Improving crop resistance to abiotic stress:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-Blackwell
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
ISBN: | 9783527328406 |
Internformat
MARC
LEADER | 00000nam a2200000 ca4500 | ||
---|---|---|---|
001 | BV039566325 | ||
003 | DE-604 | ||
005 | 20130123 | ||
007 | t | ||
008 | 110906nuuuuuuuugw |||| 00||| eng d | ||
016 | 7 | |a 1014518075 |2 DE-101 | |
020 | |a 9783527328406 |9 978-3-527-32840-6 | ||
035 | |a (DE-599)DNB1014518075 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
084 | |a WN 1950 |0 (DE-625)150988: |2 rvk | ||
084 | |a LAN 242f |2 stub | ||
084 | |a LAN 240.81f |2 stub | ||
245 | 1 | 0 | |a Improving crop resistance to abiotic stress |c ed. b Narendra Tuteja ... |
264 | 1 | |a Weinheim |b Wiley-Blackwell |c 2012 | |
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Pflanzenzüchtung |0 (DE-588)4045599-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stressresistenz |0 (DE-588)4326741-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nutzpflanzen |0 (DE-588)4042838-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nutzpflanzen |0 (DE-588)4042838-2 |D s |
689 | 0 | 1 | |a Pflanzenzüchtung |0 (DE-588)4045599-3 |D s |
689 | 0 | 2 | |a Stressresistenz |0 (DE-588)4326741-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tuteja, Narendra |d 1955- |0 (DE-588)1023937735 |4 edt | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024417913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024417913 |
Datensatz im Suchindex
_version_ | 1804148392672100352 |
---|---|
adam_text | IMAGE 1
I X
CONTENTS
FOREWORD I V FOREWORD II VII
PREFACE XXV
LIST O F CONTRIBUTORS, VOL. I XXIX
VOLUME 1
PART I INTRODUCTION T O PLANT ABIOTIC STREES RESPONSE 1
1 UNDERSTANDING T H E COMMONEOME OPERATIVE IN PLANTS IN RESPONSE T O
VARIOUS ABIOTIC STRESSES 3 HEMANT R. KUSHWAHA, SNEH L SINGLA-PAREEK,
SUDHIR K. SOPORY, AND ASHWANI PAREEK 1.1 INTRODUCTION 3
1.2 GENOMICS-BASED STUDIES I N THE MODEL DICOT PLANTS 5
1.2.1 ARABIDOPSIS 5
1.2.2 C O M M O N ICE PLANT 7
1.2.3 TOMATO 7
1.3 GENOMICS-BASED STUDIES IN THE MODEL MONOCOT PLANTS 8 1.3.1 RICE 8
1.3.2 MAIZE 8
1.3.3 SORGHUM 9
1.4 SALT STRESS-RELATED TRANSCRIPTOME CHANGES ACROSS DIVERSE GENERA 9
1.5 INVESTIGATING THE SALINITY STRESS-RELATED FINGERPRINTS 10 1.5.1
STRESS PERCEPTION A N D SIGNALING 10
1.5.2 GENE REGULATION 11
1.6 PROTEINS RELATED TO GENERAL METABOLISM 12
1.7 STRESS-INDUCED PROTEINS WITH SOME PROTECTIVE FUNCTIONS 12 1.8
PROTEINS RELATED TO MAINTENANCE O F OSMOTIC HOMEOSTASIS 13 1.9 PROTEIN
WITH UNKNOWN FUNCTION 13
1.10 ANALYSIS O F STRESS TRANSCRIPTOME FROM OTHER PLANT SPECIES 14
HTTP://D-NB.INFO/1014518075
IMAGE 2
X J CONTENTS
1.11 CONCLUSIONS 19
REFERENCES 21
2 ABIOTIC STRESS TOLERANCE IN PLANTS: AN INDUSTRY PERSPECTIVE 2 7
SHOBA SIVASANKAR, ROBERT W. WILLIAMS, AND THOMAS W. GREENE 2.1
INTRODUCTION 2 7
2.2 GENE DISCOVERY AND GENOMICS I N THE PLANT BIOTECHNOLOGY INDUSTRY 3 0
2.2.1 FORWARD GENETIC SCREENS USING MODEL SPECIES 3 0 2.2.2 FUNCTIONAL
GENE CLASSES AND FAMILIES 32
2.2.3 KNOWLEDGE-BASED GENE DISCOVERY 34 2.2.4 DIRECTED MOLECULAR
EVOLUTION 3 5
2.2.5 GLOBAL PROFILING 35
2.2.6 COMPARATIVE GENOMICS 3 7
2.2.7 COMPUTATIONAL BIOLOGY 38
2.3 HIGH-THROUGHPUT PHENOTYPING AND PHENOMICS 38
2.4 RECENT BREAKTHROUGHS I N ABIOTIC STRESS TOLERANCE I N THE PLANT
BIOTECHNOLOGY INDUSTRY 43 2.5 CONCLUSIONS AND FUTURE PERSPECTIVES 4 5
REFERENCES 4 5
3 GENERATION AND SCAVENGING O F REACTIVE OXYGEN SPECIES IN PLANTS UNDER
STRESS 4 9 SARVAJEET SINGH GILL, LAMABAM PETER SINGH, RITU GILL, AND
NARENDRA TUTEJA
