Waves in geophysical fluids: tsunamis, rogue waves, internal waves and internal tides
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Wien [u.a.]
Springer
2006
|
Schriftenreihe: | Courses and lectures / International Centre for Mechanical Sciences
489 |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 332 S. Ill., graph. Darst., Kt. |
ISBN: | 9783211374603 3211374604 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV039147790 | ||
003 | DE-604 | ||
005 | 20110824 | ||
007 | t | ||
008 | 110720s2006 abd| |||| 00||| eng d | ||
016 | 7 | |a 980679753 |2 DE-101 | |
020 | |a 9783211374603 |c Pb. : EUR 81.32 (freier Pr.), sfr 128.50 (freier Pr.) |9 978-3-211-37460-3 | ||
020 | |a 3211374604 |c Pb. : EUR 81.32 (freier Pr.), sfr 128.50 (freier Pr.) |9 3-211-37460-4 | ||
024 | 3 | |a 9783211374603 | |
028 | 5 | 2 | |a 11817628 |
035 | |a (OCoLC)255860739 | ||
035 | |a (DE-599)DNB980679753 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
084 | |a UF 5100 |0 (DE-625)145596: |2 rvk | ||
245 | 1 | 0 | |a Waves in geophysical fluids |b tsunamis, rogue waves, internal waves and internal tides |c ed. by John Grue ... |
264 | 1 | |a Wien [u.a.] |b Springer |c 2006 | |
300 | |a 332 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Courses and lectures / International Centre for Mechanical Sciences |v 489 | |
700 | 1 | |a Grue, John |4 edt | |
810 | 2 | |a International Centre for Mechanical Sciences |t Courses and lectures |v 489 |w (DE-604)BV000015032 |9 489 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024165663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024165663 |
Datensatz im Suchindex
_version_ | 1804147989633040384 |
---|---|
adam_text | CONTENTS
Preface
1
Hydrodynamics of tsunami waves by Efim Pelinovsky
...........................1
1
Introduction
.......................................................................1
2
Parameters of tsunami waves in the source
........................................2
2.1
Tsunamis of seismic origin
...................................■....................3
2.2
Tsunamis from underwater explosions
...........................................4
2.3
Tsunamis generated by landslides
................................................6
3
Shallow water equations
...........................................................7
4
Tsunami generation and propagation in the shallow sea of constant depth (linear ap¬
proximation)
........................................................................9
Vertical bottom displacement
..................................................9
Landslide motion
.............................................................12
5
Effects of finite depth for tsunami waves of seismic origin
.........................13
6
Explosive generated tsunamis (deep-water approximation)
........................18
7
Nonlinear-dispersive theory of tsunami waves
.....................................21
8
Tsunami waves in the ocean of variable depth
....................................25
9
Tsunami wave runup on the coast
................................................34
10
Practice of tsunami computing
..................................................40
11
Conclusion
......................................................................45
Bibliography
.......................................................................46
2
Weakly nonlinear and stochastic properties of ocean wave fields. Application
to an extreme wave event by
Karsten Truhen...................................49
1
Introduction
.....................................................................49
2
Empirical description of the Draupner New Year Wave
.........................52
3
The governing equations
.........................................................55
4
Weakly nonlinear narrow banded equations
.......................................57
4.1
The bandwidth
.................................................................58
4.2
Derivation of higher-order nonlinear
Schrödinger
equations
......................58
4.3
Deep water time evolution in terms of velocity potential
........................60
4.4
Deep water space evolution in terms of the velocity potential
...................61
4.5
Deep water time evolution in terms of the surface elevation
.....................61
4.6
Deep water space evolution in terms of the surface elevation
....................62
4.7
Finite depth
....................................................................63
5
Exact linear dispersion
...........................................................63
6
Properties of the higher order nonlinear
Schrödinger
equations
....................65
6.1
Conservation laws
..............................................................66
6.2
Modulational instability of Stokes waves
........................................67
7
An application of the higher-order nonlinear
Schrödinger
equations: Deterministic wave
forecasting
.........................................................................71
8
Stochastic description of surface waves
...........................................73
9
Theory of stochastic variables
....................................................75
9.1
Theory of a single stochastic variable
...........................................75
Example: Gaussian or normal distribution
....................................78
Example: Uniform distribution
................................................78
Example: Rayleigh distribution
...............................................79
Example: Exponential distribution
............................................79
9.2
Theory for several stochastic variables
..........................................79
Example:
Multi
normal distribution
...........................................81
9.3
The Central Limit Theorem
....................................................81
10
Theory for stochastic processes
..................................................83
Example: Simple harmonic wave with random phase
..........................86
Example: Third order Stokes wave with random phase
........................87
Example: Simple harmonic wave with random amplitude and phase
...........88
11
The spectrum
...................................................................89
11.1
Definition of frequency spectrum
..............................................89
Example: Periodic oscillation with random amplitude and phase
..............91
11.2
Definition of wave spectrum
...................................................91
Example: Linear waves with random phase
....................................92
Example: Linear waves with random amplitude and phase
.....................93
11.3
An estimator for the spectrum
.................................................93
11.4
The equilibrium spectrum
.....................................................94
12
Probability distributions of surface waves
........................................95
12.1
Linear waves
..................................................................95
12.2
Linear narrow banded waves
...................................................97
12.3
Second order nonlinear narrow banded waves with Gaussian first harmonic
___98
12.4
Broader bandwidth and non-Gaussian first harmonic
..........................99
13
Return periods and return values
...............................................101
13.1
How unusual is the Draupner New Year Wave ?
