Geothermal reservoir engineering:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Burlington, MA
Academic Press
2011
|
Ausgabe: | 2. ed |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (p. 329-348) and index |
Beschreibung: | XVI, 359 S. graph. Darst. |
ISBN: | 9780123838803 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039572940 | ||
003 | DE-604 | ||
005 | 20120323 | ||
007 | t | ||
008 | 110908s2011 d||| |||| 00||| eng d | ||
010 | |a 2010051008 | ||
020 | |a 9780123838803 |c hardback |9 978-0-12-383880-3 | ||
035 | |a (OCoLC)756299553 | ||
035 | |a (DE-599)GBV643582401 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91S |a DE-703 |a DE-573 |a DE-29 | ||
084 | |a ZP 3750 |0 (DE-625)157973: |2 rvk | ||
084 | |a ERG 710f |2 stub | ||
100 | 1 | |a Grant, Malcolm A. |e Verfasser |0 (DE-588)117718107X |4 aut | |
245 | 1 | 0 | |a Geothermal reservoir engineering |c Malcolm A. Grant, Paul F. Bixley |
250 | |a 2. ed | ||
264 | 1 | |a Burlington, MA |b Academic Press |c 2011 | |
300 | |a XVI, 359 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references (p. 329-348) and index | ||
650 | 4 | |a Geothermal engineering | |
650 | 0 | 7 | |a Geothermik |0 (DE-588)4020285-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geothermik |0 (DE-588)4020285-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bixley, Paul F. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024424419&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024424419 |
Datensatz im Suchindex
_version_ | 1804148400732504064 |
---|---|
adam_text | Contents
Foreword
xüi
Preface to the Second Edition
xv
Acknowledgments
xvii
1.
Geothermal Reservoirs
1
1.1.
Introduction
1
1.2.
The Development of Ceothermal Reservoir Engineering
2
1.3.
Definitions
5
1.4.
Organization of this Book
5
1.5.
References and Units
7
2.
Concepts of Geothermal Systems
9
2.1.
Introduction
9
2.2.
Conductive Systems
10
2.2.1.
The Thermal
Regi me
of the Earth
10
2.2.2.
Warm Groundwater Basins
10
2.2.3.
Deep Sedimentary Aquifers
11
2.2.4.
Warm Springs and Fracture and Fault Systems
11
2.2.5.
Geopressured Systems
12
2.2.6.
Hot, Dry Rock or Engineered Geothermal Systems
12
2.3.
Convective Systems: Liquid Dominated
12
2.3.1.
Introduction: The Dominance of Convection
12
2.3.2.
Deep Circulation and
Magmatic
Heat
13
2.3.3.
Exploitation and System Circulation
15
2.3.4.
The Vertical Upflow Model and Boiling Point for
Depth Models
15
2.3.5.
Systems with Lateral Outflow
18
2.3.6.
Inferences from Pressure Distribution
20
2.3.7.
Summary
21
2.4.
Convective Systems: Vapor Dominated
21
2.4.1.
The Conceptualized Fluid Flow System
23
2.5.
Concepts of Changes Under Exploitation
24
2.5.1.
Flow of Liquid
24
2.5.2.
Liquid-Dominated Reservoirs with Boiling
25
2.5.3.
Vapor-Dominated Reservoirs
26
2.6.
Conclusions
27
3.
Simple Quantitative Models
29
3.1.
Introduction
29
3.2.
Simplifications and Concepts of Storage
30
Contents
3.2.1.
Closed Box of Single-Phase Fluid
30
3.2.2.
Box with Water Level (Unconfined Aquifer)
32
3.2.3.
Box of Two-Phase Fluid
33
3.2.4.
Comparing the Different Compressibilities
34
3.2.5.
Boxes with Different Zones
34
3.3.
Pressure Transient Models
35
3.3.1.
Single-Phase Aquifer Fluid
36
3.3.2.
Flow of a Dry Gas
37
3.3.3.