3.1 INTRODUCTION 4 9
3.2 ROS PRODUCTION 51
3.3 ROS SCAVENGING 54
3.3.1 ENZYMATIC ANTIOXIDANTS 5 4
3.3.2 NONENZYMATIC ANTIOXIDANTS 5 7
3.4 TRANSGENIC APPROACH I N ROS TOXICITY I N PLANTS 58
3.5 CONCLUSIONS 61
REFERENCES 62
4 SALINITY STRESS: A MAJOR CONSTRAINT IN CROP PRODUCTION 71
NARENDRA TUTEJA, LAMABAM PETER SINGH, SARVAJEET SINGH GILL, RITU GILL,
AND RENU TUTEJA 4.1 INTRODUCTION 71
4.2 EFFECTS O N PLANT GROWTH AND DEVELOPMENT 73
4.3 IONIC STRESS 74
4.3.1 ION SELECTIVITY 75
4.3.2 N A + EXCLUSION 75
4.3.3 N A + SEQUESTRATION 75
4.4 OSMOTIC STRESS 76
4.4.1 OSMOTIC ADJUSTMENT 76
4.5 SALT STRESS-INDUCED PROTEINS 81
4.6 OXIDATIVE STRESS 8 2
IMAGE 3
CONTENTS X I
4.6.1 REACTIVE OXYGEN SPECIES 82
4.6.2 OXIDATIVE STRESS MANAGEMENT 82 4.7 CALCIUM SIGNALING A N D SOS
PATHWAYS 83
4.8 ABA-MEDIATED SIGNALING 85
4.9 CONCLUSIONS 87
REFERENCES 87
5 COLD AND ABIOTIC STRESS SIGNALING IN PLANTS 97
WENQIONGJOAN CHEN
5.1 INTRODUCTION 97
5.2 GENE EXPRESSION AND REGULATION DURING PLANT COLD STRESS RESPONSE 98
5.2.1 THE CBF/DREB-DEPENDENT AND INDEPENDENT PATHWAYS 99 5.2.2
REGULATION O F ICE1-CBF/DREB GENE EXPRESSION 101 5.3 SIGNALING MOLECULES
INVOLVED IN THE EARLY EVENTS O F COLD
STRESS RESPONSE 106 5.3.1 PHOSPHOLIPIDS 106
5.3.2 REACTIVE OXYGEN SPECIES AS SECONDARY MESSENGER 107 5.3.3 CALCIUM
BINDING PROTEINS AND SIGNAL DECODING 109 5.3.4 MITOGEN-ACTIVATED PROTEIN
KINASE PROTEINS: ESSENTIAL ROLES IN PLANT STRESS RESPONSES 112
5.3.5 DO CA 2+-MEDIATED SIGNALING PATHWAYS CROSSTALK WITH THE
MAPK-MEDIATED PATHWAYS? 114 5.4 OTHER SIGNALING MOLECULES INVOLVED IN
COLD SIGNALING PATHWAYS 114 5.4.1 MAPK-SPECIFIC PHOSPHATASES A N D OTHER
PROTEIN PHOSPHATASES 114 5.4.2 TWO-COMPONENT SYSTEMS 115 5.4.3
HETEROTRIMERIC G-PROTEIN-MEDIATED SIGNALING IN PLANT ABIOTIC
STRESS RESPONSES 116 5.4.4 RECEPTOR-LIKE PROTEIN KINASES 118 5.5
CONCLUSIONS AND PROSPECTS 119
REFERENCES 122
6 MECHANISM O F SULFUR DIOXIDE TOXICITY AND TOLERANCE IN CROP PLANTS 133
LAMABAM PETER SINGH, SARVAJEET SINGH GILL, RITU GILL, AND NARENDRA
TUTEJA 6.1 INTRODUCTION 134
6.2 EMISSION SOURCES 134
6.2.1 NATURAL SOURCES 134
6.2.2 ANTHROPOGENIC SOURCES 134
6.3 EFFECTS ON PLANTS 136
6.3.1 VISIBLE FOLIAR INJURY 136
6.3.2 SULFUR UPTAKE A N D PLANT SULFUR CONTENT 138
6.3.3 PHOTOSYNTHESIS 140
6.3.4 STOMATAL CONDUCTANCE AND TRANSPIRATION 141 6.3.5 LEAF PIGMENTS 143
6.3.6 GROWTH AND YIELD 144
6.3.7 POLLEN AND FERTILIZATION 148
IMAGE 4
X I I | CONTENTS
6.3.8 PROTEINS AND ANTIOXIDANT ENZYMES 149
6.3.9 GENOTOXICITY 154
6.3.10 SULFUR DEFICIENCY 155
6.4 CONCLUSIONS 157
REFERENCES 158
7 EXCESS SOIL PHOSPHORUS: ACCELERATED P TRANSFER, WATER QUALITY
DETERIORATION, AND SUSTAINABLE REMEDIATION STRATEGIES 165 NILESH C.
SHARMA AND SHIVENDRA V. SAHI
7.1 PHOSPHORUS C O N U N D R U M 166
7.1.1 P DEFICIENCY 166
7.1.2 P ABUNDANCE 166
7.1.3 PATHWAYS O F P LOSS 168
7.1.4 SOIL P DYNAMICS 168
7.2 CONSEQUENCES O F P OVERLOADING 171
7.3 REMEDIATION STRATEGIES 173
7.3.1 CHEMICAL AMENDMENTS O F ANIMAL WASTE OR MANURE 173 7.3.2 CHEMICAL
AMENDMENTS O F SOIL 174
7.3.3 ANIMAL DIET MODIFICATION WITH PHYTASE 175 7.3.4 PHYTOREMEDIATION
177
7.4 CONCLUSIONS 187
REFERENCES 189
PART II METHODS T O IMPROVE PLANT ABIOTIC STRESS RESPONSE 193 SECTION
IIA INTRODUCTORY METHODS 193
S GENETIC MODIFICATION O F CROPS: PAST, PRESENT, AND FUTURE 195
NINA V. FEDOROFF
8.1 INTRODUCTION 195
8.2 CROP DOMESTICATION 196
8.3 MODERN CROP IMPROVEMENT 197
8.4 MECHANIZATION O F AGRICULTURE 198
8.5 THE GREEN REVOLUTION 1 98
8.6 MOLECULAR GENETIC MODIFICATION O F CROPS 199
8.7 ADOPTION O F GM CROPS 200
8.8 FUTURE CHALLENGES I N AGRICULTURE 201
REFERENCES 203
