Introductory econometrics: a modern approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
[Mason, Ohio u.a.]
South-Western Cengage Learning
2013
|
Ausgabe: | 5. ed., internat. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXV, 881 S. graph. Darst. |
ISBN: | 9781111531041 9781111534394 1111531048 111153439X |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039602796 | ||
003 | DE-604 | ||
005 | 20161122 | ||
007 | t | ||
008 | 110927s2013 d||| |||| 00||| eng d | ||
020 | |a 9781111531041 |c hbk. |9 978-1-111-53104-1 | ||
020 | |a 9781111534394 |c pbk. |9 978-1-111-53439-4 | ||
020 | |a 1111531048 |c hbk. |9 1-111-53104-8 | ||
020 | |a 111153439X |c pbk. |9 1-111-53439-X | ||
035 | |a (OCoLC)701208936 | ||
035 | |a (DE-599)BVBBV039602796 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-945 |a DE-19 |a DE-473 |a DE-20 |a DE-N2 |a DE-739 |a DE-M49 |a DE-384 |a DE-355 |a DE-521 |a DE-188 |a DE-11 |a DE-91 |a DE-M382 |a DE-634 |a DE-92 |a DE-29 |a DE-703 |a DE-83 | ||
082 | 0 | |a 330.015195 |2 22 | |
084 | |a QH 300 |0 (DE-625)141566: |2 rvk | ||
084 | |a QH 310 |0 (DE-625)141567: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a WIR 017f |2 stub | ||
100 | 1 | |a Wooldridge, Jeffrey M. |d 1960- |e Verfasser |0 (DE-588)131680463 |4 aut | |
245 | 1 | 0 | |a Introductory econometrics |b a modern approach |c Jeffrey M. Wooldridge |
250 | |a 5. ed., internat. ed. | ||
264 | 1 | |a [Mason, Ohio u.a.] |b South-Western Cengage Learning |c 2013 | |
300 | |a XXV, 881 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024453638&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024453638 |
Datensatz im Suchindex
_version_ | 1804148443108605952 |
---|---|
adam_text | BRIEF
CONTENTS
Chapter
1
The Nature of Econometrics and Economic Data
1
PART
1 :
Regression Analysis with Cross-Sectional Data
Chapter
2
The Simple Regression Model
Chapter
3
Multiple Regression Analysis: Estimation
Chapter
4
Multiple Regression Analysis: Inference
Chapter
5
Multiple Regression Analysis: OLS Asymptotics
Chapter
6
Multiple Regression Analysis: Further Issues
Chapter
7
Multiple Regression Analysis with Qualitative
Information: Binary (or Dummy) Variables
Chapter
8
Heteroskedasticity
Chapter
9
More on Specification and Data Issues
PART
2:
Regression Analysis with Time Series Data
Appendix 2A
Appendix
ЗА
Appendix 5A
Appendix 6A
Appendix 13A
Appendix 14A
Appendix 15A
Appendix 17A
Appendix 17B
19
~~ГО
64
110
160
178
217
258
293
331
332
368
398
431
Chapter
10
Basic Regression Analysis with Time Series Data
Chapter
11
Further Issues in Using OLS with Time Series Data
Chapter
12
Serial Correlation and Heteroskedasticity in Time Series Regressions
PART
3:
Advanced Topics
Chapter
13
Pooling Cross Sections Across Time: Simple Panel Data Methods
432
Chapter
14
Advanced Panel Data Methods
466
Chapter
15
Instrumental Variables Estimation and Two Stage Least Squares
490
Chapter
16
Simultaneous Equations Models
530
Chapter
17
Limited Dependent Variable Models and Sample Selection Corrections
559
Chapter
18
Advanced Time Series Topics
606
Chapter
19
Carrying Out an Empirical Project
650
CHAPTER APPENDICES
678
680
684
685
686
689
692
694
695
Brief Contents
ши
APPENDICES
Appendix A
Basic Mathematical Tools
697
Appendix
В
Fundamentals of Probability
716
Appendix
С
Fundamentals of Mathematical Statistics
749
Appendix D
Summary of Matrix Algebra
790
Appendix
E
The Linear Regression Model in Matrix Form
801
Appendix
F
Answers to Chapter Questions
815
Appendix
G
Statistical Tables
825
References
832
Glossary
838
Index
856
j f
Preface
xvii
About the Author
xxvii
CHAPTER
1
The Nature of
Econometrics and Economic
Data
1
1.1
What Is Econometrics?
