Viability theory: new directions
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2011
|
Ausgabe: | 2nd. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 803 S. graph. Darst. |
ISBN: | 9783642166839 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039539315 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 110822s2011 d||| |||| 00||| eng d | ||
020 | |a 9783642166839 |9 978-3-642-16683-9 | ||
035 | |a (OCoLC)748696496 | ||
035 | |a (DE-599)BVBBV039539315 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-19 |a DE-706 |a DE-739 | ||
082 | 0 | |a 515.35 |2 22//ger | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 880 |0 (DE-625)143266: |2 rvk | ||
100 | 1 | |a Aubin, Jean-Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Viability theory |b new directions |c Jean-Pierre Aubin ; Alexandre M. Bayen ; Patrick Saint-Pierre |
250 | |a 2nd. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2011 | |
300 | |a XXI, 803 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regelungssystem |0 (DE-588)4134712-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unsicherheit |0 (DE-588)4186957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolution |0 (DE-588)4071050-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialinklusion |0 (DE-588)4149777-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Regelungssystem |0 (DE-588)4134712-2 |D s |
689 | 0 | 1 | |a Evolution |0 (DE-588)4071050-6 |D s |
689 | 0 | 2 | |a Unsicherheit |0 (DE-588)4186957-6 |D s |
689 | 0 | 3 | |a Differentialinklusion |0 (DE-588)4149777-6 |D s |
689 | 0 | 4 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bayen, Alexandre M. |e Verfasser |4 aut | |
700 | 1 | |a Saint-Pierre, Patrick |e Verfasser |0 (DE-588)135610389 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024391438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024391438 |
Datensatz im Suchindex
_version_ | 1804148354791243776 |
---|---|
adam_text | Contents
Overview and Organization
.............................. 1
1.1
Motivations
.......................................... 2
1.1.1
Chance and Necessity
.......................... 2
1.1.2
Motivating Applications
........................ 6
1.1.3
Motivations of Viability Theory from Living
Systems
...................................... 7
1.1.4
Applications of Viability Theory to...
Mathematics
.................................. 10
1.2
Main Concepts of Viability Theory
...................... 11
1.2.1
Viability Kernels and Capture Basins Under
Regulated Systems
............................. 12
1.2.2
Viability Kernel and Capture Basin Algorithms
.... 18
1.2.3
Restoring Viability
............................. 19
1.3
Examples of Simple Viability Problems
.................. 19
1.3.1
Engineering Applications
........................ 20
1.3.2
Environmental Illustrations
..................... 25
1.3.3
Strange Attractors and Fractals
.................. 28
1.4
Organization of the Book
.............................. 33
1.4.1
Overall Organization
........................... 33
1.4.2
Qualitative Concepts
........................... 34
1.4.3
Quantitative Concepts
.......................... 36
1.4.4
First-Order Partial Differential Equations
......... 37
1.4.5
Social Sciences Illustrations
..................... 37
1.4.6
Engineering Applications
........................ 38
1.4.7
The Four Parts of the Monograph
................ 39
x
Contents
Part I Viability Kernels and Examples
2
Viability and Capturability
.............................. 43
2.1
Introduction
.......................................... 43
2.2
Evolutions
........................................... 45
2.2.1
Stationary and Periodic Evolutions
............... 46
2.2.2
Transient Evolutions
........................... 48
2.2.3
Viable and Capturing Evolutions
................. 49
2.3
Discrete Systems
...................................... 50
2.4
Differential Equations
.................................. 53
2.4.1
Determinism and Predictability
.................. 53
2.4.2
Example of Differential Equations:
The
Lorenz
System
............................. 56
2.5
Régulons
and Tyches
.................................. 58
2.6
Discrete Nondeterministic Systems
...................... 62
2.7
Retroactions of Parameterized Dynamical Systems
........ 64
2.7.1
Parameterized Dynamical Systems
............... 64
2.7.2
Retroactions
.................................. 65
2.7.3
Differential Inclusions
.......................... 66