9 TRANSLATIONAL BIOLOGY APPROACHES TO IMPROVE ABIOTIC STRESS TOLERANCE
IN CROPS 207 RINA LANNACONE, FRANCESCO CELLINI, GIORGIO MORELLI, AND IDA
RUBERTI
9.1 INTRODUCTION 207
9.2 ARABIDOPSIS AS A MODEL SYSTEM 208
9.2.1 COLD STRESS 209
9.2.2 DROUGHT STRESS 210
IMAGE 5
CONTENTS X I I I
9.3 ABIOTIC STRESS TOLERANCE I N CROPS 212
9.3.1 PROLINE 213
9.3.2 GLYCINE BETAINE 214
9.3.3 TRANSCRIPTION FACTORS 215
9.4 FROM ARABIDOPSIS TO CROP 217
9.5 THE GENOMIC REVOLUTION 220
9.6 PLANT PHENOMICS: BRIDGING THE GAP BETWEEN GENOMICS AND PHENOTYPE 223
9.7 CONCLUSIONS 225
REFERENCES 226
SECTION IIB OMICS 241
10 FUNCTIONAL GENOMICS O F DROUGHT TOLERANCE IN CROPS: ENGINEERING
TRANSCRIPTIONAL REGULATORS AND PATHWAYS 243 BALA RATHINASABAPATHI 10.1
INTRODUCTION 243
10.2 TRANSCRIPTIONAL REGULATION O F STRESS SIGNALING NETWORKS 244 10.2.1
ABA-LNDUCIBLE TRANSCRIPTION FACTORS 244 10.3 ABA-INDEPENDENT SIGNALING
NETWORKS 247 10.3.1 NAC TRANSCRIPTION FACTORS 2 4 7 10.3.2 DREB/CBF
TRANSCRIPTION FACTORS 248 10.4 PATHWAYS FOR OSMOPROTECTANT SYNTHESIS 249
10.5 TRANSPORTERS 249
10.6 COMBINATION O F DROUGHT AND HIGH-TEMPERATURE STRESS A N D OXIDATIVE
STRESS 250 10.7 CONCLUSIONS 250
REFERENCES 251
11 TRANSCRIPTOMIC AND METABOLOMIC APPROACHES T O T H E ANALYSIS O F
PLANT FREEZING TOLERANCE AND COLD ACCLIMATION 255 DIRK K. HINCHA, CARMEN
ESPINOZA, AND ELLEN ZUTHER 11.1 INTRODUCTION 255
11.2 TRANSCRIPTOMIC STUDIES O F PLANT COLD ACCLIMATION 260 11.2.1
COLD-RESPONSIVE GENES IDENTIFY COLD-REGULATED PATHWAYS I N ARABIDOPSIS
260 11.2.2 TRANSCRIPTOMIC RESPONSES TO LOW TEMPERATURE I N
NONMODEL SPECIES 263 11.2.3 INFLUENCE O F DEACDIMATION O N PLANT GENE
EXPRESSION 266 11.2.4 PROFILING GENE EXPRESSION DURING COLD ACCLIMATION
USING SAGE TECHNOLOGY 266
11.2.5 EFFECTS O F LOW TEMPERATURE O N CIRCADIAN CLOCK-REGULATED GENE
EXPRESSION 267 11.2.6 USING NATURAL GENETIC VARIATION TO IDENTIFY GENES
IMPORTANT FOR COLD ACCLIMATION AND FREEZING TOLERANCE 268
IMAGE 6
X I V | CONTENTS
11.3 METABOLOMIC STUDIES O F PLANT COLD ACCLIMATION 269
11.3.1 PRIMARY METABOLISM 271
11.3.2 SECONDARY METABOLISM 272 11.3.3 LIPID METABOLISM 273
11.3.4 SULFUR AND NITROGEN METABOLISM 274 11.4 BOTH TRANSCRIPTIONAL AND
POSTTRANSCRIPTIONAL REGULATION O F METABOLISM ARE IMPORTANT DURING COLD
ACCLIMATION 274 REFERENCES 277
12 OMICS TECHNIQUES IN CROP RESEARCH: AN OVERVIEW 289 BASHASAB FAKRUDIN,
ROBERTO TUBEROSA, AND RAJEEV K. VARSHNEY 12.1 INTRODUCTION 28 9
12.2 TRANSCRIPTOMICS 290
12.2.1 CLOSED OMICS TECHNOLOGIES 290 12.2.2 OPEN OMICS TECHNOLOGIES 291
12.3 METABOLOMICS 293
12.4 PROTEOMICS 294
12.5 INTERACTOMICS 295
12.6 GENOMICS (OR HIGH-THROUGHPUT GENOTYPING) AND PHENOMICS 296 12.7
INTEGRATED OMICS TECHNOLOGY APPROACH 298 REFERENCES 298
13 THE USE O F OMICS APPROACHES IN ARABIDOPSIS FOR T H E IMPROVEMENT
OF ABIOTIC STRESS TOLERANCE 301 ALEKSANDRA SKIRYCZ AND MATTHEW A. HANNAH
13.1 INTRODUCTION 301
13.2 OMICS APPROACHES 302
13.2.1 GENOMICS 302
13.2.2 TRANSCRIPTOMICS 303
13.2.3 PROTEOMICS 304
13.2.4 METABOLOMICS 305
13.2.5 OTHER OMICS APPROACHES 305 13.3 DATA ANALYSIS 306
13.3.1 DATA PREPROCESSING 307
13.3.2 DIFFERENTIAL ABUNDANCE 308 13.3.3 CORRELATION AND NETWORK
ANALYSIS 308 13.3.4 VISUALIZATION AND COMPARATIVE ANALYSIS 309 13.4
CHARACTERIZATION O F ENVIRONMENTAL RESPONSES 310 13.4.1 THE USE O F
TEMPORAL RESOLUTION 311
13.4.2 THE USE O F GENETIC VARIATION 311
13.4.3 THE USE O F TISSUE A N D CELL-SPECIFIC ANALYSIS 312 13.4.4 THE
USE O F STRESS COMBINATIONS 313
13.5 APPLICATIONS O F OMICS DATA IN THE IMPROVEMENT OF STRESS
TOLERANCE 313 13.5.1 LEAD GENE DISCOVERY 313
IMAGE 7
CONTENTS | X V
13.5.2 PROMOTER DISCOVERY 315
