parallel Flow Past a Hat Surface
161
5.4.2
Parallel Flow Past a Flat Surface With an Adiabatic
Segment
163
5.4.3
Parallel Flow Past a Flat Surface With Arbitrary Wall
Surface Temperature or Heat Flux
165
5.5
Approximate Solutions for Flow Over Axisymmetric Bodies
167
Problems
173
6
Fundamentals of Turbulence and External Turbulent Flow
........177
6.1
Laminar-Turbulent Transition and the Phenomenology of
Turbulence
177
6.2
Fluctuations and Time (Ensemble) Averaging
180
6.3
Reynolds Averaging of Conservation Equations
181
6.4
Eddy Viscosity and Eddy
Diffusi
vity
183
6.5
Universal Velocity Profiles
185
6.6
The Mixing-Length Hypothesis and Eddy Diffusivity Models
188
6.7
Temperature and Concentration Laws of the Wall
192
6.8
Kolmogorov Theory of the Small Turbulence Scales
196
6.9
Flow Past Blunt Bodies
200
Problems
205
7
Internal Turbulent Flow
.................................208
7.1
General Remarks
208
7.2
Hydrodynamics of Turbulent Duct Flow
211
7.2.1
Circular Duct
211
7.2.2
Noncircular Ducts
217
Contents
7.3
Heat
Transfer:
Fully Developed Flow
218
7.3.1
Universal Temperature Profile in a Circular Duct
218
7.3.2
Application of Eddy Diffusivity Models for Circular Ducts
221
7.3.3
Noncircular Ducts
224
7.4
Heat Transfer: Fully Developed Hydrodynamics, Thermal
Entrance Region
224
7.4.1
Circular Duct With Uniform Wall Temperature or
Concentration
224
7.4.2
Circular Duct With Uniform Wall Heat Flux
226
7.4.3
Some Useful Correlations for Circular Ducts
229
7.4.4
Noncircular Ducts
231
7.5
Combined Entrance Region
231
Problems
238
8
Effect ofTranspiration on Friction, Heat, and Mass Transfer
.......243
8.1
Couette
Flow Film Model
243
8.2
Gas-Liquid
Interphase
248
Problems
256
9
Analogy Among Momentum, Heat, and Mass Transfer
...........258
9.1
General Remarks
258
9.2
Reynolds Analogy
259
9.3
Prandtl-Taylor Analogy
261
9.4 Von
Karman
Analogy
263
9.5
The Martinelli Analogy
265
9.6
The Analogy of Yu
et al.
265
9.7
Chilton-Colburn Analogy
267
Problems
272
10
Natural Convection
....................................275
10.1
Natural-Convection Boundary Layers on Flat Surfaces
275
10.2
Phenomenology
278
10.3
Scaling Analysis of Laminar Boundary Layers
280
10.4
Similarity Solutions for a Semi-Infinite Vertical Surface
285
10.5
Integral Analysis
289
10.6
Some Widely Used Empirical Correlations for Flat Vertical
Surfaces
294
10.7
Natural Convection on Horizontal Flat Surfaces
295
10.8
Natural Convection on Inclined Surfaces
297
10.9
Natural Convection on Submerged Bodies
298
10.10
Natural Convection in Vertical Flow Passages
300
10.11
Natural Convection in Enclosures
304
10.12
Natural Convection in a Two-Dimensional Rectangle With
Heated Vertical Sides
305
10.13
Natural Convection in Horizontal Rectangles
307
10.14
Natural Convection in Inclined Rectangular Enclosures
309
Contents xi
10.15
Natural
Convection Caused by the Combined Thermal and
Mass Diffusion Effects
311
10.15.1
Conservation Equations and Scaling Analysis
311
10.15.2
Heat and Mass Transfer Analogy
316
10.16
Solutions for Natural Convection Caused by Combined
Thermal and Mass Diffusion Effects
317
Problems
327
11
Mixed Convection
.....................................332
11.1
Laminar Boundary-Layer Equations and Scaling Analysis
332
11.2
Solutions for Laminar Flow
337
11.3
Stability of Laminar Flow and Laminar-Turbulent Transition
341
11.4
Correlations for Laminar External Flow
343
11.5
Correlations for Turbulent External Flow
348
11.6
Internal Flow
349
11.6.1
General Remarks
349
11.6.2
Flow Regime Maps
351
11.7
Some Empirical Correlations for Internal Flow
351
Problems
358
12
Turbulence Models
.....................................362
12.1
Reynolds-Averaged Conservation Equations and the Eddy
Diffusivity Concept
362
12.2
One-Equation Turbulence Models
364
12.3
Near-Wall Turbulence Modeling and Wall Functions
367
12.4
The
Κ-ε
Model
371
12.4.1
General Formulation
371
12.4.2
Near-Wall Treatment
374
12.4.3
Turbulent Heat and Mass Fluxes
376
12.5
Other Two-Equation Turbulence Models
376
12.6
The Reynolds Stress Transport Models
377
12.6.1
General Formulation
377
12.6.2
Simplification for Heat and Mass Transfer
380
12.6.3
Near-Wall Treatment of Turbulence
380
12.6.4
Summary of Equations and Unknowns
381
12.7
Algebraic Stress Models
381
12.8
Turbulent Models for Buoyant Flows