Unconfined Aquifer
37
3.3.4.
Two-Phase Aquifer
37
3.4.
Simple Lumped-Parameter Models
38
3.4.1.
Basic Model
38
3.4.2.
Reservoir with Change of Fluid Type
40
3.4.3.
Cold Water Recharge
41
3.5.
Steam Reservoir with Immobile Water
42
3.5.1.
Equation for Steam Flow
43
3.5.2.
Dry-Out
44
3.5.3.
Cold Water Injection
45
3.6.
Reserves
46
3.6.1.
Available Energy
46
3.6.2.
Stored Heat Estimate
47
3.6.3.
Validation of the Stored Heat Method
49
3.6.4.
Power Density
51
3.6.5.
Fluid Reserve
51
3.6.6.
In situ Boiling (Intergranular Vaporization)
52
3.6.7.
Cold Sweep
52
3.7.
Fractured Media
54
3.7.1.
Thermal Effects
54
3.7.2.
Dual Porosity Theory: Models by Barenblatt,
and Warren and Root
55
3.7.3.
Dual Porosity Theory: Elaborations
57
3.7.4.
Dispersion
58
3.8.
Chemical Flow Models
59
3.9.
Applicability of the Models
60
4.
interpretation of
Downhole
Measurements
61
4.1.
Introduction
61
4.2.
Objectives of the Well Testing Program
63
4.2.1.
Multidiscipline Approach
64
4.3.
Well Models
66
4.4.
Some Basic Well Profiles
67
4.4.1.
Conductive versus Convective
67
4.4.2.
Isothermal
68
4.4.3.
Boiling Curve
69
4.4.4.
Two-Phase Column
69
4.5.
Gas Pressure at Wellhead
70
4.6.
Unusual or Misleading Well Profiles
71
4.6.1.
Temperatures in Well WK10, Wairakei
71
Contents
4.6.2. Reservoir
Pressures
at Matsukawa
72
4.6.3. Liquid-Gas-Liquid Profile 73
5.
Downhole
Measurement
75
5.1.
Instruments
75
5.2. Ceothermal Well Design 77
5.3.
Temperature-Pressure
Instruments 78
5.3.1.
Mechanical
Instruments 78
5.3.2. Electronic
Downhole
Instruments 78
5.4.
Downhole
Flow Measurements
79
5.5.
Sources of Error in
Downhole
Measurements
80
5.5.1.
Depth Measurement
80
5.5.2.
Thermal Expansion of the Wireline
80
5.5.3.
Well Deviation
81
5.5.4.
Well Stability
81
5.5.5.
Instrument Lag
82
5.6.
Designing
a
Downhole
Measurement Program
83
5.7.
Spinner Measurements
85
5.7.1.
Crossplotting and Tool Calibration
86
5.7.2. Wellbore
Radius Effects
88
5.7.3.
High Fluid Velocity
90
5.7.4.
Data Problems
90
6.
Measurements During Drilling
93
6.1.
General
93
6.2.
Pressure
94
6.3.
Significance of Drilling Losses
94
6.4.
Temperature
95
6.4.1.
Temperature
Buildup
95
6.4.2.
Temperature Buildup Example
96
6.5.
Stage Testing
99
6.6.
The Drilling of RK22
100
6.6.1.
Drilled Depth
2428
m
100
6.6.2.
Drilled Depth
2791
m
101
6.6.3.
Drilled Depth
3092
m
102
7.
Well Completion and Heating
105
7.1.
Introduction
105
7.1.1.
Objectives of Completion Testing
105
7.1.2.
Test Sequence
106
7.1.3.
High Permeability Wells
107
7.1.4.
Low Permeability Wells
108
7.2.
Quantifying Reservoir Parameters
109
7.2.1.
Injectivity Test
110
7.2.2.
Low Permeability Wells
111
7.2.3.
High Permeability Well: Inflow Evaluation
113
7.2.4.