13.5.3 MODE-OF-ACTION CHARACTERIZATION 316 13.6 CONCLUSIONS AND
PROSPECTS 316
REFERENCES 317
14 FUNCTIONAL GENOMICS AND COMPUTATIONAL BIOLOGY TOOLS FOR GENE
DISCOVERY FOR ABIOTIC STRESS TOLERANCE 321 KAILASH C. BANSAL, AMIT
KATIYAR, SHUCHI SMITA, AND VISWANATHAN CHINNUSAMY 14.1 INTRODUCTION 321
14.2 GENE DISCOVERY IN MODEL ORGANISM 323
14.3 HIGH-THROUGHPUT GENE EXPRESSION ANALYSIS 324 14.4 COMPUTATIONAL
RESOURCES: DATABASES AND SOFTWARE 326 14.5 CASE STUDY; DEVELOPMENT O F
QLICRICE: A WEB INTERFACE FOR ABIOTIC STRESS-RESPONSIVE QTL A N D LOCI
INTERACTION CHANNEL IN RICE 329
14.6 CONCLUSIONS AND PROSPECTS 331
REFERENCES 332
15 UNDERSTANDING STRESS-RESPONSIVE MECHANISMS IN PLANTS: AN OVERVIEW O F
TRANSCRIPTOMICS AND PROTEOMICS APPROACHES 337 NASER A. ANJUM, SARVAJEET
SINGH CILL, IQBAL AHMAD, NARENDRA TUTEJA, PRAVEEN SONI, ASHWANI PAREEK,
SHAHID UMAR, MUHAMMAD IQBAL,
MDRIO PACHECO, ARMANDO C. DUARTE, AND EDUARDA PEREIRA 15.1 INTRODUCTION
337
15.2 TRANSCRIPTOMIC APPROACHES A N D PLANT STRESS RESPONSES 338 15.2.1
HYBRIDIZATION-BASED APPROACHES 338 15.2.2 SEQUENCING-BASED APPROACHES
342 15.3 PROTEOMIC APPROACHES I N PLANT STRESS RESPONSES 344 15.3.1
GEL-BASED APPROACHES 345 15.3.2 NONGEL-BASED APPROACHES 348 15.3.3
LABELED OR NONLABELED APPROACHES 351
15.3.4 DATA MINING TOOLS 353
15.4 CONCLUSIONS A N D PROSPECTS 353
REFERENCES 354
16 PLANT TISSUE CULTURE AND GENETIC TRANSFORMATION FOR CROP IMPROVEMENT
357 SATBIR S. COSAL AND MANJIT 5. KANG 16.1 INTRODUCTION 357
16.2 MICROPROPAGATION 358
16.2.1 ADVANTAGES O F MICROPROPAGATION 368 16.2.2 STEPS IN
MICROPROPAGATION 369 16.2.3 SIGNIFICANCE O F MICROPROPAGATION 369 16.3
MERISTEM CULTURE 371
16.4 SOMATIC EMBRYOGENESIS 371
IMAGE 8
X V I | CONTENTS
16.5 SOMACLONAL VARIATION 372
16.5.1 INDUCTION O F SOMACLONAL VARIATION 372 16.5.2 CAUSES O F
SOMACLONAL VARIATION 373 16.5.3 NATURE O F SOMACLONAL VARIATION 375
16.5.4 SIGNIFICANCE O F SOMACLONAL VARIATION IN CROP IMPROVEMENT 375
16.6 IN VITRO PRODUCTION O F HAPLOIDS 376
16.6.1 METHODS O F HAPLOID PRODUCTION 376 16.7 EMBRYO/OVULE/OVARY
CULTURE FOR WIDE HYBRIDIZATION 381 16.8 PROTOPLAST CULTURE A N D SOMATIC
HYBRIDIZATION 382 16.9 SIGNIFICANCE IN CROP IMPROVEMENT 384
16.10 IN VITRO PRODUCTION O F SECONDARY METABOLITES 384 16.11
CRYOPRESERVATION AND IN VITRO GERMPLASM STORAGE 385 16.12 GENETIC
TRANSFORMATION 386
16.12.1 SIGNIFICANCE O F PLANT GENETIC TRANSFORMATION 386 REFERENCES 387
17 A SYSTEMS-BASED MOLECULAR BIOLOGY ANALYSIS O F RESURRECTION PLANTS
FOR CROP AND FORAGE IMPROVEMENT IN ARID ENVIRONMENTS 399 JOHN P. MOORE
AND JILL M. FARRANT 17.1 INTRODUCTION 399
17.2 MECHANISMS TO ALLEVIATE DESICCATION-INDUCED STRESS 401 17.2.1
COUNTERING OXIDATIVE A N D METABOLIC STRESSES BY MODIFYING
PHOTOSYNTHESIS AND SUGAR/PROTEIN METABOLISM 402 17.2.2 MODULATING
ANTIOXIDANTS AND ASSOCIATED METABOLISM 403
17.2.3 MECHANICAL STRESS AND ADAPTATIONS O F RESURRECTION PLANT CELL
WALLS 405 17.3 MOLECULAR BIOLOGY AND SYSTEMS BIOLOGY O F DESICCATION
TOLERANCE 407 17.3.1 TRANSCRIPTION FACTORS: THE MAGIC BULLET FOR PLANT
DESICCATION
TOLERANCE? 407
17.3.2 A ROLE FOR SMALL RNAS AS REGULATORS 410 17.3.3 FUNCTIONAL GENES
ENCODING FOR LEA PROTEINS 411 17.3.4 FUNCTIONAL GENES ENCODING FOR
ANTIOXIDANT ENZYMES 412 17.3.5 FUNCTIONAL PROTEOMIC STUDIES O F
DESICCATION TOLERANCE 412
17.4 APPLICATIONS FOR ENGINEERING DROUGHT TOLERANCE I N CROPS AND
FORAGES 414 17.5 CONCLUDING REMARKS A N D FUTURE DIRECTIONS 415
REFERENCES 416
SECTION IIC OTHER APPROACHES 419
18 MOLECULAR BREEDING FOR ENHANCING ABIOTIC STRESS TOLERANCE USING
HALOPHYTES 421 AJAY PARIDA, SUJA GEORGE, AND K. KAVITA 18.1 INTRODUCTION
