Chemical thermodynamics for process simulation:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXV, 735 S. Ill., graph. Darst. |
ISBN: | 9783527312771 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039107542 | ||
003 | DE-604 | ||
005 | 20121112 | ||
007 | t | ||
008 | 110629s2012 ad|| |||| 00||| eng d | ||
020 | |a 9783527312771 |9 978-3-527-31277-1 | ||
035 | |a (OCoLC)314729060 | ||
035 | |a (DE-599)BSZ254401422 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-91S |a DE-703 |a DE-29T |a DE-11 |a DE-83 |a DE-355 |a DE-526 |a DE-1029 |a DE-92 |a DE-19 |a DE-91G | ||
084 | |a UG 1200 |0 (DE-625)145614: |2 rvk | ||
084 | |a VC 6340 |0 (DE-625)147090:253 |2 rvk | ||
084 | |a VE 6000 |0 (DE-625)147131:253 |2 rvk | ||
084 | |a MTA 600f |2 stub | ||
084 | |a CHE 170f |2 stub | ||
245 | 1 | 0 | |a Chemical thermodynamics for process simulation |c Jürgen Gmehling ... |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2012 | |
300 | |a XXV, 735 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Prozesssimulation |0 (DE-588)4176077-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Thermochemie |0 (DE-588)4078260-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozessentwicklung |g Technik |0 (DE-588)4278925-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Thermochemie |0 (DE-588)4078260-8 |D s |
689 | 0 | 1 | |a Prozessentwicklung |g Technik |0 (DE-588)4278925-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chemische Verfahrenstechnik |0 (DE-588)4069941-9 |D s |
689 | 1 | 1 | |a Thermochemie |0 (DE-588)4078260-8 |D s |
689 | 1 | 2 | |a Prozesssimulation |0 (DE-588)4176077-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Gmehling, Jürgen |d 1946- |e Sonstige |0 (DE-588)108209148 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022651335&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-022651335 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804145819654291456 |
---|---|
adam_text | Titel: Chemical thermodynamics for process simulation
Autor: Gmehling, Jürgen
Jahr: 2012
Contents
Authors XIII
Preface XV
List of Symbols XIX
1 Introduction 2
2 PvT Behaviorof Pure Components 5
2.1 General Description 5
2.2 Caloric Properties 10
2.3 Ideal Gases 14
2.4 Real Fluids 16
2.4.1 Auxiliary Functions 16
2.4.2 Residual Functions 17
2.4.3 Fugacity and Fugacity Coefficient 19
2.4.4 Phase Equilibria 23
2.5 Equations of State 27
2.5.1 Virial Equation 27
2.5.2 High Precision Equations of State 32
2.5.3 Cubic Equations of State 40
2.5.4 Generalized Equations of State and Corresponding States
Principle 45
2.5.5 Advanced Cubic Equations of State 52
Additional Problems 58
References 61
3 Correlation and Estimation of Pure Component Properties 65
3.1 Characteristic Physical Property Constants ß5
3.1.1 Critical Data 66
3.1.2 Acentric Factor 71
3.1.3 Normal Boiling Point 72
3.1.4 Melting Point and Enthalpy of Fusion 74
3.1.5 Standard Enthalpy and Standard Gibbs Energy of Formation 77
3.2 Temperature-Dependent Properties 80
3.2.1 Vapor Pressure 82
3.2.2 Liquid Density 94
3.2.3 Enthalpy of Vaporization 97
3.2.4 Ideal Gas Heat Capacity 102
3.2.5 Liquid Heat Capacity 109
3.2.6 Speed of Sound 113
3.3 Correlation and Estimation of Transport Properties 114
3.3.1 Liquid Viscosity 114
3.3.2 Vapor Viscosity 120
3.3.3 Liquid Thermal Conductivity 125
3.3.4 Vapor Thermal Conductivity 130
3.3.5 Surface Tension 133
3.3.6 Diffusion Coefficients 236
Additional Problems 142
References 143
4 Properties ofMixtures 147
4.1 Property Changes of Mixing 148
4.2 Partial Molar Properties 149
4.3 Gibbs-Duhem Equation 153
4.4 Ideal Mixture of Ideal Gases 154
4.5 Ideal Mixture of Real Fluids 156
4.6 Excess Properties 157
4.7 Fugacity in Mixtures 159
4.7.1 Fugacity of an Ideal Mixture 159
4.7.2 Phase Equilibrium 160
4.8 Activity and Activity Coefficient 162