1
1.2
Steps in Empirical Economic Analysis
2
1.3
The Structure of Economic Data
5
Cross-Sectional Data
5
Time Series Data
8
Pooled Cross Sections
9
Panel or Longitudinal Data
10
A Comment on Data Structures
11
1.4
Causality and the Notion of Ceteris
Paribus
in Econometric Analysis
12
Summary
16
Key Terms
17
Problems
17
Computer Exercises
17
PART
1
Regression Analysis with
Cross-Sectional Data
19
CHAPTER
2
The Simple Regression
Model
20
2.1
Definition of the Simple Regression
Model
20
2.2
Deriving the Ordinary Least Squares
Estimates
25
A Note on Terminology
32
2.3
Properties of OLS on Any Sample of Data
33
Fitted Values and Residuals
33
Algebraic Properties of OLS Statistics
34
Goodness-of-Fit
36
2.4
Units of Measurement and Functional Form
37
The Effects of Changing Units of Measurement on
OLS Statistics
38
Incorporating Nonlinearities in Simple Regression
39
The Meaning of Linear Regression
42
2.5
Expected Values and Variances of the OLS
Estimators
43
Unbiasedness of OLS
43
Variances of the OLS Estimators
48
Estimating the Error Variance
52
2.6
Regression through the Origin and Regression
on a Constant
55
Summary
56
Key Terms
57
Problems
58
Computer Exercises
61
CHAPTER
3
Multiple Regression
Analysis: Estimation
64
3.1
Motivation for Multiple Regression
65
The Model with Two Independent
Variables
65
The Model with
к
Independent Variables
67
3.2
Mechanics and Interpretation of Ordinary
Least Squares
68
Obtaining the OLS Estimates
68
Interpreting the OLS Regression Equation
70
On the Meaning of Holding Other Factors
,
Fixed in Multiple Regression
72
Changing More Than One Independent Variable
Simultaneously
73
Contents
OLS Fitted
Values
and Residuais 73
A Partialling
Out Interpretation
of
Multiple
Regression 74
Comparison of
Simple and Multiple Regression
Estimates
74
Goodness-of-Fit 76
Regression
through the Origin
77
3.3
The Expected Value of the OLS Estimators
79
Including Irrelevant Variables in a Regression
Model
84
Omitted Variable Bias: The Simple Case
84
Omitted Variable Bias: More General
Cases
87
3.4
The Variance of the OLS Estimators
89
The Components of the OLS Variances:
Multicollinearity
90
Variances in Misspecified Models
94
Estimating
σ2:
Standard Errors of the OLS
Estimators
95
3.5
Efficiency of OLS: The Gauss-Markov
Theorem
97
3.6
Some Comments on the Language of Multiple
Regression Analysis
99
Summary
100
Key Terms
101
Problems
102
Computer Exercises
106
CHAPTER
4
Multiple Regression
Analysis: Inference
110
4.1
Sampling Distributions of the OLS
Estimators
110
4.2
Testing Hypotheses about a Single Population
Parameter: The
t
Test
113
Testing against One-Sided Alternatives
115
Two-Sided Alternatives
120
Testing Other Hypotheses about
ßj 122
Computing p-Values for
t
Tests
125
A Reminder on the Language of Classical
Hypothesis Testing
127
Economic, or Practical, versus Statistical
Significance
127
4.3
Confidence Intervals
130
4.4
Testing Hypotheses about a Single Linear
Combination of the Parameters
132
4.5
Testing Multiple Linear Restrictions:
The
F
Test
135
Testing Exclusion Restrictions
135
Relationship between
F
and
t
Statistics
141
The R-Squared Form of the
F
Statistic
142
Computing p-Values for
F
Tests
143
The
F
Statistic for Overall Significance of a
Regression
144
Testing General Linear Restrictions
145
4.6
Reporting Regression Results
146
Summary
149
Key Terms
151
Problems
151
Computer Exercises
156
CHAPTER
5
Multiple Regression
Analysis: OLS Asymptotics
160
5.1
Consistency
161
Deriving the Inconsistency in OLS