............................101
14
Conclusion
.....................................................................102
A Continuous and discrete Fourier transforms
.....................................103
A.I Continuous Fourier transform of a function on an infinite interval
.............103
A.2 Fourier series of a function on a finite length interval
..........................103
A.3 Discrete Fourier Transform (DFT) of a finite series
............................104
Bibliography
.................................................................105
3
Freak waves phenomenon: Physical mechanisms and modelling
by Christian Kharif and Efim Pelinovsky
..........................................107
1
Introduction
....................................................................107
2
Freak wave observations
...........-..............................................108
3
A brief description of the main physical mechanisms of freak wave generation
___110
3.1
Wave-current interaction
......................................................
Ш
3.2
Geometrical focusing
..........................................................112
3.3
Spatio-temporal focusing
......................................................112
3.4
Modulational
instability
.......................................................112
3.5 Soliton
interaction
.............................................................112
3.6 Wind
effect
...................................................................113
4
Freak wave definition
............................................................113
5
Governing equations
............................................................114
6
Linear approaches to the problem
...............................................115
6.1
Wave trains in inhomogeneous moving media
..................................115
Wave kinematics
.............................................................115
Wave dynamics
..............................................................116
6.2
Wave-current interaction
......................................................119
6.3
Dispersion enhancement of transient wave packets
.............................123
7
Nonlinear approaches of the problem
............................................127
7.1
Weakly nonlinear freak wave packets in deep and intermediate depths
.........127
The one-dimensional nonlinear
Schrödinger
equation
.........................127
The two-dimensional nonlinear
Schrödinger
equation
.........................139
The Davey-Stewartson system
...............................................145
7.2
Extended nonlinear models for freak waves
....................................147
7.3
Weakly nonlinear freak waves in shallow water
.................................151
7.4
The fully nonlinear equations
..................................................160
8
Experiments
....................................................................166
9
Conclusion
......................................................................166
Bibliography
.................................................................167
4
Rapid computations of steep surface waves in three dimensions, and compar¬
ison with experiments by John
Grue
...........................................173
1
Introduction
....................................................................173
2
Efficient solution of the Laplace equation
........................................175
3
Successive approximations
.......................................................177
4
Effect of a finite depth
..........................................................178
5
Time integration
................................................................179
6
Nonlinear wave generation and absorption
.......................................180
6.1
Generation
....................................................................180
6.2
Absorbing conditions
..........................................................181
7
Convergence
....................................................................182
7.1
Integration constants
..........................................................182
7.2
Convergence test
..............................................................182
8
Numerical examples of rogue waves. Comparison with experimens
...............186
8.1
Very steep wave events. Comparison with PIV-experiments
....................186
Particle Image Velocimetry
(PIV)
............................................186
Wave induced velocity vectors
................................................187
The wave propagation speed
.................................................187
Acceleration vectors
.........................................................187
8.2
Kinematics of the
Camille
and Draupner waves
................................190
9
Computations of tsunami waves in three dimensions
.............................190
10
Computations of three-dimensional wave patterns
..............................191
10.1
The stability analysis by McLean
et al.
(1981) ................................191
10.2
Computations of the classical horseshoe pattern
..............................194
10.3
Oscillating horseshoe pattern. Computations of the experiments by
Collard and Caulliez
..............................................................197
10.4
Other features of class II instability
..........................................200
Class I instability may restabilize class II instability
.........................200
Class II instability may trigger class I instability, leading to breaking
........200
Class I instability may trigger class II instability, leading to breaking
........201
Class II leading to breaking
.................................................201
Predominance of class I and class II instabilities. Recurrence vs. breaking.