4.9 Application of Equations of State to Mixtures 162
4.9.1 Virial Equation 163
4.9.2 Cubic Equations of State 164
Additional Problems 174
References 175
5 Phase Equilibria in Fluid Systems 177
5.1 Thermodynamic Fundamentals 186
5.2 Application of Activity Coefficient Models 193
5.3 Calculation of Vapor-Liquid Equilibria Using gE-Models 197
5.4 Fitting ofgE-Model Parameters 216
5.4.1 Check ofVLE Data for Thermodynamic Consistency 221
5.4.2 Recommended gE-Model Parameters 231
5.5 Calculation of Vapor-Liquid Equilibria Using Equations of State 235
5.5.1 Fitting of Binary Parameters of Cubic Equations of State 240
5.6 Conditions for the Occurrence of Azeotropic Behavior 248
5.7 Solubilityof Gases in Liquids 259
5.7 A Calculation of Gas Solubilities Using Henry Constants 261
5.7.2 Calculation of Gas Solubilities Using Equations of State 270
5.7.3 Prediction of Gas Solubilities 271
5.8 Liquid-Liquid Equilibria 273
5.8.1 Temperature Dependence ofTernary LLE 286
5.8.2 Pressure Dependence of LLE 288
5.9 Predictive Models 289
5.9.1 Regulär Solution Theory 290
5.9.2 Group Contribution Methods 292
5.9.3 UNIFAC Method 293
5.9.3.1 Modified UNIFAC (Dortmund) 300
5.9.3.2 Weaknesses of the Group Contribution Methods UNIFAC and
Modified UNIFAC 309
5.9.4 Predictive Soave-Redlich-Kwong (PSRK) Equation of State 322
5.9.5 VTPR Group Contribution Equation of State 317
Additional Problems 326
References 330
6 Caloric Properties 333
6.1 Caloric Equations of State 333
6.1.1 Internal Energy and Enthalpy 333
6.1.2 Entropy 336
6.1.3 Helmholtz Energy and Gibbs Energy 337
6.2 Enthalpy Description in Process Simulation Programs 339
6.2.1 Route A: Vapor as Starting Phase 340
6.2.2 Route B: Liquid as Starting Phase 344
6.2.3 Route C: Equation of State 346
6.3 Caloric Properties in Chemical Reactions 354
6.4 The G-Minimization Technique 361
Additional Problems 364
References 364
7 Electrolyte Solutions 365
7.1 Introduction 365
7.2 Thermodynamics of Electrolyte Solutions 369
7.3 Activity Coefficient Models for Electrolyte Solutions 374
7.3.1 Debye-Hückel Limiting Law 374
7.3.2 Bromley Extension 376
7.3.3 Pitzer Model 377
7.3.4 Electrolyte-NRTL Model by Chen 378
7.3.5 LIQUAC Model 387
7.3.6 MSA Model 396
7.4 Dissociation Equilibria 396
7.5 Influence of Salts on the Vapor-Liquid Equilibrium
Behavior 398
7.6 Complex Electrolyte Systems 400
Additional Problems 401
References 402
8 Solid-Liquid Equilibria 405
8.1 Thermodynamic Relations for the Calculation of Solid-Liquid
Equilibria 408
8.1.1 Solid-Liquid Equilibria of Simple Eutectic Systems 410
8.1.1.1 Freezing Point Depression 417
8.1.2 Solid-Liquid Equilibria of Systems with Solid Solutions 429
8.1.2.1 Ideal Systems 419
8.1.2.2 Solid-Liquid Equilibria for Nonideal Systems 420
8.1.3 Solid-Liquid Equilibria with Intermolecular Compound Formation
in the Solid State 424
8.1.4 Pressure Dependence of Solid-Liquid Equilibria 427
8.2 Salt Solubility 427
8.3 Solubility of Solids in Supercritical Fluids 432
Additional Problems 434
References 437
9 Membrane Processes 439
9.1 Osmosis 439
9.2 Pervaporation 443
Additional Problems 444
References 444
10 Polymer Thermodynamics 445
10.1 Introduction 445
10.2 gE-models 451
10.3 Equations of State 462
10.4 Influence of Polydispersity 479
Additional Problems 482
References 484
11 Applications of Thermodynamics in Separation Technology 487
IIA Verification of Model Parameters Prior to Process Simulation 492
11.1.1 Verification of Pure Component Parameters 492
11.1.2 Verification ofgE-Model Parameters 493
11.2 Investigation ofAzeotropic Points in Multicomponent Systems 501
11.3 Residue Curves, Distillation Boundaries, and Distillation
Regions 503
11 -4 Selection of Entrainers for Azeotropic and Extractive
Distillation 511
11.5 Selection of Solvents for Other Separation Processes 518
11.6 Examination of the Applicability of Extractive Distillation for the
