Symplectic methods in harmonic analysis and in mathematical physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Springer
2011
|
Schriftenreihe: | Pseudo-differential operators
7 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBM01 UBT01 UBW01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783764399917 9783764399924 |
DOI: | 10.1007/978-3-7643-9992-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039531471 | ||
003 | DE-604 | ||
005 | 20130908 | ||
007 | cr|uuu---uuuuu | ||
008 | 110817s2011 |||| o||u| ||||||eng d | ||
015 | |a 11,O09 |2 dnb | ||
020 | |a 9783764399917 |9 978-3-7643-9991-7 | ||
020 | |a 9783764399924 |c Online |9 978-3-7643-9992-4 | ||
024 | 7 | |a 10.1007/978-3-7643-9992-4 |2 doi | |
024 | 3 | |a 9783764399924 | |
035 | |a (OCoLC)753269598 | ||
035 | |a (DE-599)DNB1013919181 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-20 |a DE-703 |a DE-19 |a DE-91 |a DE-29 |a DE-739 |a DE-384 |a DE-83 | ||
082 | 0 | |a 515.724 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gosson, Maurice A. de |d 1948- |e Verfasser |0 (DE-588)1024136949 |4 aut | |
245 | 1 | 0 | |a Symplectic methods in harmonic analysis and in mathematical physics |c Maurice A. de Gosson |
264 | 1 | |a Basel |b Springer |c 2011 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Pseudo-differential operators |v 7 | |
650 | 0 | 7 | |a Zeit-Frequenz-Analyse |0 (DE-588)4626990-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Gruppe |0 (DE-588)4276585-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |2 gnd |9 rswk-swf |
653 | |a Electronic book text | ||
689 | 0 | 0 | |a Pseudodifferentialoperator |0 (DE-588)4047640-6 |D s |
689 | 0 | 1 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | 2 | |a Symplektische Gruppe |0 (DE-588)4276585-7 |D s |
689 | 0 | 3 | |a Zeit-Frequenz-Analyse |0 (DE-588)4626990-3 |D s |
689 | 0 | 4 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Pseudo-differential operators |v 7 |w (DE-604)BV035482288 |9 7 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7643-9992-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024383740 | ||
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-7643-9992-4 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148343763369984 |
---|---|
any_adam_object | |
author | Gosson, Maurice A. de 1948- |
author_GND | (DE-588)1024136949 |
author_facet | Gosson, Maurice A. de 1948- |
author_role | aut |
author_sort | Gosson, Maurice A. de 1948- |
author_variant | m a d g mad madg |
building | Verbundindex |
bvnumber | BV039531471 |
classification_rvk | SK 620 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)753269598 (DE-599)DNB1013919181 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-7643-9992-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02791nmm a2200625zcb4500</leader><controlfield tag="001">BV039531471</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130908 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">110817s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,O09</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764399917</subfield><subfield code="9">978-3-7643-9991-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764399924</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7643-9992-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7643-9992-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764399924</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)753269598</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1013919181</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gosson, Maurice A. de</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1024136949</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symplectic methods in harmonic analysis and in mathematical physics</subfield><subfield code="c">Maurice A. de Gosson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Pseudo-differential operators</subfield><subfield code="v">7</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeit-Frequenz-Analyse</subfield><subfield code="0">(DE-588)4626990-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Gruppe</subfield><subfield code="0">(DE-588)4276585-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic book text</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudodifferentialoperator</subfield><subfield code="0">(DE-588)4047640-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Symplektische Gruppe</subfield><subfield code="0">(DE-588)4276585-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Zeit-Frequenz-Analyse</subfield><subfield code="0">(DE-588)4626990-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Pseudo-differential operators</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV035482288</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024383740</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-7643-9992-4</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039531471 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:05:38Z |
institution | BVB |
isbn | 9783764399917 9783764399924 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024383740 |
oclc_num | 753269598 |
open_access_boolean | |
owner | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
owner_facet | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series | Pseudo-differential operators |
series2 | Pseudo-differential operators |
spelling | Gosson, Maurice A. de 1948- Verfasser (DE-588)1024136949 aut Symplectic methods in harmonic analysis and in mathematical physics Maurice A. de Gosson Basel Springer 2011 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Pseudo-differential operators 7 Zeit-Frequenz-Analyse (DE-588)4626990-3 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Symplektische Gruppe (DE-588)4276585-7 gnd rswk-swf Pseudodifferentialoperator (DE-588)4047640-6 gnd rswk-swf Electronic book text Pseudodifferentialoperator (DE-588)4047640-6 s Harmonische Analyse (DE-588)4023453-8 s Symplektische Gruppe (DE-588)4276585-7 s Zeit-Frequenz-Analyse (DE-588)4626990-3 s Mathematische Physik (DE-588)4037952-8 s DE-604 Pseudo-differential operators 7 (DE-604)BV035482288 7 https://doi.org/10.1007/978-3-7643-9992-4 Verlag Volltext |
spellingShingle | Gosson, Maurice A. de 1948- Symplectic methods in harmonic analysis and in mathematical physics Pseudo-differential operators Zeit-Frequenz-Analyse (DE-588)4626990-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd Symplektische Gruppe (DE-588)4276585-7 gnd Pseudodifferentialoperator (DE-588)4047640-6 gnd |
subject_GND | (DE-588)4626990-3 (DE-588)4037952-8 (DE-588)4023453-8 (DE-588)4276585-7 (DE-588)4047640-6 |
title | Symplectic methods in harmonic analysis and in mathematical physics |
title_auth | Symplectic methods in harmonic analysis and in mathematical physics |
title_exact_search | Symplectic methods in harmonic analysis and in mathematical physics |
title_full | Symplectic methods in harmonic analysis and in mathematical physics Maurice A. de Gosson |
title_fullStr | Symplectic methods in harmonic analysis and in mathematical physics Maurice A. de Gosson |
title_full_unstemmed | Symplectic methods in harmonic analysis and in mathematical physics Maurice A. de Gosson |
title_short | Symplectic methods in harmonic analysis and in mathematical physics |
title_sort | symplectic methods in harmonic analysis and in mathematical physics |
topic | Zeit-Frequenz-Analyse (DE-588)4626990-3 gnd Mathematische Physik (DE-588)4037952-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd Symplektische Gruppe (DE-588)4276585-7 gnd Pseudodifferentialoperator (DE-588)4047640-6 gnd |
topic_facet | Zeit-Frequenz-Analyse Mathematische Physik Harmonische Analyse Symplektische Gruppe Pseudodifferentialoperator |
url | https://doi.org/10.1007/978-3-7643-9992-4 |
volume_link | (DE-604)BV035482288 |
work_keys_str_mv | AT gossonmauriceade symplecticmethodsinharmonicanalysisandinmathematicalphysics |