2.8
Evolutionary Systems
.................................. 68
2.9
Viability Kernels and Capture Basins
for Discrete Time Systems
.............................. 71
2.9.1
Definitions
.................................... 71
2.9.2
Viability Kernel Algorithms
..................... 74
2.9.3
Julia and Mandelbrot Sets
...................... 75
2.9.4
Viability Kernels under Disconnected Discrete
Systems and Fractals
........................... 79
2.10
Viability Kernels and Capture Basins for Continuous
Time Systems
........................................ 85
2.10.1
Definitions
.................................... 85
2.10.2
Viability Kernels under the
Lorenz
System
........ 87
2.11
Invariance
Kernel under a Tychastic System
.............. 88
2.12
Links between Kernels and Basins
....................... 92
2.13
Local Viability and
Invariance
.......................... 94
2.14
Discretization Issues
................................... 96
2.15
A Viability Survival Kit
................................ 98
2.15.1
Bilateral Fixed Point Characterization
............ 99
2.15.2
Viability Characterization
....................... 100
2.15.3
Tangential Characterization
..................... 101
3
Viability Problems in Robotics
........................... 105
3.1
Introduction
.......................................... 105
3.2
Fields Experiment with the Pioneer
..................... 105
Contents xi
3.3
Safety Envelopes in Aeronautics
.........................108
3.3.1
Landing Aircraft: Application of the Capture
Basin Algorithm
...............................109
3.3.2
Computation of the Safe Flight Envelope
and the Viability Feedback
......................115
3.4
Path Planing for a Light Autonomous
Underwater Vehicle
....................................119
3.4.1
Dynamics, Environment and Target
..............119
3.4.2
Experimental Results
...........................122
4
Viability and Dynamic
Intertemporal Optimality
........125
4.1
Introduction
.......................................... 125
4.2
Intertemporal
Criteria
.................................129
4.2.1
Examples of Functionals
........................129
4.2.2
Extended Functions and Hidden Constraints
......131
4.3
Exit and Minimal Time Functions
.......................132
4.3.1
Viability and Capturability Tubes
................ 132
4.3.2
Exit and Minimal Time Functions
................ 134
4.4
Minimal Length Function
.............................. 139
4.5
Attracting and Exponential Lyapunov
for Asymptotic Stability
...............................142
4.5.1
Attracting Functions
...........................142
4.5.2
Exponential Lyapunov Functions
.................145
4.5.3
The
Montagnes Russes
Algorithm for Global
Optimization
..................................149
4.6
Safety and Transgression Functions
......................152
4.7
Infinite Horizon Optimal Control and Viability Kernels
.... 155
4.8
Intergenerational Optimization
..........................158
4.9
Finite Horizon Optimal Control and Capture Basins
.......162
4.10
Occupational Costs and Measures
.......................164
4.11
Optimal Control Survival Kit
...........................168
4.12
Links Between Viability Theory and Other Problems
......171
4.12.1
Micro Macro Dynamic Consistency
............. . 171
4.12.2
The Epigraphical Miracle
.......................172
4.12.3
First-Order Systems of Partial Differential
Equations
.....................................174
4.12.4
Intertemporal
Optimization Under State
Constraints
....................................1.76
4.12.5
The Viability Strategy for Dynamic
Optimization
..................................177
5
Avoiding
Skylla
and
Charybdis
..........................179
5.1
Introduction: The Zermelo Navigation Problem
...........179
5.2
The Odyssey
.........................................181
xii Contents
5.3
Examples of Concepts and Numerical Computations
.......182
5.3.1
Dynamical Morphological Structure
of the Environment and its Behavior
.............182
5.3.2
Behavior in the Environment: Minimal Length
and Persistent Evolutions
....................... 184
5.3.3
Behavior In and Out the Harbor: Minimal Time,
Lyapunov and Optimal Evolutions
............... 185
5.4
Viewgraphs Describing Five Value Functions
.............. 187
6
Inertia Functions, Viability Oscillators and Hysteresis
.... 199
6.1
Introduction
..........................................199
6.2
Prerequisites for
Intertemporal
Optimization
.............202