421
18.1.1 HALOPHYTES AND THEIR ADAPTATIONS TO SALINITY 422
IMAGE 9
CONTENTS X V I I
18.1.2 HALOPHYTES AS A SOURCE FOR GENE MINING 422
18.2 GENES FOR REESTABLISHING IONIC HOMEOSTASIS/PREVENTING DAMAGE 423
18.2.1 VACUOLAR N A + / H + ANTIPORTER 424 18.2.2 PLASMA MEMBRANE N A +
/ H + ANTIPORTER 424 18.2.3 VACUOLAR PYROPHOSPHATASE 425 18.2.4
POTASSIUM TRANSPORTERS 425 18.2.5 ROS SCAVENGERS 426
18.2.6 GENES WITH A N OSMOTIC/PROTECTIVE FUNCTION 427 18.2.7 AMINES 427
18.2.8 PROLINE 428
18.2.9 POLYOLS 429
18.3 GENES FOR SIGNAL TRANSDUCTION 429
18.4 CONCLUSIONS 430
REFERENCES 430
19 HELICASES IN IMPROVING ABIOTIC STRESS TOLERANCE IN CROP PLANTS 435
NARENDRA TUTEJA, SARVAJEET SINGH CILL, AND RENU TUTEJA 19.1 INTRODUCTION
435
19.2 STRESS-REGULATED HELICASES 438
19.3 EXPRESSION PROFILING O F ARABIDOPSIS HELICASE GENES UNDER ABIOTIC
STRESS 439 19.3.1 ARABIDOPSIS FL25A4 HELICASE 440 19.3.2 ARABIDOPSIS
LOS4 HELICASE (ATRH38) 440 19.3.3 SORGHUM HVD1 HELICASE 442 19.3.4 PEA
DNA HELICASE 45 442
19.3.5 PEA DNA HELICASE 47 (PDH47) 443 19.3.6 ARABIDOPSIS STRS1 AND
STRS2 443 19.3.7 DOGBANE AVDHL HELICASE 443 19.3.8 ALFALFA MH1 HELICASE
444
19.3.9 ARABIDOPSIS ATRH9 AND ATRH25 444 19.3.10 SOYBEAN G M R H 444
19.3.11 PEA MCM6 SINGLE-SUBUNIT DNA HELICASE 444 19.4 POSSIBLE
MECHANISMS O F HELICASE ACTION DURING STRESS 445
REFERENCES 447
20 TRANSCRIPTION FACTORS: IMPROVING ABIOTIC STRESS TOLERANCE IN PLANTS
451
PILJOON SEO, JAE-HOON JUNG, AND CHUNG-MO PARK 20.1 INTRODUCTION 451
20.2 ABIOTIC STRESS RESPONSES 452
20.3 TRANSCRIPTION FACTORS IN STRESS ADAPTATION 455 20.3.1 DROUGHT
STRESS 455
20.3.2 SALT STRESS 4 5 7
20.3.3 COLD STRESS 458
IMAGE 10
X V I I I | CONTENTS
20.3.4 HEAT STRESS 460
20.4 REGULATION O F TRANSCRIPTION FACTOR ACTIVITIES 462 20.4.1
TRANSCRIPTIONAL CONTROL 462 20.4.2 POSTTRANSCRIPTIONAL MODIFICATION 463
20.4.3 POSTTRANSLATIONAL MODIFICATION 465 20.4.4 PROTEIN-PROTEIN
INTERACTIONS 469 20.4.5 EPIGENETIC REGULATION 471 20.5 CONCLUSIONS AND
PROSPECTS 472
REFERENCES 474
21 MAKE YOUR BEST - MYB TRANSCRIPTION FACTORS FOR IMPROVING ABIOTIC
STRESS TOLERANCE IN CROPS 481 ANDREA PITZSCHKE 21.1 INTRODUCTION 482
21.1.1 ABIOTIC STRESS 482
21.1.2 ABSCISIC ACID - A STRESS SIGNALING HORMONE 482 21.1.3
(DIS)SIMILARITIES O F STRESS RESPONSES 482 21.2 SIGNAL TRANSDUCTION AND
AMPLIFICATION 483 21.2.1 PRINCIPLE O F SIGNALING PATHWAYS 483
21.2.2 PROTEIN SIGNALING CASCADES 483 21.2.3 TRANSCRIPTION FACTORS 484
21.3 MYB PROTEINS I N THE MODEL - ABIOTIC STRESS SIGNALING I N
ARABIDOPSIS 489 21.3.1 ATMYB2: THE PIONEER AND ITS PARTNER 489 21.3.2
ARABIDOPSIS MYB PROTEINS AS STOMATAL REGULATORS 489
21.4 DESICCATION, COLD, AND OSMOTIC STRESS I N CROPS 490 21.4.1 WHEAT
490
21.4.2 RICE 491
21.4.3 SOYBEAN 492
21.5 COLORFUL MYB PROTEINS AND THEIR MERITS 495
21.5.1 MYB PROTEINS FOR THE H U M A N HEALTH 496 21.5.2 ANTHOCYANIN
PRODUCTION I N GRAPEVINE 496 21.5.3 A RED AND RICH SWEET POTATO 496
21.5.4 NEGATIVE CONTROL O F ANTHOCYANIN PRODUCTION 497 21.5.5
ANTHOCYANINS, UV PROTECTION, AND THE CROSSTALK WITH OTHER STRESSORS 497
21.6 REGULATING THE REGULATORS 498
21.6.1 TRANSCRIPTIONAL REGULATION O F MYB GENES 498 21.6.2 MIRNAS 498
21.6.3 POSTTRANSLATIONAL REGULATION O F MYB PROTEINS 498 21.7 DATABASES
AND TRANSCRIPTOME STUDIES - RESOURCES FOR MYB RESEARCH 500 21.7.1
TRANSCRIPTOMIC PROFILING O F ABIOTIC STRESS RESPONSES
I N CROPS 500
21.7.2 TRANSCRIPTION FACTOR DATABASES 502
IMAGE 11
CONTENTS | X I X
21.8 GENETIC ENGINEERING, LIMITATIONS, OPTIMIZATIONS, PRACTICAL
CONSIDERATIONS 502 21.9 OUTLOOK 503
REFERENCES 504
22 TRANSPORTERS AND ABIOTIC STRESS TOLERANCE IN PLANTS 507