164
5.2
Asymptotic Normality and Large Sample
Inference
165
Other Large Sample Tests: The
Lagrange
Multiplier Statistic
170
5.3
Asymptotic Efficiency of OLS
1 73
Summary
174
Key Terms
175
Problems
175
Computer Exercises
175
CHAPTER
6
Multiple Regression
Analysis: Further Issues
178
6.1
Effects of Data Scaling on OLS Statistics
178
Beta Coefficients
181
6.2
More on Functional Form
183
More on Using Logarithmic Functional
Forms
183
Models with Quadratics
186
Models with Interaction Terms
190
6.3
More on Goodness-of-Fit and Selection
of Regressors
192
Adjusted R-Squared
194
Using Adjusted R-Squared to Choose between
Nonnested Models
195
Contents
Controlling
for Too Many Factors in Regression
Analysis
197
Adding
Regressers
to Reduce the Error
Variance
198
6.4
Prediction and Residual Analysis
199
Confidence Intervals for Predictions
199
Residual Analysis
203
Predicting
y
When log(y) Is the Dependent
Variable
204
Summary
208
Key Terms
209
Problems
210
Computer Exercises
212
CHAPTER
7
Multiple Regression
Analysis with Qualitative
Information: Binary (or Dummy)
Variables
217
7.1
Describing Qualitative Information
217
7.2
A Single Dummy Independent
Variable
218
Interpreting Coefficients on Dummy
Explanatory Variables When the Dependent
Variable Is log(y)
223
7.3
Using Dummy Variables for Multiple
Categories
225
Incorporating Ordinal Information by Using
Dummy Variables
227
7.4
Interactions Involving Dummy
Variables
230
Interactions among Dummy Variables
230
Allowing for Different Slopes
231
Testing for Differences in Regression Functions
across Groups
235
7.5
A Binary Dependent Variable: The Linear
Probability Model
238
7.6
More on Policy Analysis and Program
Evaluation
243
7.7
Interpreting Regression Results with Discrete
Dependent Variables
246
Summary
247
Key Terms
248
Problems
248
Computer Exercises
251
CHAPTER
8
Heteroskedasticity
258
8.1
Consequences of Heteroskedasticity for
OLS
258
8.2
Heteroskedasticity-Robust Inference after OLS
Estimation
259
Computing Heteroskedasticity-Robust LM
Tests
264
8.3
Testing for Heteroskedasticity
265
The White Test for Heteroskedasticity
269
8.4
Weighted Least Squares Estimation
270
The Heteroskedasticity Is Known up to a
Multiplicative Constant
271
The Heteroskedasticity Function Must Be
Estimated: Feasible GLS
276
What If the Assumed Heteroskedasticity Function
Is Wrong?
280
Prediction and Prediction Intervals with
Heteroskedasticity
282
8.5
The Linear Probability Model Revisited
284
Summary
286
Key Terms
287
Problems
287
Computer Exercises
289
CHAPTER
9
More on Specification
and Data Issues
293
9.1
Functional Form Misspecification
294
RESET as a General Test for Functional Form
Misspecification
296
Tests against Nonnested Alternatives
297
9.2
Using Proxy Variables for Unobserved
Explanatory Variables
298
Using Lagged Dependent Variables as Proxy
Variables
303
A Different Slant on Multiple Regression
304
9.3
Models with Random Slopes
305
9.4
Properties of OLS under Measurement
Error
307
Measurement Error in the Dependent
Variable
308
Measurement Error in an Explanatory
Variable
310
9.5
Missing Data, Nonrandom Samples, and
Outlying Observations
314
Contents
Missing
Data 314
Nonrandom
Samples
314
Outliers and Influential Observations
316
9.6
Least Absolute Deviations Estimation
321
Summary
324
Key Terms
325
Problems
325
Computer Exercises
327
PART
2
Regression Analysis with Time
Series Data
331
CHAPTER
10
Basic Regression Analysis
with Time Series Data
332
10.1
The Nature of Time Series Data