Estimated Production
117
GUD
Contents
7.3. Wellbore
Heat
Transfer 118
7.4.
Heating
119
7.4.1.
Measurements
119
7.4.2.
Pressure Control Point
121
7.4.3.
Temperatures during Heating
122
7.5.
Injection Performance
125
7.6.
Vapor-Dominated Systems
128
8.
Production Testing
131
8.1.
Introduction
131
8.1.1.
Basic Equations
131
8.1.2.
Flash Correction Factor
133
8.2.
Starting Discharge
134
8.2.1.
Pressurizing the Well
135
8.2.2.
Gas Lift
137
8.2.3.
Steam Injection
137
8.2.4.
Workover
138
8.3.
Production Testing Methods
138
8.4.
Single-Phase Fluid
139
8.4.1.
Low Enthalpy Wells
139
8.4.2.
High Enthalpy (Steam) Wells
140
8.5.
Two-Phase Flow Measurement Methods
140
8.5.1.
Total Flow Calorimeter
141
8.5.2.
Steam-Water Separator
143
8.5.3.
James Lip Pressure Method
147
8.5.4.
Vertical Discharge
150
8.5.5.
Tracer Dilution Method
152
8.5.6.
Other Methods
154
8.5.7.
Superheat
156
8.6.
Cycling Wells
156
8.7.
Accuracy of Flow Measurements
158
8.7.1.
Instrumentation
159
8.7.2.
Test Procedures
159
8.7.3.
Accuracy of Individual Test Methods
160
8.8.
Calculating Well Performance
161
8.8.1.
Single-Phase Liquid
161
8.8.2.
Single-Phase Steam
161
8.8.3.
Two-Phase Fluid in
Wellbore 163
8.9.
Interpretation of Output Data
165
8.9.1.
Introduction
165
8.9.2.
Maximum Discharging Pressure
165
8.9.3.
Mass Flow
166
8.9.4.
Enthalpy Variations
166
9.
Case Study: A History of Well BR2, Ohaaki
169
9.1.
Introduction
169
9.2.
The Drilling and Testing Period: May-August
1966 170
Contents
9.2.1.
Completion
Tests
and Measurements
171
9.2.2.
Initial Discharge
172
9.2.3.
Interpreting the Early Measurements
173
9.2.4.
Output Tests
174
9.3.
The Discharge Period:
1966-1971 175
9.3.1.
Further Output Tests
175
9.3.2.
Interference Test
178
9.3.3.
The Period
1968-1971 179
9.4.
Shutdown and Pressure Recovery:
1971—1988 180
9.5.
Production:
1988-1997 182
9.6.
Conclusions
185
10.
Conceptual Modeling and Simple Inferences
187
10.1.
Introduction
187
10.2.
Mapping the Reservoir
189
10.3.
Temperature Profiles
191
10.3.1.
Upflow Conditions
191
10.3.2.
Static Conditions
193
10.3.3.
Downflow Conditions
194
10.3.4.
Conductive or Cold Water Layers
194
10.3.5.
How Permeable Is Permeable?
195
10.4.
Pressure
197
10.5.
Exploited Fields
198
10.6.
Summary
199
11.
Simulation
201
11.1.
Introduction
201
11.2.
Input Data
202
11.3.
Conceptual Model
203
11.4.
Natural State
204
11.5.
Well Specification
206
11.6.
History Matching
207
11.7.
Dual Porosity
210
11.8.
Validation of the Simulation Process
212
11.8.1.
Olkaria
212
11.8.2.
Nesjavellir, Iceland
213
11.8.3.
Wairakei
213
11.8.4.
Summary
213
11.9.
Ngatamariki
213
12.
Field Examples
219
12.1.
Introduction
219
12.2.
Wairakei
219
12.2.1.
Natural State
220
12.2.2.
Exploited State
220
12.2.3.
Changes with Time
221
12.2.4.
Conceptual Model
223
Contents
12.2.5.
