Computational aspects of modular forms and Galois representations: how one can compute in polynomial time the value of Ramanujan's Tau at a prime
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Princeton [u.a.]
Princeton Univ. Press
2011
|
Schriftenreihe: | Annals of mathematics studies
176 |
Schlagworte: | |
Beschreibung: | Literaturverz. S.[403] - 421 |
Beschreibung: | XI, 425 S. graph. Darst. |
ISBN: | 9780691142029 9780691142012 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV039548622 | ||
003 | DE-604 | ||
005 | 20130506 | ||
007 | t | ||
008 | 110826s2011 d||| |||| 00||| eng d | ||
020 | |a 9780691142029 |c (pbk.) |9 978-0-691-14202-9 | ||
020 | |a 9780691142012 |c (hbk.) |9 978-0-691-14201-2 | ||
035 | |a (OCoLC)746240982 | ||
035 | |a (DE-599)OBVAC08379735 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-706 |a DE-11 | ||
084 | |a SI 830 |0 (DE-625)143195: |2 rvk | ||
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
245 | 1 | 0 | |a Computational aspects of modular forms and Galois representations |b how one can compute in polynomial time the value of Ramanujan's Tau at a prime |c ed. by Bas Edixhoven ... |
264 | 1 | |a Princeton [u.a.] |b Princeton Univ. Press |c 2011 | |
300 | |a XI, 425 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Annals of mathematics studies |v 176 | |
500 | |a Literaturverz. S.[403] - 421 | ||
650 | 0 | 7 | |a Galois-Darstellung |0 (DE-588)4221407-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulform |0 (DE-588)4128299-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modulform |0 (DE-588)4128299-1 |D s |
689 | 0 | 1 | |a Galois-Darstellung |0 (DE-588)4221407-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Edixhoven, Bas |d 1962- |e Sonstige |0 (DE-588)101493740X |4 oth | |
830 | 0 | |a Annals of mathematics studies |v 176 |w (DE-604)BV000000991 |9 176 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-024400551 |
Datensatz im Suchindex
_version_ | 1804148367683485696 |
---|---|
any_adam_object | |
author_GND | (DE-588)101493740X |
building | Verbundindex |
bvnumber | BV039548622 |
classification_rvk | SI 830 SK 230 |
ctrlnum | (OCoLC)746240982 (DE-599)OBVAC08379735 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01471nam a2200385 cb4500</leader><controlfield tag="001">BV039548622</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130506 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110826s2011 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691142029</subfield><subfield code="c">(pbk.)</subfield><subfield code="9">978-0-691-14202-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691142012</subfield><subfield code="c">(hbk.)</subfield><subfield code="9">978-0-691-14201-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)746240982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC08379735</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 830</subfield><subfield code="0">(DE-625)143195:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational aspects of modular forms and Galois representations</subfield><subfield code="b">how one can compute in polynomial time the value of Ramanujan's Tau at a prime</subfield><subfield code="c">ed. by Bas Edixhoven ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton [u.a.]</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 425 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">176</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S.[403] - 421</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Galois-Darstellung</subfield><subfield code="0">(DE-588)4221407-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modulform</subfield><subfield code="0">(DE-588)4128299-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Galois-Darstellung</subfield><subfield code="0">(DE-588)4221407-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Edixhoven, Bas</subfield><subfield code="d">1962-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)101493740X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">176</subfield><subfield code="w">(DE-604)BV000000991</subfield><subfield code="9">176</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024400551</subfield></datafield></record></collection> |
id | DE-604.BV039548622 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:06:01Z |
institution | BVB |
isbn | 9780691142029 9780691142012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024400551 |
oclc_num | 746240982 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-706 DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-706 DE-11 |
physical | XI, 425 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Princeton Univ. Press |
record_format | marc |
series | Annals of mathematics studies |
series2 | Annals of mathematics studies |
spelling | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime ed. by Bas Edixhoven ... Princeton [u.a.] Princeton Univ. Press 2011 XI, 425 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Annals of mathematics studies 176 Literaturverz. S.[403] - 421 Galois-Darstellung (DE-588)4221407-5 gnd rswk-swf Modulform (DE-588)4128299-1 gnd rswk-swf Modulform (DE-588)4128299-1 s Galois-Darstellung (DE-588)4221407-5 s DE-604 Edixhoven, Bas 1962- Sonstige (DE-588)101493740X oth Annals of mathematics studies 176 (DE-604)BV000000991 176 |
spellingShingle | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime Annals of mathematics studies Galois-Darstellung (DE-588)4221407-5 gnd Modulform (DE-588)4128299-1 gnd |
subject_GND | (DE-588)4221407-5 (DE-588)4128299-1 |
title | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime |
title_auth | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime |
title_exact_search | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime |
title_full | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime ed. by Bas Edixhoven ... |
title_fullStr | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime ed. by Bas Edixhoven ... |
title_full_unstemmed | Computational aspects of modular forms and Galois representations how one can compute in polynomial time the value of Ramanujan's Tau at a prime ed. by Bas Edixhoven ... |
title_short | Computational aspects of modular forms and Galois representations |
title_sort | computational aspects of modular forms and galois representations how one can compute in polynomial time the value of ramanujan s tau at a prime |
title_sub | how one can compute in polynomial time the value of Ramanujan's Tau at a prime |
topic | Galois-Darstellung (DE-588)4221407-5 gnd Modulform (DE-588)4128299-1 gnd |
topic_facet | Galois-Darstellung Modulform |
volume_link | (DE-604)BV000000991 |
work_keys_str_mv | AT edixhovenbas computationalaspectsofmodularformsandgaloisrepresentationshowonecancomputeinpolynomialtimethevalueoframanujanstauataprime |