332
10.2
Examples of Time Series Regression
Models
333
Static Models
334
Finite Distributed Lag Models
334
A Convention about the Time Index
337
10.3
Finite Sample Properties of OLS under
Classical Assumptions
337
Unbiasedness of OLS
337
The Variances of the OLS Estimators and the
Gauss-Markov Theorem
340
Inference under the Classical Linear Model
Assumptions
343
10.4
Functional Form, Dummy Variables, and Index
Numbers
344
10.5
Trends and Seasonality
351
Characterizing Trending Time Series
351
Using Trending Variables in Regression
Analysis
354
A Detrending Interpretation of Regressions with
a Time Trend
356
Computing R-Squared when the Dependent
Variable Is Trending
358
Seasonality
359
Summary
361
Key Terms
362
Problems
363
Computer Exercises
364
CHAPTER
11
Further Issues in Using
OLS with Time Series Data
368
11.1
Stationary and Weakly Dependent Time
Series
369
Stationary and Nonstationary Time Series
369
Weakly Dependent Time Series
370
11.2
Asymptotic Properties of OLS
372
11.3
Using Highly Persistent Time Series in
Regression Analysis
379
Highly Persistent Time Series
379
Transformations on Highly Persistent Time
Series
383
Deciding Whether a Time Series Is
1(1) 384
11.4
Dynamically Complete Models and the
Absence of Serial Correlation
387
11.5
The Homoskedasticity Assumption for
Time Series Models
390
Summary
390
Key Terms
392
Problems
392
Computer Exercises
394
CHAPTER
12
Serial Correlation and
Heteroskedasticity in Time Series
Regressions
398
12.1
Properties of OLS with Serially Correlated
Errors
398
Unbiasedness and Consistency
398
Efficiency and Inference
399
Goodness-of-Fit
400
Serial Correlation in the Presence of Lagged
Dependent Variables
401
12.2
Testing for Serial Correlation
402
A t Test for AR(1) Serial Correlation with Strictly
Exogenous
Regressers
402
The Durbin-Watson Test under Classical
Assumptions
404
Testing for AR(
1 )
Serial Correlation without
Strictly Exogenous
Regressers
406
Testing for Higher Order Serial Correlation
407
12.3
Correcting for Serial Correlation with Strictly
Exogenous Regressors
409
Obtaining the Best Linear Unbiased Estimator in
the AR(1) Model
409
Contents
Feasible GLS Estimation with AR(1) Errors
411
Comparing OLS and FGLS
413
Correcting for Higher Order Serial
Correlation
414
12.4
Differencing and Serial Correlation
415
12.5
Serial Correlation-Robust Inference
after OLS
417
12.6
Heteroskedasticity in Time Series
Regressions
420
Heteroskedasticity-Robust Statistics
421
Testing for Heteroskedasticity
421
Autoregressive
Conditional
Heteroskedasticity
422
Heteroskedasticity and Serial Correlation in
Regression Models
424
Summary
425
Key Terms
426
Problems
426
Computer Exercises
427
PART
3
Advanced Topics
431
CHAPTER
13
Pooling Cross Sections
across Time: Simple Panel Data
Methods
432
13.1
Pooling Independent Cross Sections across
Time
433
The Chow Test for Structural Change across
Time
437
13.2
Policy Analysis with Pooled Cross Sections
438
13.3
Two-Period Panel Data Analysis
443
Organizing Panel Data
449
13.4
Policy Analysis with Two-Period Panel Data
449
13.5
Differencing with More Than Two Time
Periods
452
Potential Pitfalls in First Differencing Panel
Data
457
Summary
458
Key Terms
458
Problems
458
Computer Exercises
460
CHAPTER
14
Advanced Panel Data
Methods
466
14.1
Fixed Effects Estimation
466
The Dummy Variable Regression
470
Fixed Effects or First Differencing?
471
Fixed Effects with Unbalanced Panels
473
14.2
Random Effects Models
474
Random Effects or Fixed Effects?