Wave slope thresholds
.......................................................202
Bibliography
.................................................................203
5
Very large internal waves in the ocean
—
observations and nonlinear models
by John
Grue
.....................................................................205
1
Introduction
....................................................................205
1.1
The dead-water phenomenon
..................................................206
1.2
The discovery of internal tides
.................................................207
1.3
Internal waves in the ocean. Research up to
1960 ..............................208
1.4
Loss of submarines
............................................................208
1.5
Very large internal waves
......................................................208
1.6
Mechanisms for internal wave
-
surface wave interaction
.......................211
Reduction of the surface wave amplitude caused by internal wave induced surface
current
......................................................................212
The effect of surface active films
.............................................214
1.7
Transportation of biological and geological material
............................214
1.8
Breaking internal waves and energy dissipation in the World Ocean
............215
1.9
Strong bottom currents due to internal waves
..................................215
The gas-field
Ormen
Lange ..................................................218
2
Long wave models
...............................................................218
2.1
The Korteweg-de
Vries
equation
...............................................219
Continuous stratification
.....................................................219
Two-layer
(interfacial)
case
..................................................221
2.2
The Benjamin-Ono equation
...................................................222
2.3
The intermediate-depth equation
..............................................223
2.4
Weakly nonlinear solitary waves
...............................................223
KdV soliton. Stratified case
..................................................223
Interfacial KdV
soliton
.......................................................223
Algebraic soliton
.............................................................224
Intermediate depth soliton
...................................................224
3
Fully nonlinear
interfacial
solitary waves
.........................................225
3.1
Solution of the Laplace equation
...............................................226
Numerical procedure for the fully nonlinear two-layer model
..................227
3.2
Fully nonlinear computations in the small amplitude limit
.....................228
3.3
Solitary waves of large amplitude
..............................................228
3.4
Solitary waves of maximum amplitude
.........................................231
3.5
Overhanging waves
............................................................231
4
Transient computations of
interfacial
motion
....................................237
4.1
Two-dimensional transient model
..............................................237
4.2
Solution of the Laplace equation
...............................................238
4.3
Solitary wave generation
.......................................................239
Simulations of the waves observed upstream at Knight Inlet
..................241
Simulations of the waves in the Sulu Sea
.....................................242
4.4
Upstream waves: geometry in the thin layer
...................................242
4.5
Fully nonlinear
interfacial
motion in three dimensions
..........................249
Final set of equations
........................................................251
Global evaluation using FFT
.................................................251
Local, truncated integration
..................................................251
5
Fully nonlinear wave motion in a continuously stratified fluid
....................252
5.1
Basic equations
................................................................252
5.2
The vorticity
..................................................................254
5.3
The local Richardson number
..................................................255
5.4
The field equation
.............................................................256
5.5
The linear long wave speed
....................................................256
Three-layer case
.............................................................256
Two-layer case
...............................................................271
5.6
Nonlinear three-layer wave motion. Solution by integral equations
.............257
5.7
Wave motion along a thick pycnocline
.........................................259
6
Concluding remarks
.............................................................261
A Inverse scattering theory. Lax pairs
.............................................264
A.I Laboratory waves
.............................................................264
A.