VANDNA RAI, NARENDRA TUTEJA, AND TERUHIRO TAKABE 22.1 INTRODUCTION 507
22.2 BASIC DESCRIPTION O F TRANSPORTERS 508
22.3 ROLE O F TRANSPORTERS FOR SALT TOLERANCE IN PLANTS 510 22.3.1 N A +
TRANSPORTER 510
22.3.2 K +TRANSPORTER 511
22.3.3 CL~ TRANSPORTERS 512
22.4 AMINO ACID TRANSPORTERS 514
22.5 SUCROSE TRANSPORTERS 515
22.6 TRANSPORTERS IN RICE AND ARABIDOPSIS 516 22.7 CONCLUSIONS 520
REFERENCES 520
23 POTASSIUM AND SODIUM TRANSPORTERS: IMPROVING SALINITY TOLERANCE IN
PLANTS 523
TOSHIO YAMAGUCHI, NOBUYUKI UOZUMI, AND TOMOAKI HORIE 23.1 INTRODUCTION
523
23.2 NHX TRANSPORTERS 524
23.2.1 OVERVIEW 524
23.2.2 PHYSIOLOGICAL ROLES O F NHXS 527 23.2.3 TRANSGENIC APPROACHES TO
INCREASING SALINITY TOLERANCE USING NHX GENES 528 23.3 HKT TRANSPORTERS
529
23.3.1 OVERVIEW 529
23.3.2 PHYSIOLOGICAL ROLES O F HKTS 531 23.3.3 TRANSGENIC APPROACHES TO
INCREASING SALINITY TOLERANCE USING CLASS I HKT GENES 533 23.4 SOS1
TRANSPORTERS 534
23.4.1 OVERVIEW 534
23.4.2 PHYSIOLOGICAL ROLES O F SOS1 536 23.4.3 TRANSGENIC APPROACHES TO
INCREASING SALINITY TOLERANCE USING SOS1 GENES 537 23.5 OTHER MOLECULES
THAT ARE POTENTIALLY USEFUL FOR IMPROVING
SALT TOLERANCE 537
23.5.1 HAK/KUP/KT TRANSPORTERS 537 23.5.2 ENA1/PMR2A 538
23.6 CONCLUSIONS 538
REFERENCES 539
IMAGE 12
X X | CONTENTS
24 PIRIFORMOSPORA INDICA, A ROOT ENDOPHYTIC FUNGUS, ENHANCES
ABIOTIC STRESS TOLERANCE O F T H E HOST PLANT 543 MANOJ KUMAR, RUBY
SHARMA, ABHIMANYU JOGAWAT, PROTAP SINGH, MEENAKSHI DUA, SARVAJEET SINGH
GILL, DIPESH KUMAR TRIVEDI, NARENDRA TUTEJA, AJIT KUMAR VERMA, RALF
OELMULLER, AND ATUL KUMARJOHRI 24.1 INTRODUCTION 543
24.2 ROLE O F P. INDICA IN SALT TOLERANCE 546
24.3 ROLE O F P. INDICA IN DROUGHT TOLERANCE 549
24.4 CONCLUSIONS 552
REFERENCES 554
25 THE MICROMICS REVOLUTION: MICRORNA-MEDIATED APPROACHES TO DEVELOP
STRESS-RESISTANT CROPS 559 CAMILO LDPEZ AND KTVARO L. PIREZ-QUINTERO
25.1 INTRODUCTION: SILENT MOLECULES SCREAM OUT LOUD 559 25.2 THE SILENCE
WITHIN: PLANT MIRNA PATHWAY 561 25.3 THE NEXT-GENERATION MICROSCOPE: NEW
TOOLS FOR MIRNA STUDIES 562 25.4 SMALL WEAPONS FOR THE ARMS RACE: PLANT
MIRNAS AND
BIOTIC STRESS 563
25.4.1 SUPPRESS AND C O N Q U E R VIRUSES VERSUS PLANT MIRNAS 565 25.4.2
BEING EFFECTIVE: BACTERIA VERSUS PLANT MIRNAS 566 25.4.3 TO BE
DETERMINED: OTHER PLANT PATHOGENS AND MIRNAS 568 25.5 A VERSATILE
RESPONSE TO A CHANGING ENVIRONMENT: MIRNAS
AND ABIOTIC STRESS 568 25.5.1 ELEMENTARY: SOIL ELEMENTS UPTAKE AND
MIRNAS 569 25.5.2 THE SILENT TREATMENT: COLD AND MIRNAS 571 25.5.3 OUT O
F BREATH: HYPOXIA AND MIRNAS 572 25.5.4 IN DEEP WATER WATER BALANCE
STRESSES (DROUGHT A N D SALINITY)
AND MIRNAS 572
25.6 THE STRANGE CASE O F MIR398: CROSSTALK BETWEEN MIRNA-MEDIATED
RESPONSES TO BIOTIC A N D ABIOTIC STRESSES 573 25.7 VIVA LA REVOLUTION:
USING MIRNA-MEDIATED STRATEGIES TO DEVELOP STRESS-RESISTANT CROPS 577
25.7.1 IMITATION O F SILENCE: ARTIFICIAL MIRNAS IN PLANTS GENETIC
TRANSFORMATION 577 25.7.2 BIOTIC STRESS RESISTANCE 580
25.7.3 ABIOTIC STRESS RESISTANCE 581 25.8 CONCLUSIONS AND PERSPECTIVES
582
REFERENCES 583
26 TRANSCRIPTION FACTORS: IMPROVING ABIOTIC STRESS TOLERANCE IN PLANTS
591 TETSUYA ISHIDA, YURIKO OSAKABE, AND SHUICHI YANAGISAWA 26.1
INTRODUCTION 591
26.2 TRANSCRIPTION FACTORS INVOLVED I N THE DROUGHT STRESS RESPONSE 592
26.2.1 DREB2 TRANSCRIPTION FACTORS 593
IMAGE 13
CONTENTS X X I
26.2.2 TRANSCRIPTION FACTORS THAT INTERACT WITH THE ABA-RESPONSIVE
ELEMENT I N DROUGHT STRESS-RESPONSIVE PROMOTERS 595 26.2.3 ADDITIONAL
TRANSCRIPTION FACTORS INVOLVED I N THE DROUGHT STRESS RESPONSE 596 26.3