477
14.3
The Correlated Random Effects
Approach
479
14.4
Applying Panel Data Methods to Other Data
Structures
481
Summary
483
Key Terms
484
Problems
484
Computer Exercises
485
CHAPTER
15
Instrumental Variables
Estimation and Two Stage Least
Squares
490
15.1
Motivation: Omitted Variables in a Simple
Regression Model
491
Statistical Inference with the IV
Estimator
495
Properties of IV with a Poor Instrumental
Variable
499
Computing R-Squared after
IV Estimation
501
15.2
IV Estimation of the Multiple Regression
Model
502
15.3
Two Stage Least Squares
506
A Single Endogenous Explanatory
Variable
506
Multicollinearity and 2SLS
508
Multiple Endogenous Explanatory
Variables
509
Testing Multiple Hypotheses after 2SLS
Estimation
510
15.4
IV Solutions to Errors-in-Variables
Problems
510
15.5
Testing for Endogeneity and Testing
Overidentifying Restrictions
512
Contents
Testing
for Endogeneity
512
Testing Overidentification Restrictions
513
15.6
2SLS with Heteroskedasticity
516
15.7
Applying 2SLS to Time Series
Equations
516
15.8
Applying 2SLS to Pooled Cross Sections and
Panel Data
518
Summary
520
Key Terms
521
Problems
521
Computer Exercises
524
CHAPTER
16
Simultaneous Equations
Models
530
16.1
The Nature of Simultaneous Equations
Models
531
16.2
Simultaneity Bias in OLS
534
16.3
Identifying and Estimating a Structural
Equation
536
Identification in a Two-Equation System
536
Estimation by 2SLS
541
16.4
Systems with More Than Two
Equations
543
Identification in Systems with Three or More
Equations
543
Estimation
544
16.5
Simultaneous Equations Models with Time
Series
544
16.6
Simultaneous Equations Models with Panel
Data
548
Summary
550
Key Terms
551
Problems
551
Computer Exercises
554
CHAPTER
17
Limited Dependent
Variable Models and Sample Selection
Corrections
559
17.1
Logit and
Probit
Models for Binary
Response
560
Specifying Logit and
Probit
Models
560
Maximum Likelihood Estimation of Logit and
Probit
Models
563
Testing Multiple Hypotheses
564
Interpreting the Logit and
Probit
Estimates
565
17.2
The Tobit Model for Corner Solution
Responses
572
Interpreting the Tobit Estimates
574
Specification Issues in Tobit Models
579
17.3
The
Poisson
Regression Model
580
17.4
Censored and Truncated Regression
Models
585
Censored Regression Models
585
Truncated Regression Models
589
17.5
Sample Selection Corrections
591
When Is OLS on the Selected Sample
Consistent?
591
Incidental Truncation
593
Summary
597
Key Terms
598
Problems
598
Computer Exercises
600
CHAPTER
18
Advanced Time Series
Topics
606
18.1
Infinite Distributed Lag Models
607
The Geometric (or Koyck)
Distributed Lag
609
Rational Distributed Lag Models
611
18.2
Testing for Unit Roots
613
18.3
Spurious Regression
618
18.4
Cointegration
and Error Correction
Models
620
Cointegration
620
Error Correction Models
625
58.
S
Forecasting
626
Types of Regression Models Used for
Forecasting
628
One-Step-Ahead Forecasting
629
Comparing One-Step-Ahead Forecasts
632
Multiple-Step-Ahead Forecasts
634
Forecasting Trending, Seasonal, and Integrated
Processes
636
Contents
Summary
641
Key
Terms
643
Problems 643
Computer
Exercises
645
CHAPTER
19
Carrying Out an
Empirical Project
650
19.1
Posing a Question
650
19.2
Literature Review
652
19.3
Data Collection
653
Deciding on the Appropriate Data Set
653
Entering and Storing Your Data
654
Inspecting, Cleaning, and Summarizing Your
Data
656
19.4
Econometric Analysis
657
19.5
Writing an Empirical Paper
660
Introduction
660
Conceptual (or Theoretical) Framework
661
Econometric Models and Estimation
Methods
661
The Data
664
Results
664
Conclusions
665
Style Hints
666
Summary
668
Key Terms
668
Sample Empirical Projects
668
List of Journals
674
Data Sources
675
CHAPTER APPENDICES
Appendix 2A
678
Appendix
ЗА
680
Appendix 5A
684
Appendix 6A
685
Appendix 13A
686
Appendix 14A
689
Appendix 15A
692
Appendix 17A
694
Appendix 17B
695
APPENDIX A Basic Mathematical
Tools
697
A.1 The Summation Operator and Descriptive
Statistics
697
A.