6.3
Punctuated Equilibria and the Inertia Principle
...........203
6.4
Inertia Functions. Metasystems and Viability Niches
.......207
6.4.1
The Inertia Cascade
............................208
6.4.2
First-Order Inertia Functions
....................210
6.4.3
Inert Regulation and Critical Maps
...............216
6.4.4
Heavy Evolutions
..............................217
6.4.5
The Adjustment Map and Heavy Evolutions
.......221
6.4.6
High-Order Metasystems
........................226
6.4.7
The Transition Cost Function
...................231
6.5
Viability Oscillators and Hysterons
......................233
6.5.1
Persistent Oscillator and Preisach Hysteron
.......235
6.5.2
Viability Oscillators and Hysterons
...............238
6.6
Controlling Constraints and Targets
.....................242
7
Management of Renewable Resources
....................247
7.1
Introduction
..........................................247
7.2
Evolution of the Biomass of a Renewable Resource
........248
7.2.1
From
Malthus
to
Verhuist
and Beyond
............248
7.2.2
The Inverse Approach
..........................252
7.2.3
The Inert Hysteresis Cycle
......................257
7.3
Management of Renewable Resources
....................262
7.3.1
Inert Evolutions
...............................266
7.3.2
Heavy Evolutions
..............................267
7.3.3
The Crisis Function
............................269
Part II Mathematical Properties of Viability Kernels
8
Connection Basins
.......................................273
8.1
Introduction
..........................................273
8.2
Past and Future Evolutions
.............................275
8.3
Bilateral Viability Kernels
..............................279
8.3.1
Forward and Backward Viability Kernels
under the
Lorenz
System
........................282
Contents xiii
8.4
Detection Tubes
......................................284
8.4.1
Reachable Maps
...............................284
8.4.2
Detection and Cournot Tubes
...................286
8.4.3
Volterra Inclusions
.............................289
8.5
Connection Basins and Eupalinian Kernels
...............291
8.5.1
Connection Basins
.............................291
8.6
Collision Kernels
......................................298
8.7
Particular Solutions to a Differential Inclusion
............301
8.8
Visiting Kernels and Chaos A la Saari
...................302
8.9
Contingent Temporal Logic
.............................305
8.10
Time Dependent Evolutionary Systems
..................309
8.10.1
Links Between Time Dependent
and Independent Systems
.......................309
8.10.2
Reachable Maps and Detectors
..................312
8.11
Observation. Measurements and Identification Tubes
......316
8.11.1
Anticipation Tubes
.............................317
9
Local and Asymptotic Properties of Equilibria
...........319
9.1
Introduction
..........................................319
9.2
Permanence and Fluctuation
...........................321
9.2.1
Permanence Kernels and Fluctuation Basins
....... 322
9.2.2
The Crisis Function
............................ 326
9.2.3
Cascades of Environments
....................... 328
9.2.4
Fluctuation Between
Monotonie
Cells
............ 331
9.2.5 Hofbauer-Sigmund
Permanence
.................. 338
9.2.6
Heteroclines and Homoclines
.................... 341
9.3
Asymptotic Behavior: Limit Sets, Attractors
and Viability Kernels
..................................344
9.3.1
Limit Sets and Attractor
........................344
9.3.2
Attraction and Cluster Basins
...................346
9.3.3
Viability Properties of Limit Sets and Attractors
... 351
9.3.4
Nonemptyness of Viability Kernels
...............353
9.4
Lyapunov Stability and Sensitivity to Initial Conditions
.... 354
9.4.1
Lyapunov Stability
............................. 354
9.4.2
The Sensitivity Functions
....................... 355
9.4.3
Topologically Transitive Sets and Dense
Trajectories
................................... 358
9.5
Existence of Equilibria
................................. 360
9.6
Newton s Methods for Finding Equilibria
................. 361
9.6.1
Behind the Newton Method
.....................361
9.6.2
Building Newton Algorithms
....................363
9.7
Stability: The Inverse Set-Valued Map Theorem
...........365
9.7.1
The Inverse Set-Valued Map Theorem
............365
9.7.2
.Metric Regularity
..............................367
XIV
Contents
9.7.3
Local
and Pointwise Norms of Graphical
Derivatives