TRANSCRIPTION FACTORS THAT MEDIATE THE RESPONSE TO COLD STRESS 597 26.4
TRANSCRIPTION FACTORS MEDIATING THE RESPONSE TO HEAT STRESS 598 26.5
TRANSCRIPTION FACTORS INVOLVED IN NUTRIENT DEFICIENCY 599 26.5.1
TRANSCRIPTION FACTORS INVOLVED IN THE NITROGEN RESPONSE 600 26.5.2
PHOSPHATE STARVATION-RESPONSIVE TRANSCRIPTION FACTORS 602 26.5.3
TRANSCRIPTION FACTORS ASSOCIATED WITH THE SULFUR
STARVATION RESPONSE 606 26.5.4 IRON RESPONSE-RELATED TRANSCRIPTION
FACTORS 607 26.5.5 ZINC DEFICIENCY-RESPONSIVE TRANSCRIPTION FACTORS 608
26.6 TRANSCRIPTION FACTORS INVOLVED I N RESPONSES TO EXCESS METALS
IN THE SOIL 609
26.6.1 TRANSCRIPTION FACTORS MEDIATING A1 TOLERANCE 609 26.6.2 THE
HSFA4A TRANSCRIPTION FACTOR THAT CONFERS CD TOLERANCE 609 26.7
CONCLUSIONS AND PROSPECTS 610
REFERENCES 611
27 POLYAMINES IN DEVELOPING STRESS-RESISTANT CROPS 623 FRANCISCO MARCO,
RUBIN ALCDZAR, TERESA ALTABELLA, PEDRO CARRASCO, SARVAJEET SINGH CILL,
NARENDRA TUTEJA, AND ANTONIO F. TIBURCIO 27.1 INTRODUCTION 623
27.1.1 PA BIOSYNTHESIS AND CATABOLISM I N PLANTS 623 27.2 PAS AND STRESS
625
27.3 TRANSGENIC MODIFICATIONS O F PA BIOSYNTHETIC ROUTE AND IMPROVEMENT
O F STRESS TOLERANCE 626 27.4 POSSIBLE MECHANISMS O F PA ACTION IN
STRESS RESPONSES 629 REFERENCES 631
VOLUME 2
PART III SPECIES-SPECIFIC CASE STUDIES 637 SECTION IIIA CRAMINOIDS 637
28 WHEAT: FUNCTIONAL GENOMICS O F ABIOTIC STRESS TOLERANCE 639 PARAMJIT
KHURANA, HARSH CHAUHAN, AND NEETIKA KHURANA
29 WHEAT: MECHANISMS AND GENETIC MEANS FOR IMPROVING HEAT TOLERANCE 657
KULDEEP SINGH, VISHAL CHUGH, GURPREET K. SAHI, AND PARVEEN CHHUNEJA
30 WHEAT AND RICE CROPS: OMICS APPROACHES FOR ABIOTIC STRESS TOLERANCE
695 SUJA GEORGE, AJAY PARIDA, AND MONKOMBU S. SWAMINATHAN
IMAGE 14
RICE: GENOMICS-ASSISTED BREEDING FOR DROUGHT TOLERANCE 715
PRASHANT VIKRAM, ARVIND KUMAR, ALOK SINGH, AND NAGENDRA K. SINGH
RICE: IMPROVING COLD STRESS TOLERANCE 733 KODIVERI MUTHUKALIANAN
COTHANDAM
MAIZE: PHYSIOLOGICAL AND MOLECULAR APPROACHES FOR IMPROVING DROUGHT
TOLERANCE 751 ISHWAR SINGH, THIRUNAVUKKARASU NEPOLEAN, RAJYALAKSHMI
AMBIKA RAJENDRAN, AND MARIKO SHONO
BARLEY: OMICS APPROACHES FOR ABIOTIC STRESS TOLERANCE 779 NICOLA
PECCHIONI, JUSTYNA ANNA MILE, MARIANNA PASQUARIELLO, AND ENRICO FRANCIA
SUGARCANE: PHYSIOLOGICAL AND MOLECULAR APPROACHES FOR IMPROVING ABIOTIC
STRESS TOLERANCE AND SUSTAINING CROP PRODUCTIVITY 885 ASHOK K.
SHRIVASTAVA AND SANGEETA SRIVASTAVA
SORGHUM: IMPROVEMENT O F ABIOTIC STRESS TOLERANCE 923 MONIKA DALAI,
KARTHIKEYAN MAYANDI, AND VISWANATHAN CHINNUSAMY
SECTION IIIB FRUIT AND VEGETABLE CROPS 951
VEGETABLE CROPS (CHILI PEPPER AND ONION): APPROACHES TO IMPROVE CROP
PRODUCTIVITY AND ABIOTIC STRESS TOLERANCE 953 NANDKUMAR KUNCHGE, KIRAN
KUMAR, AND PRASHANT FIRKE
VEGETABLE CROPS: IMPROVEMENT O F TOLERANCE T O ADVERSE CHEMICAL SOIL
CONDITIONS BY CRAFTING 979 GIUSEPPE COLLA, YOUSSEF ROUPHAEL, AND
MARIATERESA CARDARELLI
GRAIN LEGUMES (SOYBEAN, CHICKPEA, AND PEANUT): OMICS APPROACHES TO
ENHANCE ABIOTIC STRESS TOLERANCE 995 D. SRINIVAS REDDY, POOJA
BHATNAGAR-MATHUR, VINCENT VADEZ, AND KIRAN K. SHARMA
FRUIT CROPS: OMIC APPROACHES TOWARD ELUCIDATION O F ABIOTIC STRESS
TOLERANCE 1033 PRAVENDRA NATH, VIDHU A. SANE, MEHAR HASAN ASIF,
ANIRUDDHA P. SANE, AND PRABODH K. TRIVEDI
CASSAVA GENETIC IMPROVEMENT: OMICS APPROACHES FOR FACING GLOBAL
CHALLENGES 1049 YOSHIMI UMEMURA, RANE JAGADISH, MOTOAKI SEKI, YOSHINORI
UTSUMI, JARUNYA NARANGAJAVANA, AND MANABU ISHITANI
IMAGE 15
CONTENTS X X I I I
SECTION NIC VEGETABLE CROPS: SOLANACEAE 1067
42 TOMATO: CRAFTING T O IMPROVE SALT TOLERANCE 1069
PALOMA SANCHEZ-BEL, ISABEL EGEA, FRANCISCO B. FLORES, AND MARIA C.