Lumped-Parameter
Models 223
12.2.6.
Simulations
224
12.2.7.
Summary
225
12.3.
The Geysers
226
12.4.
Svartsengi 23°
12.5.
Balcova-Narlidere
235
12.6.
Palinpinon
237
12.6.1.
Early History
238
12.6.2.
The Mature Field
238
12.7.
Awibengkok
(Salak)
240
12.8.
Patuha and Other Hybrid Fields
243
12.9.
Mak-Ban
245
13.
Field Management
249
13.1.
Introduction
249
13.2.
Decline and Lumped Parameter Models
250
13.2.1.
Exponential Decline
250
13.2.2.
Other Forms of Decline
252
13.2.3.
Lumped Parameter Models
252
13.3.
Deviations from Trend
252
13.3.1.
Deposition
254
13.3.2.
Changes in Enthalpy
255
13.4.
Tracer Testing
256
13.4.1.
Normalizing the Data
256
13.4.2.
Travel Times and Percent Recovery
256
13.4.3.
Fracture Models
259
13.5.
Incorporation in Simulation
260
13.5.1.
Ribeira
Grande
260
13.6.
Surface Effects
262
13.7.
Subsidence
264
13.8.
Injection Management
266
13.8.1.
Injection Well Siting
266
13.8.2.
Augmentation Injection
267
14.
Well Stimulation and Engineered Geothermal
Systems
269
14.1.
Introduction: Fracturing Rock
269
14.2.
Thermal Stimulation
273
14.3.
Acid Stimulation
274
14.4.
Stimulating Existing Reservoirs: Deep Sedimentary
Aquifers
276
14.5.
EGS: Creating a Reservoir
277
Appendix
1
Pressure Transient Analysis
283
ALL Introduction
283
A1
.2.
Basic Solution
283
A1.2.1. Line Source Solution
284
Contents
285
285
287
288
289
289
290
290
292
292
294
295
296
297
298
298
299
299
301
301
301
301
302
303
304
306
306
306
306
Appendix
2
Gas Correction for Flow Measurements
307
Α2Λ.
Effect of Noncondensable Gas
307
A2.2. Gas Correction for the Separator Method
308
A2.3. Gas Correction for the Lip Pressure Method
310
Appendix
3
Equations of Motion and State
315
A3.1. Introduction
315
A3.2. Conservation Equations
315
A3.2.1
.
Conservation of Mass, Single-Phase
315
A3.2.2. Conservation of Energy, Single-Phase Flow
316
A3.2.3. Conservation of Mass, Two-Phase Flow
316
A3.2.4. Conservation of Energy, Two-Phase Flow
317
A3.2.5. Conservation of a Chemical Species
317
A3.3. Darcy sLaw
317
A3.3.1. Single-Phase Flow
317
A3.3.2. Two-Phase Flow and Relative
Permeabilities
318
AL2.2.
Semilog Analyses
A1.2.3.
Example: Interference BR19-BR23
Al
.2.4.
Superposition
Al.2.5.
Dimensionless Variables
A1.2.6.
Type-Curve Matching
A1.3.
Wellbore
Storage and Skin
A1.3.1.
Wellbore
Storage
A1.3.2.
Skin
A1.3.3.
Productivity
A1.4.
Injection
A1.5.
Two-Phase Flow
A1.6.
Pseudopressure
Aí.
7.
Variable Flow Rate
A1.8.
Fractured
Media
A1.9.
Wellbore
Thermal and Flow Effects
A1.9.1.
Condensation in Steam Wells
A1.9.2.
Flashing Column in
Wellbore
A1.9.3.
Injection Tests
A1.9.4.
Use of Profiles
A1.9.5.
Wellbore
Thermal Storage Effects
ALIO.
Barometric, Tidal, and Other Effects
A1.10.1.
Tidal Responses
Al.
10.2.
Barometric Response
ΑΙ.
10.3.
Other Effects
ALU.