382
12.9
Direct Numerical Simulation
385
12.10
Large Eddy Simulation
390
12.11
Computational Fluid Dynamics
394
Problems
395
13
Flow and Heat Transfer in Miniature Flow Passages
.............397
13.1
Size Classification of Miniature Flow Passages
397
13.2
Regimes in Gas-Carrying Vessels
399
13.3
The Slip Flow and Temperature-Jump Regime
402
13.4
Slip
Couette
Flow
406
x¡¡
Contents
13.5
Slip Flow in a Flat Channel
408
13.5.1
Hydrodynamics of Fully Developed Flow
408
13.5.2
Thermally Developed Heat Transfer,
UHF
410
13.5.3
Thermally Developed Heat Transfer, UWT
413
13.6
Slip Flow in Circular
Microtubes
415
13.6.1
Hydrodynamics of Fully Developed Flow
415
13.6.2
Thermally Developed Flow Heat Transfer,
UHF
416
13.6.3
Thermally Developed Flow Heat Transfer, UWT
418
13.6.4
Thermally Developing Flow
420
13.7
Slip Flow in Rectangular Channels
422
13.7.1
Hydrodynamics of Fully Developed Flow
422
13.7.2
Heat Transfer
424
13.8
Slip Flow in Other Noncircular Channels
426
13.9
Compressible Flow in
Microchannels
with Negligible
Rarefaction
427
13.9.1
General Remarks
427
13.9.2
One-Dimensional Compressible Flow of an Ideal Gas
in a Constant-Cross-Section Channel
428
13.10
Continuum Flow in Miniature Flow Passages
431
Problems
441
APPENDIX A: Constitutive Relations in Polar Cylindrical and Spherical
Coordinates
................................................449
APPENDIX B: Mass Continuity and Newtonian Incompressible Fluid
Equations of Motion in Polar Cylindrical and Spherical Coordinates
.......451
APPENDIX C: Energy Conservation Equations in Polar Cylindrical and
Spherical Coordinates for Incompressible Fluids With Constant Thermal
Conductivity
...............................................453
APPENDIX D: Mass-Species Conservation Equations in Polar
Cylindrical and Spherical Coordinates for Incompressible Fluids
..........454
APPENDIX E: Thermodynamic Properties of Saturated Water and Steam
. . . 456
APPENDIX F: Transport Properties of Saturated Water and Steam
.......458
APPENDIX G: Properties of Selected Ideal Gases at
1
Atmosphere
.......459
APPENDIX H: Binary Diffusion Coefficients of Selected Gases in Air at
1
Atmosphere
..............................................465
APPENDIX I: Henry s Constant, in bars, of Dilute Aqueous Solutions of
Selected Substances at Moderate Pressures
.........................466
APPENDIX J: Diffusion Coefficients of Selected Substances in Water at
Infinite Dilution at
25
С
.......................................467
Contents xiii
APPENDIX
К:
Lennard-Jones Potential Model
Constants
for Selected
Molecules
.................................................468
APPENDIX
L:
Collision Integrals for the Lennard-Jones Potential Model
. . 469
APPENDIX M: Some RANS-Type Turbulence Models
................470
M.I The Spalart-Allmaras Model
470
M.2 The
Κ-ω
Model
472
M.3 The
Κ-ε
Nonlinear Reynolds Stress Model
475
M.4 The RNG
Κ-ε
Model
477
M.5 The Low-Re RSM of Launder and Shima
478
APPENDIX N: Physical Constants
...............................480
APPENDIX O: Unit Conversions
................................482
APPENDIX P: Summary of Important Dimensionless Numbers
..........485
APPENDIX Q: Summary of Some Useful Heat Transfer and
Friction-Factor Correlations
....................................487
References
501
Index
517
This book was developed by Professor S. Mostafa Ghiaasiaan during
10
years of
teaching a graduate-level course on convection heat and mass transfer. The book is
ideal for a graduate course dealing with theory and practice of convection heat and
mass transfer. The book treats well-established theory and practice on the one hand;
on the other hand, it is enriched by modern areas such as flow in microchannels and
computational fluid dynamics-based design and analysis methods. The book is
primarily concerned with convective heat transfer. Essentials of mass transfer are also
covered. The mass transfer material and problems are presented such that they can
be easily skipped, should that be preferred. The book is richly enhanced by exercises
and end-of-chapter problems. Solutions are available for qualified instructors. The
book includes
17
appendices providing compilations of most essential properties and
mathematical information for analysis of convective heat and mass transfer processes.