BOLARIN
43 TOMATO: GENOMIC APPROACHES FOR SALT AND DROUGHT STRESS TOLERANCE 1085
BENITO PINEDA, JOSI OSVALDO CARCLA-ABELLDN, TERESA ANTDN, FERNANDO
PIREZ, ELENA MOYANO, BEGONA GARCIA SOGO, JUAN FRANCISCO CAMPOS,
TRINIDAD ANGOSTO, BELIN MORALES, JUAN CAPEL, VICENTE MORENO, RAFAEL
LOZANO, MARI CARMEN BOLARIN, AND ALEJANDRO ATARIS
44 POTATO: IMPROVING CROP PRODUCTIVITY AND ABIOTIC STRESS TOLERANCE 1121
CEFU WANG-PRUSKI AND ANDREW SCHOFIELD
45 POTATO: PRODUCTION STRATEGIES UNDER ABIOTIC STRESS 1155 JOGINDER
SINGH MINHAS
46 TOBACCO: A MODEL PLANT FOR UNDERSTANDING T H E MECHANISM O F ABIOTIC
STRESS TOLERANCE 1169 SCOTT SCHAEFFER, TYSON KOEPKE, AND AMIT DHINGRA
SECTION MID OIL CROPS INCLUDING BRASSICAS 1203
47 SUNFLOWER IMPROVING CROP PRODUCTIVITY AND ABIOTIC STRESS TOLERANCE
1205 CARLOS A. SALA, MARIANO BULOS, EMILIANO ALTIERI, AND MARIA LAURA
RAMOS
48 SESAME: OVERCOMING T H E ABIOTIC STRESSES IN T H E QUEEN O F OILSEED
CROPS 1251 SUMAN LAKHANPAUL, VIBHUTI SINGH, SACHIN KUMAR, DEEPAK
BHARDWAJ, AND KANGILA VENKATARAMANA BHAT
49 JATROPHA CURCAS: APPROACHES TO ENGINEER FATTY ACID SYNTHESIS AND
ABIOTIC STRESS TOLERANCE 1285 NALINI ESWARAN AND TANGIRALA
SUDHAKARJOHNSON
50 BRASSICA CROP SPECIES: IMPROVING WATER USE EFFICIENCY: CHALLENGES AND
OPPORTUNITIES 1301 CONSTANTINE DON PALMER, WILF KELLER, JAS SINGH, AND
RAJU DATLA
51 BRASSICA CROPS: IMPROVING ABIOTIC STRESS TOLERANCE - CURRENT STATUS
AND PROSPECTS 1315 STEPHEN J. ROBINSON AND ISOBEL A. P. PARKIN
IMAGE 16
MUSTARD: APPROACHES FOR CROP IMPROVEMENT AND ABIOTIC STRESS
TOLERANCE 1351 SARVAJEET SINGH CILL, RITU GILL, GAUTAM KUMAR, ASHWANI
PAREEK, PRABODH C. SHARMA, NASER A. ANJUM, AND NARENDRA TUTEJA
SECTION IDE OTHER CROPS 2369
COTTON: GENETIC IMPROVEMENT FOR DROUGHT STRESS TOLERANCE - CURRENT
STATUS AND RESEARCH NEEDS 1371 E. ABOUKHEIR, M.S. SHESHSHAYEE, T.G.
PRASAD, AND MAKARALA UDAYAKUMAR
TEA: PRESENT STATUS AND STRATEGIES T O IMPROVE ABIOTIC STRESS TOLERANCE
1401 SANJAY KUMAR, ASOSII PAUL, AMITA BHATTACHARYA, RAM KUMAR SHARMA,
AND PARAMVIR SINGH AHUJA
INDEX 1425
|
any_adam_object | 1 |
author2 | Tuteja, Narendra 1955- |
author2_role | edt |
author2_variant | n t nt |
author_GND | (DE-588)1023937735 |
author_facet | Tuteja, Narendra 1955- |
building | Verbundindex |
bvnumber | BV039566325 |
classification_rvk | WN 1950 |
classification_tum | LAN 242f LAN 240.81f |
ctrlnum | (DE-599)DNB1014518075 |
discipline | Biologie Agrarwissenschaft Pflanzenbau |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01517nam a2200385 ca4500</leader><controlfield tag="001">BV039566325</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110906nuuuuuuuugw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1014518075</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527328406</subfield><subfield code="9">978-3-527-32840-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1014518075</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 1950</subfield><subfield code="0">(DE-625)150988:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LAN 242f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">LAN 240.81f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving crop resistance to abiotic stress</subfield><subfield code="c">ed. b Narendra Tuteja ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-Blackwell</subfield><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzenzüchtung</subfield><subfield code="0">(DE-588)4045599-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stressresistenz</subfield><subfield code="0">(DE-588)4326741-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nutzpflanzen</subfield><subfield code="0">(DE-588)4042838-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nutzpflanzen</subfield><subfield code="0">(DE-588)4042838-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pflanzenzüchtung</subfield><subfield code="0">(DE-588)4045599-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stressresistenz</subfield><subfield code="0">(DE-588)4326741-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuteja, Narendra</subfield><subfield code="d">1955-</subfield><subfield code="0">(DE-588)1023937735</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024417913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024417913</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV039566325 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:06:25Z |
institution | BVB |
isbn | 9783527328406 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024417913 |
open_access_boolean | |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley-Blackwell |
record_format | marc |
spelling | Improving crop resistance to abiotic stress ed. b Narendra Tuteja ... Weinheim Wiley-Blackwell 2012 txt rdacontent n rdamedia nc rdacarrier Pflanzenzüchtung (DE-588)4045599-3 gnd rswk-swf Stressresistenz (DE-588)4326741-5 gnd rswk-swf Nutzpflanzen (DE-588)4042838-2 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Nutzpflanzen (DE-588)4042838-2 s Pflanzenzüchtung (DE-588)4045599-3 s Stressresistenz (DE-588)4326741-5 s DE-604 Tuteja, Narendra 1955- (DE-588)1023937735 edt DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024417913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Improving crop resistance to abiotic stress Pflanzenzüchtung (DE-588)4045599-3 gnd Stressresistenz (DE-588)4326741-5 gnd Nutzpflanzen (DE-588)4042838-2 gnd |
subject_GND | (DE-588)4045599-3 (DE-588)4326741-5 (DE-588)4042838-2 (DE-588)4143413-4 |
title | Improving crop resistance to abiotic stress |
title_auth | Improving crop resistance to abiotic stress |
title_exact_search | Improving crop resistance to abiotic stress |
title_full | Improving crop resistance to abiotic stress ed. b Narendra Tuteja ... |
title_fullStr | Improving crop resistance to abiotic stress ed. b Narendra Tuteja ... |
title_full_unstemmed | Improving crop resistance to abiotic stress ed. b Narendra Tuteja ... |
title_short | Improving crop resistance to abiotic stress |
title_sort | improving crop resistance to abiotic stress |
topic | Pflanzenzüchtung (DE-588)4045599-3 gnd Stressresistenz (DE-588)4326741-5 gnd Nutzpflanzen (DE-588)4042838-2 gnd |
topic_facet | Pflanzenzüchtung Stressresistenz Nutzpflanzen Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024417913&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tutejanarendra improvingcropresistancetoabioticstress |