....................................370
9.7.4
Norms of Derivatives and Metric Regularity
.......371
10
Viability and Capturability Properties of Evolutionary
Systems
..................................................375
10.1
Introduction
..........................................375
10.2
Bilateral Fixed Point Characterization of Kernels
and Basins
...........................................377
10.2.1
Bilateral Fixed Point Characterization
of Viability Kernels
............................379
10.2.2
Bilateral Fixed Point Characterization
of
Invariance
Kernels
...........................382
10.3
Topological Properties
.................................382
10.3.1
Continuity Properties of Evolutionary Systems
.....382
10.3.2
Topological Properties of Viability Kernels
and Capture Basins
............................387
10.4
Persistent Evolutions and Exit Sets
......................392
10.4.1
Persistent and Minimal Time Evolutions
..........392
10.4.2
Temporal Window
.............................396
10.4.3
Exit Sets and Local Viability
....................396
10.5
Viability Characterizations of Kernels and Basins
.........399
10.5.1
Subsets Viable Outside a Target
.................399
10.5.2
Relative
Invariance
.............................401
10.5.3
Isolated Subsets
...............................403
10.5.4
The Second Fundamental Characterization
Theorem
......................................405
10.5.5
The Barrier Property
...........................407
10.6
Other Viability Characterizations
.......................411
10.6.1
Characterization of
Invariance
Kernels
............411
10.6.2
Characterization of Connection Basins
............413
10.7
Stability of Viability and
Invariance
Kernels
..............416
10.7.1
Kernels and Basins of Limits of Environments
.....416
10.7.2
Invariance
and Viability Envelopes
...............420
10.8
The Hard Version of the Inertia Principle
................422
10.9
Parameter Identification: Inverse Viability
and
Invariance
Maps
..................................427
10.9.1
Inverse Viability and
Invariance
..................427
10.9.2
Level Tubes of Extended Functions
...............429
10.10
Stochastic and Tychastic Viability
.......................433
11
Regulation of Control Systems
...........................437
11.1
Introduction
..........................................437
11.2
Tangential Conditions for Viability and
Invariance
.........440
11.2.1
The Nagumo Theorem
..........................443
11.2.2
Integrating Differential Inequalities
...............445
Contents xv
11.2.3
Characterization of the Viability Tangential
Condition
.....................................447
11.2.4
Characterization of the
Invariance
Tangential
Condition
.....................................451
11.3
Fundamental Viability and
Invariance
Theorems
for Control Systems
...................................453
11.3.1
The Regulation Map for Control Systems
.........453
11.3.2
The Fundamental Viability Theorem
.............454
11.3.3
The Fundamental
Invariance
Theorem
............457
11.4
Regulation Maps of Kernels and Basins
..................460
11.5
Lax-Hopf Formula for Capture Basins
...................465
11.5.1
P-Convex and Exhaustive Sets
..................465
11.5.2
Lax-Hopf Formulas
............................468
11.5.3
Viability Kernels Under P-Valued
Micro—Macro Systems
..........................472
11.6
Hamiltonian Characterization of the Regulation Map
......475
11.7
Deriving Viable Feedbacks
.............................480
11.7.1
Static Viable Feedbacks
.........................480
11.7.2
Dynamic Viable Feedbacks
......................483
12
Restoring Viability
.......................................485
12.1
Introduction
..........................................485
12.2
Viability Multipliers
...................................485
12.2.1
Definition of Viability Multipliers
................485
12.2.2
Viability Multipliers with Minimal Norm
..........486
12.2.3
Viability Multipliers and Variational Inequalities
. . . 488
12.2.4
Slow Evolutions of Variational Inequalities
........491
12.2.5
Case of Explicit Constraints
.....................491
12.2.6
Meta
Variational Inequalities
....................494
12.2.7
Viability Multipliers for Bilateral Constraints
......495
12.2.8
Connectionnist Complexity
......................497
12.2.9
Hierarchical Viability
...........................501
12.3
Impulse and Hybrid Systems
...........................503
12.3.1