Temperature Transients
AL12.
Conversion of Groundwater Units
Al.
12.1.
Relation Between Pressure and Head
A1.12.2.
Permeability
A1.12.3.
Storativity
Contents
А3.4.
Constitutive
Relations
319
АЗ.4.1.
Single-Phase Liquid 319
АЗ.4.2.
Single-Phase
Vapor
320
АЗ.4.3.
Two-Phase Fluid
320
АЗ.4.4.
Noncondensable Cases
320
A3.5. Boiling-Point for Depth Model
322
Appendix
4
Geothermal Fields
325
List of Symbols
327
References
329
Index
349
|
any_adam_object | 1 |
author | Grant, Malcolm A. Bixley, Paul F. |
author_GND | (DE-588)117718107X |
author_facet | Grant, Malcolm A. Bixley, Paul F. |
author_role | aut aut |
author_sort | Grant, Malcolm A. |
author_variant | m a g ma mag p f b pf pfb |
building | Verbundindex |
bvnumber | BV039572940 |
classification_rvk | ZP 3750 |
classification_tum | ERG 710f |
ctrlnum | (OCoLC)756299553 (DE-599)GBV643582401 |
discipline | Energietechnik, Energiewirtschaft Energietechnik |
edition | 2. ed |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01462nam a2200385 c 4500</leader><controlfield tag="001">BV039572940</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120323 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110908s2011 d||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010051008</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123838803</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-12-383880-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)756299553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV643582401</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91S</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZP 3750</subfield><subfield code="0">(DE-625)157973:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 710f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grant, Malcolm A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)117718107X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geothermal reservoir engineering</subfield><subfield code="c">Malcolm A. Grant, Paul F. Bixley</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Burlington, MA</subfield><subfield code="b">Academic Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 359 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 329-348) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geothermal engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geothermik</subfield><subfield code="0">(DE-588)4020285-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geothermik</subfield><subfield code="0">(DE-588)4020285-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bixley, Paul F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024424419&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024424419</subfield></datafield></record></collection> |
id | DE-604.BV039572940 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:06:32Z |
institution | BVB |
isbn | 9780123838803 |
language | English |
lccn | 2010051008 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024424419 |
oclc_num | 756299553 |
open_access_boolean | |
owner | DE-91S DE-BY-TUM DE-703 DE-573 DE-29 |
owner_facet | DE-91S DE-BY-TUM DE-703 DE-573 DE-29 |
physical | XVI, 359 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Academic Press |
record_format | marc |
spelling | Grant, Malcolm A. Verfasser (DE-588)117718107X aut Geothermal reservoir engineering Malcolm A. Grant, Paul F. Bixley 2. ed Burlington, MA Academic Press 2011 XVI, 359 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references (p. 329-348) and index Geothermal engineering Geothermik (DE-588)4020285-9 gnd rswk-swf Geothermik (DE-588)4020285-9 s DE-604 Bixley, Paul F. Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024424419&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grant, Malcolm A. Bixley, Paul F. Geothermal reservoir engineering Geothermal engineering Geothermik (DE-588)4020285-9 gnd |
subject_GND | (DE-588)4020285-9 |
title | Geothermal reservoir engineering |
title_auth | Geothermal reservoir engineering |
title_exact_search | Geothermal reservoir engineering |
title_full | Geothermal reservoir engineering Malcolm A. Grant, Paul F. Bixley |
title_fullStr | Geothermal reservoir engineering Malcolm A. Grant, Paul F. Bixley |
title_full_unstemmed | Geothermal reservoir engineering Malcolm A. Grant, Paul F. Bixley |
title_short | Geothermal reservoir engineering |
title_sort | geothermal reservoir engineering |
topic | Geothermal engineering Geothermik (DE-588)4020285-9 gnd |
topic_facet | Geothermal engineering Geothermik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024424419&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grantmalcolma geothermalreservoirengineering AT bixleypaulf geothermalreservoirengineering |