2
Properties of Linear
Functions
699
A.3 Proportions and Percentages
701
A.
4
Some Special Functions and
Their Properties
704
Quadratic Functions
704
The Natural Logarithm
706
The Exponential Function
710
A.5 Differential Calculus
711
Summary
713
Key Terms
713
Problems
713
APPENDIX
В
Fundamentals of
Probability
716
B.1 Random Variables and Their Probability
Distributions
716
Discrete Random Variables
717
Continuous Random Variables
719
B.2 Joint Distributions, Conditional Distributions,
and Independence
721
Joint Distributions and
Independence
721
Conditional Distributions
723
B.3 Features of Probability
Distributions
724
A Measure of Central Tendency: The Expected
Value
724
Properties of Expected Values
725
Another Measure of Central Tendency: The
Median
727
Measures of Variability: Variance and Standard
Deviation
728
Variance
728
Standard Deviation
730
Standardizing a Random Variable
730
Skewness and Kurtosis
731
B.4 Features of Joint and Conditional
Distributions
731
Contents
Measures of Association: Covariance and
Correlation
731
Covariance
731
Correlation Coefficient
733
Variance of Sums of Random
Variables
734
Conditional Expectation
735
Properties of Conditional Expectation
736
Conditional Variance
738
B.5 The Normal and Related
Distributions
739
The Normal Distribution
739
The Standard Normal Distribution
740
Additional Properties of the Normal
Distribution
742
The Chi-Square Distribution
743
The
t
Distribution
743
The
F
Distribution
744
Summary
746
Key Terms
746
Problems
746
APPENDIX
С
Fundamentals of
Mathematical Statistics
749
C.1 Populations, Parameters, and Random
Sampling
749
Sampling
750
C.2 Finite Sample Properties of
Estimators
750
Estimators and Estimates
751
Unbiasedness
752
The Sampling Variance of Estimators
754
Efficiency
756
C.3 Asymptotic or Large Sample Properties of
Estimators
757
Consistency
757
Asymptotic Normality
760
C.4 General Approaches to Parameter
Estimation
762
Method of Moments
762
Maximum Likelihood
763
Least Squares
764
C.5 Interval Estimation and Confidence
Intervals
764
The Nature of Interval Estimation
764
Confidence Intervals for the Mean from a
Normally Distributed Population
766
A Simple Rule of Thumb for a
95
fo Confidence
Interval
769
Asymptotic Confidence Intervals for
Nonnormal
Populations
770
C.6 Hypothesis Testing
771
Fundamentals of Hypothesis Testing
772
Testing Hypotheses about the Mean in a Normal
Population
774
Asymptotic Tests for
Nonnormal
Populations
777
Computing and Using p- Values
778
The Relationship between Confidence
Intervals and Hypothesis
Testing
781
Practical versus Statistical
Significance
782
C.7 Remarks on Notation
783
Summary
784
Key Terms
784
Problems
785
APPENDIX
D
Summary of Matrix
Algebra
790
D.1 Basic Definitions
790
D.2 Matrix Operations
791
Matrix Addition
791
Scalar Multiplication
792
Matrix Multiplication
792
Transpose
793
Partitioned Matrix Multiplication
794
Trace
794
Inverse
795
D.3 Linear Independence and Rank of a
Matrix
795
D.4 Quadratic Forms and Positive Definite
Matrices
796
D.5 Idempotent Matrices
796
D.6 Differentiation of Linear and Quadratic
Forms
797
D.7 Moments and Distributions of Random
Vectors
797
Contents
Expected Value
797
Variance-Covariance Matrix
797
Multivariate Normal Distribution
798
Chi-Square Distribution
798
t
Distribution
799
F
Distribution
799
Summary
799
Key Terms
799
Problems
800
APPENDIX
E
The Linear Regression
Model in Matrix Form
801
E.1 The Model and Ordinary Least Squares
Estimation
801
E.2 Finite Sample Properties of OLS
803
E.3 Statistical Inference
807
E.4 Some Asymptotic Analysis
809
Wald
Statistics for Testing Multiple
Hypotheses
812
Summary
813
Key Terms
813
Problems
813
APPENDIX
F
Answers to Chapter
Questions
815
APPENDIX
G
Statistical Tables
825
References
832
Glossary
838
Index
856
|
any_adam_object | 1 |
author | Wooldridge, Jeffrey M. 1960- |
author_GND | (DE-588)131680463 |
author_facet | Wooldridge, Jeffrey M. 1960- |
author_role | aut |
author_sort | Wooldridge, Jeffrey M. 1960- |
author_variant | j m w jm jmw |
building | Verbundindex |
bvnumber | BV039602796 |
classification_rvk | QH 300 QH 310 SK 980 |
classification_tum | WIR 017f |
ctrlnum | (OCoLC)701208936 (DE-599)BVBBV039602796 |
dewey-full | 330.015195 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.015195 |
dewey-search | 330.015195 |