Runs of Impulse Systems
.......................503
12.3.2
Impulse Evolutionary Systems
...................507
12.3.3
Hvbrid Control Systems and Differential
Inclusions
..................................... 510
12.3.4
Substratum of an Impulse System
................ 512
12.3.5
Impulse Viability Kernels
....................... 516
12.3.6
Stability Properties
............................ 518
12.3.7
Cadenced Runs
................................ 519
xvi Contents
Part III First-Order Partial Differential Equations
13
Viability Solutions to Hamilton—Jacobi Equations
........ 523
13.1
Introduction
.......................................... 523
13.2
From Duality to Trinity
................................ 524
13.3
Statement of the Problem
.............................. 527
13.3.1
Lagrangian and Hamiltonian
.................... 527
13.3.2
The Viability Solution
.......................... 530
13.4
Variational Principle
................................... 531
13.4.1
Lagrangian Microsystems
....................... 531
13.4.2
The Variational Principle
....................... 532
13.5
Viability Implies Optimality
............................ 538
13.5.1
Optimal Evolutions
............................ 538
13.5.2
Dynamic Programming under Viability
Constraints
................................... 539
13.6
Regulation of Optimal Evolutions
....................... 541
13.7
Aggregation of Hamiltonians
............................ 544
13.7.1
Aggregation
................................... 544
13.7.2
Composition of a Hamiltonian
by a Linear Operator
........................... 546
13.8
Hamilton—Jacobi—Cournot Equations
.................... 551
13.9
Lax—
Hopf
Formula
.................................... 554
13.10
Barron-Jensen/Frankowska Viscosity Solution
............ 557
14
Regulation of Traffic
..................................... 563
14.1
Introduction
.......................................... 563
14.2
The Transportation Problem and its Viability Solution
..... 566
14.3
Density and Celerity Flux Functions
..................... 571
14.4
The Viability Traffic Function
.......................... 579
14.5
Analytical Properties of the Viability Traffic Functions
..... 584
14.5.1
Cauchy Initial Conditions
....................... 586
14.5.2
Lagrangian Traffic Conditions
................... 587
14.5.3
Combined Traffic Conditions
.................... 590
14.6
Decreasing Envelopes of Functions
...................... 592
14.7
The
Min-Inf
Convolution Morphism Property
and Decreasing Traffic Functions
........................ 595
14.8
The Traffic Regulation Map
............................ 599
14.9
From Density to Celerity: Shifting Paradigms
............. 601
15
Illustrations in Finance and Economics
................... 603
15.1
Introduction
.......................................... 603
15.2
Uncovering Implicit Volatility in Macroscopic
Portfolio Properties
................................... 605
15.2.1
Managing a Portfolio under Unknown Volatility.
. . . 607
15.2.2
Implicit Portfolio Problem
...................... 608
Contents xvii
15.2.3
Emergence
of the Tychastic Domain
and the Cost Function
..........................611
15.2.4
The Viability Portfolio Value
....................612
15.2.5
Managing the Portfolio
.........................615
15.3
Bridging the Micro—Macro Economic Information Divide
. . . 620
15.3.1
Two Stories for the Same Problem
...............620
15.3.2
The Viability Economic Value
...................624
16
Viability Solutions to Conservation Laws
.................631
16.1
Introduction
..........................................631
16.2
Viability Solutions to Conservation Laws
.................631
16.2.1
Viabili
tv
Solution as Solution to Burgers
Equation
......................................635
16.2.2
Viability and Tracking Solutions
.................637
16.2.3
Piecewise Cauchy Conditions
....................641
16.2.4
Dirichlet Boundary Conditions
...................648
16.2.5
Piecewise Dirichlet Conditions
...................653
16.2.6
Cauchy/Dirichlet Condition
.....................654
16.2.7
Additional Eulerian Conditions
..................659
16.2.8
Viability Constraints
...........................662
16.2.9
Lagrangian Conditions
..........................664
16.2.10
Regulating the Burgers Controlled Problem
.......667
16.3
The Invariant Manifold Theorem
........................675
17
Viability Solutions to Hamilton—Jacobi—Bellman
Equations