2
Brief history of
solitone
and inverse scattering theory
.........................264
Bibliography
.................................................................265
6
Internal tides. Global field of internal tides and mixing caused by internal
tides by Eugene Morozov
.........................................................271
1
Global field of internal tides
.....................................................271
1.1
The model
....................................................................272
1.2
Measurements
.................................................................275
Henderson seamount in the Eastern Pacific (25°N, 119°W)
...................276
Mascarene Ridge in the western Indian Ocean
................................276
Region,
600
km south of the Mendocino Ridge,
700
km west of
San Fransisco
.277
East of Macquarie Island and south of New Zealand
..........................279
The North Atlantic (29°N), east of the Mid-Atlantic Ridge (MAR)
...........279
Four sites near the equator of the Indian Ocean: 85°E, 75°E,
65Έ,
and 55°E
279
The South Atlantic (21°S) near Brazil, Trinidad and Martin
Vaz
Islands
.....279
Kusu-Palau Ridge south of Japan (26°N)
.....................................279
South of Iceland (54°N, 27°W)
...............................................279
Region east of the Great Meteor banks in the North Atlantic (31°N, 26°W)
.. 279
Northwestern Pacific region
..................................................280
Atlantic Polygon-70 with
17
buoys deployed in
1970
and Mesopolygon with
70
buoys
deployed in
1985
almost in the same region 16-20°N,
33-37°
W
................280
Madagascar Basin
...........................................................280
Sargasso Sea,
POLYMODE,
Array-1, and Array-2
............................280
Crozet
Bazin
north of Kerguelen Island
......................................280
1.3
Discussion about the global field of internal tides
..............................280
2
Internal tide at high latitides
....................................................283
2.1
Numerical model
..............................................................284
2.2
Numerical experiments to study internal tides
.................................285
3
Internal tides in the Kara Strait
.................................................291
4
Internal tides in the Strait of Gibraltar
..........................................298
5
Application of WOCE sections to a global view of mixing in the Atlantic Ocean
. 305
5.1
Dropped spectra of CTD profiles
..............................................305
5.2
Analysis of data
...............................................................306
5.3
Topographic influence on vertical wavenumber spectra
.........................307
5.4
Topographic influence of submarine ridges in the water column
600
dbar above the
bottom
...........................................................................308
5.5
Topographic influence of submarine ridges in the water column between
2000
and
3000
dbar
.........................................................................309
5.6
Spreading of Antarctic Bottom Water in the
Verna
and Equatorial channels
—311
5.7
Frontal zone of the North Atlantic Current
....................................313
5.8
Influence of the Mediterranean outflow in the Atlantic Ocean
..................313
5.9
Spreading of the North Atlantic deep water
....................................317
6
Several approaches to the investigation of tidal internal waves in the northern part of
the Pacific Ocean
.................................................................320
6.1
Moored data analysis
..........................................................321
6.2
Numerical modeling
...........................................................323
6.3
Analysis of data from sections made with expandable bathythermographs (XBT)
325
6.4
Analysis of CTD sections data
.................................................326
6.5
Data of drifters
................................................................328
Bibliography
.................................................................330
|
any_adam_object | 1 |
author2 | Grue, John |
author2_role | edt |
author2_variant | j g jg |
author_facet | Grue, John |
building | Verbundindex |
bvnumber | BV039147790 |
classification_rvk | UF 5100 |
ctrlnum | (OCoLC)255860739 (DE-599)DNB980679753 |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01492nam a2200349 cb4500</leader><controlfield tag="001">BV039147790</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110824 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110720s2006 abd| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980679753</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783211374603</subfield><subfield code="c">Pb. : EUR 81.32 (freier Pr.), sfr 128.50 (freier Pr.)</subfield><subfield code="9">978-3-211-37460-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3211374604</subfield><subfield code="c">Pb. : EUR 81.32 (freier Pr.), sfr 128.50 (freier Pr.)</subfield><subfield code="9">3-211-37460-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783211374603</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11817628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255860739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB980679753</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 5100</subfield><subfield code="0">(DE-625)145596:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waves in geophysical fluids</subfield><subfield code="b">tsunamis, rogue waves, internal waves and internal tides</subfield><subfield code="c">ed. by John Grue ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wien [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">332 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Courses and lectures / International Centre for Mechanical Sciences</subfield><subfield code="v">489</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grue, John</subfield><subfield code="4">edt</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">International Centre for Mechanical Sciences</subfield><subfield code="t">Courses and lectures</subfield><subfield code="v">489</subfield><subfield code="w">(DE-604)BV000015032</subfield><subfield code="9">489</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024165663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024165663</subfield></datafield></record></collection> |
id | DE-604.BV039147790 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:00:00Z |
institution | BVB |
isbn | 9783211374603 3211374604 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024165663 |
oclc_num | 255860739 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 332 S. Ill., graph. Darst., Kt. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Courses and lectures / International Centre for Mechanical Sciences |
spelling | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides ed. by John Grue ... Wien [u.a.] Springer 2006 332 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Courses and lectures / International Centre for Mechanical Sciences 489 Grue, John edt International Centre for Mechanical Sciences Courses and lectures 489 (DE-604)BV000015032 489 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024165663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides |
title | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides |
title_auth | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides |
title_exact_search | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides |
title_full | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides ed. by John Grue ... |
title_fullStr | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides ed. by John Grue ... |
title_full_unstemmed | Waves in geophysical fluids tsunamis, rogue waves, internal waves and internal tides ed. by John Grue ... |
title_short | Waves in geophysical fluids |
title_sort | waves in geophysical fluids tsunamis rogue waves internal waves and internal tides |
title_sub | tsunamis, rogue waves, internal waves and internal tides |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024165663&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000015032 |
work_keys_str_mv | AT gruejohn wavesingeophysicalfluidstsunamisroguewavesinternalwavesandinternaltides |