PROFESSOR S. MOSTAFA GHIAASIAAN has been a member of the Woodruff School
of Mechanical Engineering at Georgia Institute of Technology since
1991
after receiving
a Ph.D. in Thermal Science from the University of California, Los Angeles, in
1983
and working in the aerospace and nuclear power industry for eight years. His industrial
research and development activity was on modeling and simulation of transport
processes, multiphase flow, and nuclear reactor thermal hydraulics and safety. His
current research areas include nuclear reactor thermal hydraulics, particle transport,
cryogenics and cryocoolers, and multiphase flow and change-of-phase heat transfer
in microchannels. He has more than
150
academic publications, including
90
journal
articles, on transport phenomena and multiphase flow. Among the honors he has
received for his publications are the Chemical Engineering Science s Most Cited Paper
for
2003-2006
Award, the National Heat Transfer Conference Best Paper Award
(1999),
and the Science Applications International Corporation Best Paper Award
(1990
and
1988).
He has been a member of American Society of Mechanical Engineers
(ASME)
and
the American Nuclear Society for more than
20
years and was elected an
ASME
Fellow in
2004.
Currently he is the Executive Editor of Annals of Nuclear Energy for Asia, Africa, and
Australia. This is his second book with Cambridge University Press
—
the first was Two-
Phase Fiow, Boiling, and Condensation, In Conventional and Miniature Systems
(2007).
|
any_adam_object | 1 |
author | Ghiaasiaan, Seyed Mostafa |
author_facet | Ghiaasiaan, Seyed Mostafa |
author_role | aut |
author_sort | Ghiaasiaan, Seyed Mostafa |
author_variant | s m g sm smg |
building | Verbundindex |
bvnumber | BV039641716 |
callnumber-first | Q - Science |
callnumber-label | QC327 |
callnumber-raw | QC327 |
callnumber-search | QC327 |
callnumber-sort | QC 3327 |
callnumber-subject | QC - Physics |
classification_rvk | UG 2700 |
ctrlnum | (OCoLC)698331460 (DE-599)BVBBV039641716 |
dewey-full | 536/.25 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536/.25 |
dewey-search | 536/.25 |
dewey-sort | 3536 225 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01951nam a2200445zc 4500</leader><controlfield tag="001">BV039641716</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120312 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">111017s2011 xxkad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107003507</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-10-700350-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)698331460</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039641716</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC327</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536/.25</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2700</subfield><subfield code="0">(DE-625)145620:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghiaasiaan, Seyed Mostafa</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convective heat and mass transfer</subfield><subfield code="c">S. Mostafa Ghiaasiaan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 524 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat</subfield><subfield code="x">Convection</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Mechanical</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvektion</subfield><subfield code="0">(DE-588)4117572-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvektion</subfield><subfield code="0">(DE-588)4117572-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wärmeübertragung</subfield><subfield code="0">(DE-588)4064211-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stoffübertragung</subfield><subfield code="0">(DE-588)4057696-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024491614</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV039641716 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:08:04Z |
institution | BVB |
isbn | 9781107003507 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024491614 |
oclc_num | 698331460 |
open_access_boolean | |
owner | DE-634 DE-703 |
owner_facet | DE-634 DE-703 |
physical | XXIV, 524 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Ghiaasiaan, Seyed Mostafa Verfasser aut Convective heat and mass transfer S. Mostafa Ghiaasiaan Cambridge [u.a.] Cambridge Univ. Press 2011 XXIV, 524 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Heat Convection TECHNOLOGY & ENGINEERING / Mechanical bisacsh Konvektion (DE-588)4117572-4 gnd rswk-swf Stoffübertragung (DE-588)4057696-6 gnd rswk-swf Wärmeübertragung (DE-588)4064211-2 gnd rswk-swf Konvektion (DE-588)4117572-4 s Wärmeübertragung (DE-588)4064211-2 s Stoffübertragung (DE-588)4057696-6 s 1\p DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ghiaasiaan, Seyed Mostafa Convective heat and mass transfer Heat Convection TECHNOLOGY & ENGINEERING / Mechanical bisacsh Konvektion (DE-588)4117572-4 gnd Stoffübertragung (DE-588)4057696-6 gnd Wärmeübertragung (DE-588)4064211-2 gnd |
subject_GND | (DE-588)4117572-4 (DE-588)4057696-6 (DE-588)4064211-2 |
title | Convective heat and mass transfer |
title_auth | Convective heat and mass transfer |
title_exact_search | Convective heat and mass transfer |
title_full | Convective heat and mass transfer S. Mostafa Ghiaasiaan |
title_fullStr | Convective heat and mass transfer S. Mostafa Ghiaasiaan |
title_full_unstemmed | Convective heat and mass transfer S. Mostafa Ghiaasiaan |
title_short | Convective heat and mass transfer |
title_sort | convective heat and mass transfer |
topic | Heat Convection TECHNOLOGY & ENGINEERING / Mechanical bisacsh Konvektion (DE-588)4117572-4 gnd Stoffübertragung (DE-588)4057696-6 gnd Wärmeübertragung (DE-588)4064211-2 gnd |
topic_facet | Heat Convection TECHNOLOGY & ENGINEERING / Mechanical Konvektion Stoffübertragung Wärmeübertragung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024491614&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ghiaasiaanseyedmostafa convectiveheatandmasstransfer |