................................................681
17.1
Introduction
..........................................681
17.2
Viability Solutions to Hamilton—Jacobi—Bellman
Problems
.............................................682
17.3
Valuation Functions and Viability Solutions
..............685
17.3.1
A Class of
Intertemporal Functionals
............. 685
17.3.2
Valuation Functions and Viability Solutions
....... 687
17.3.3
Existence of Optimal Evolution
.................. 692
17.3.4
Dynamic Programming Equation
................ 696
17.4
Solutions to Hamilton-Jacobi Equation
and Viability Solutions
.................................698
17.4.1
Contingent Solution to the Hamilton—Jacobi
Equation
......................................698
17.4.2
В
ar
ron—
Jensen/
Franko
ws
ka
Solution
to the Hamilton--Jacobi Equation
............... . 701
17.4.3
The Regulation Map of Optimal Evolutions
.......704
17.5
Other
Intertemporal
Optimization Problems
..............704
17.5.1
Maximization Problems
.........................704
17.5.2
Two Other Classes of Optimization Problems
......705
17.6
Summary: Valuation Functions of Four Classes
of
Intertemporal
Optimization Problems
.................708
xviii Contents
Part IV Appendices
18
Set-Valued Analysis at a Glance
.........................713
18.1
Introduction
..........................................713
18.2
Notations
............................................713
18.3
Set-Valued Maps
......................................719
18.3.1
Graphical Approach
............................722
18.3.2
Amalgams of Set-Valued Maps
...................724
18.4
Limits of Sets
.........................................727
18.4.1
Upper and Lower Limits
........................727
18.4.2
Upper Semicompact and Upper and Lower
Semi-Continuous Maps
.........................729
18.4.3
Tangent Cones
................................731
18.4.4
Polar Cones
...................................734
18.4.5
Projectors
.....................................735
18.4.6
Normals
......................................737
18.5
Graphical Analysis
....................................738
18.5.1
Graphical Convergence of Maps
.................. 738
18.5.2
Derivatives of Set-Valued Maps
.................. 739
18.5.3
Derivative of Numerical Set-Valued Maps
......... 741
18.6
Epigraphical Analysis
.................................. 742
18.6.1
Extended Functions
............................742
18.6.2
Epidifferential Calculus
.........................747
18.6.3
Generalized Gradients
..........................751
18.6.4
Tangent and Normal Cones to Epigraphs
.........753
18.7
Convex Analysis: Moreau—Rockafellar Subdifferentials
......755
18.8
Weighted
Inf-
Convolution
..............................762
18.9
The
Graal
of the Ultimate Derivative
....................765
19
Convergence and Viability Theorems
....................769
19.1
Introduction
..........................................769
19.2
The Fundamental Convergence Theorems
................770
19.3
Upper Convergence of Viability Kernels
and Regulation Maps
..................................774
19.3.1
Prolongation of Discrete Time Evolutions
.........774
19.3.2
Upper Convergence
............................776
19.4
Proofs of Viability Theorems
...........................781
19.4.1
Necessary Condition for Viability
................ 781
19.4.2
The General Viability Theorem
.................. 782
19.4.3
The Local Viability Theorem
.................... 783
19.4.4
Proof of the Viability Theorem
11.3.4............ 785
19.4.5
Pointwise Characterization of Differential
Inclusions
.....................................786
References
...................................................789
Index
........................................................797
|
any_adam_object | 1 |
author | Aubin, Jean-Pierre Bayen, Alexandre M. Saint-Pierre, Patrick |
author_GND | (DE-588)135610389 |
author_facet | Aubin, Jean-Pierre Bayen, Alexandre M. Saint-Pierre, Patrick |
author_role | aut aut aut |
author_sort | Aubin, Jean-Pierre |
author_variant | j p a jpa a m b am amb p s p psp |
building | Verbundindex |
bvnumber | BV039539315 |
classification_rvk | SK 540 SK 880 |