dewey-sort | 3330.015195 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
edition | 5. ed., internat. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01764nam a2200421 c 4500</leader><controlfield tag="001">BV039602796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161122 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110927s2013 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781111531041</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-111-53104-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781111534394</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-1-111-53439-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1111531048</subfield><subfield code="c">hbk.</subfield><subfield code="9">1-111-53104-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111153439X</subfield><subfield code="c">pbk.</subfield><subfield code="9">1-111-53439-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)701208936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039602796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-945</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-M382</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.015195</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 310</subfield><subfield code="0">(DE-625)141567:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wooldridge, Jeffrey M.</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131680463</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introductory econometrics</subfield><subfield code="b">a modern approach</subfield><subfield code="c">Jeffrey M. Wooldridge</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed., internat. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Mason, Ohio u.a.]</subfield><subfield code="b">South-Western Cengage Learning</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 881 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024453638&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024453638</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV039602796 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:07:13Z |
institution | BVB |
isbn | 9781111531041 9781111534394 1111531048 111153439X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024453638 |
oclc_num | 701208936 |
open_access_boolean | |
owner | DE-945 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-20 DE-N2 DE-739 DE-M49 DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-521 DE-188 DE-11 DE-91 DE-BY-TUM DE-M382 DE-634 DE-92 DE-29 DE-703 DE-83 |
owner_facet | DE-945 DE-19 DE-BY-UBM DE-473 DE-BY-UBG DE-20 DE-N2 DE-739 DE-M49 DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-521 DE-188 DE-11 DE-91 DE-BY-TUM DE-M382 DE-634 DE-92 DE-29 DE-703 DE-83 |
physical | XXV, 881 S. graph. Darst. |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | South-Western Cengage Learning |
record_format | marc |
spelling | Wooldridge, Jeffrey M. 1960- Verfasser (DE-588)131680463 aut Introductory econometrics a modern approach Jeffrey M. Wooldridge 5. ed., internat. ed. [Mason, Ohio u.a.] South-Western Cengage Learning 2013 XXV, 881 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Ökonometrie (DE-588)4132280-0 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Ökonometrie (DE-588)4132280-0 s DE-604 Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024453638&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wooldridge, Jeffrey M. 1960- Introductory econometrics a modern approach Ökonometrie (DE-588)4132280-0 gnd |
subject_GND | (DE-588)4132280-0 (DE-588)4123623-3 |
title | Introductory econometrics a modern approach |
title_auth | Introductory econometrics a modern approach |
title_exact_search | Introductory econometrics a modern approach |
title_full | Introductory econometrics a modern approach Jeffrey M. Wooldridge |
title_fullStr | Introductory econometrics a modern approach Jeffrey M. Wooldridge |
title_full_unstemmed | Introductory econometrics a modern approach Jeffrey M. Wooldridge |
title_short | Introductory econometrics |
title_sort | introductory econometrics a modern approach |
title_sub | a modern approach |
topic | Ökonometrie (DE-588)4132280-0 gnd |
topic_facet | Ökonometrie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024453638&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wooldridgejeffreym introductoryeconometricsamodernapproach |