ctrlnum | (OCoLC)748696496 (DE-599)BVBBV039539315 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01967nam a2200469 c 4500</leader><controlfield tag="001">BV039539315</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110822s2011 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642166839</subfield><subfield code="9">978-3-642-16683-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)748696496</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039539315</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Viability theory</subfield><subfield code="b">new directions</subfield><subfield code="c">Jean-Pierre Aubin ; Alexandre M. Bayen ; Patrick Saint-Pierre</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 803 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regelungssystem</subfield><subfield code="0">(DE-588)4134712-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolution</subfield><subfield code="0">(DE-588)4071050-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialinklusion</subfield><subfield code="0">(DE-588)4149777-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Regelungssystem</subfield><subfield code="0">(DE-588)4134712-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Evolution</subfield><subfield code="0">(DE-588)4071050-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Unsicherheit</subfield><subfield code="0">(DE-588)4186957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Differentialinklusion</subfield><subfield code="0">(DE-588)4149777-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bayen, Alexandre M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saint-Pierre, Patrick</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)135610389</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024391438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024391438</subfield></datafield></record></collection> |
id | DE-604.BV039539315 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:05:48Z |
institution | BVB |
isbn | 9783642166839 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024391438 |
oclc_num | 748696496 |
open_access_boolean | |
owner | DE-11 DE-19 DE-BY-UBM DE-706 DE-739 |
owner_facet | DE-11 DE-19 DE-BY-UBM DE-706 DE-739 |
physical | XXI, 803 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
spelling | Aubin, Jean-Pierre Verfasser aut Viability theory new directions Jean-Pierre Aubin ; Alexandre M. Bayen ; Patrick Saint-Pierre 2nd. ed. Berlin [u.a.] Springer 2011 XXI, 803 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mengenwertige Abbildung (DE-588)4270772-9 gnd rswk-swf Regelungssystem (DE-588)4134712-2 gnd rswk-swf Unsicherheit (DE-588)4186957-6 gnd rswk-swf Evolution (DE-588)4071050-6 gnd rswk-swf Differentialinklusion (DE-588)4149777-6 gnd rswk-swf Regelungssystem (DE-588)4134712-2 s Evolution (DE-588)4071050-6 s Unsicherheit (DE-588)4186957-6 s Differentialinklusion (DE-588)4149777-6 s Mengenwertige Abbildung (DE-588)4270772-9 s DE-604 Bayen, Alexandre M. Verfasser aut Saint-Pierre, Patrick Verfasser (DE-588)135610389 aut Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024391438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Aubin, Jean-Pierre Bayen, Alexandre M. Saint-Pierre, Patrick Viability theory new directions Mengenwertige Abbildung (DE-588)4270772-9 gnd Regelungssystem (DE-588)4134712-2 gnd Unsicherheit (DE-588)4186957-6 gnd Evolution (DE-588)4071050-6 gnd Differentialinklusion (DE-588)4149777-6 gnd |
subject_GND | (DE-588)4270772-9 (DE-588)4134712-2 (DE-588)4186957-6 (DE-588)4071050-6 (DE-588)4149777-6 |
title | Viability theory new directions |
title_auth | Viability theory new directions |
title_exact_search | Viability theory new directions |
title_full | Viability theory new directions Jean-Pierre Aubin ; Alexandre M. Bayen ; Patrick Saint-Pierre |
title_fullStr | Viability theory new directions Jean-Pierre Aubin ; Alexandre M. Bayen ; Patrick Saint-Pierre |
title_full_unstemmed | Viability theory new directions Jean-Pierre Aubin ; Alexandre M. Bayen ; Patrick Saint-Pierre |
title_short | Viability theory |
title_sort | viability theory new directions |
title_sub | new directions |
topic | Mengenwertige Abbildung (DE-588)4270772-9 gnd Regelungssystem (DE-588)4134712-2 gnd Unsicherheit (DE-588)4186957-6 gnd Evolution (DE-588)4071050-6 gnd Differentialinklusion (DE-588)4149777-6 gnd |
topic_facet | Mengenwertige Abbildung Regelungssystem Unsicherheit Evolution Differentialinklusion |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024391438&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT aubinjeanpierre viabilitytheorynewdirections AT bayenalexandrem viabilitytheorynewdirections AT saintpierrepatrick viabilitytheorynewdirections |