Separation of Aliphatics from Aromatics 519
Additional Problems 522
References 523
12 Enthalpy of Reaction and Chemical Equilibria 525
12.1 Enthalpy of Reaction 526
12.1.1 Temperature Dependence 527
12.1.2 Consideration of the Real Gas Behavior on the Enthalpy of
Reaction 529
12.2 Chemical Equilibrium 531
12.3 Multiple Chemical Reaction Equilibria 551
12.3.1 Relaxation Method 552
12.3.2 Gibbs Energy Minimization 556
Additional Problems 563
References 565
13 Special Applications 567
13.1 Formaldehyde Solutions 567
13.2 Vapor Phase Association 573
Additional Problems 587
References 589
14 Practical Applications 591
14.1 Flash 591
14.2 Joule-Thomson Effect 593
14.3 Adiabatic Compression and Expansion 595
14.4 Pressure Relief 600
14.5 Limitations of Equilibrium Thermodynamics 606
Additional Problems 608
References 620
15 Introduction to the Collection ofExample Problems 613
15.1 Mathcad Examples 613
15.2 Examples Using the Dortmund Data Bank (DDB) and the Integrated
Software Package DDBSP 615
15.3 Examples Using Microsoft Excel and Microsoft Office VBA 616
Appendix A Pure Component Parameters 619
Appendix B CoefFkients for High Precision Equations of State 641
Appendix C Useful Derivations 645
A1. Relationship between (8s/dT)P and (ds/dT)v 646
A2. Expressions for (dußv)r and (ds/dv)T 646
A3. cp and cv as Derivatives of the Specific Entropy 647
A4. Relationship between cp and cv 648
A5. Expression for (dh/dP)T 649
A6. Expression for (ds/dP)r 650
A7. Expression for [d(g/RT)/dT]P and van t Hoff Equation 651
A8. General Expression for cv 651
A9. Expression for (dP/dv)r 652
A10. Cardano s Formula 652
Bl. Derivation of the Kelvin Equation 653
B2. Equivalence of Chemical Potential ß and Gibbs Energy g for a Pure
Substance 654
B3. Phase Equilibrium Condition for a Pure Substance 655
B4. Relationship between Partial Molar Property and State Variable (Euler
Theorem) 657
B5. Chemical Potential in Mixtures 658
B6. Relationship between Second Virial Coefficients of Leiden and Berlin
Form 659
B7. Derivation of Expressions for the Speed of Sound for Ideal and Real
Gases 659
B8. Activity of the Solvent in an Electrolyte Solution 661
B9. Temperature Dependence of the Azeotropic Composition 662
Cl. (s-sid)T,p 664
C2. (h-hid)TiP 665
C3. (g-gid)r. p 665
Dl. Fugacity Coefficient for a Pressure-Explicit Equation of State 665
D2. Fugacity Coefficient of the Virial Equation (Leiden Form) 666
D3. Fugacity Coefficient of the Virial Equation (Berlin Form) 668
D4. Fugacity Coefficient of the Soave-Redlich-Kwong Equation of
State 669
D5. Fugacity Coefficient of the PSRK Equation of State 672
El. Derivation of the Wilson Equation 675
E2. Notation of the Wilson, NRTL, and UNIQUAC Equations in Process
Simulation Programs 678
E3. Inability of the Wilson Equation to Describe a Miscibility Gap 679
Fl. (h-tid) for Soave-Redlich-Kwong Equation of State 681
F2. (s-sld) for Soave-Redlich-Kwong Equation of State 683
F3. (g-gld) for Soave-Redlich-Kwong Equation of State 683
F4. Antiderivatives of Cp Correlations 683
Gl. Speed of Sound as Maximum Velocity in an Adiabatic Pipe with
Constant Cross-Flow Area 685
G2. Maximum Mass Flux of an Ideal Gas 685
References 687
Appendix D Standard Thermodynamic Properties for Selected Electrolyte
Compounds 689
Appendix E Regression Technique for Pure Component Data 691
Appendix F Regression Techniques for Binary Parameters 695
References 709
Appendix G Ideal Gas Heat Capacity Polynomial Coefhcients for Selected
Compounds 722
Appendix H UNIFAC Parameters 723
Appendix I Modified UNIFAC Parameters 715
Appendix J PSRK Parameters 722
Appendix K VTPR Parameters 725
References 727
Index 729
|
any_adam_object | 1 |
author_GND | (DE-588)108209148 |
building | Verbundindex |
bvnumber | BV039107542 |
classification_rvk | UG 1200 VC 6340 VE 6000 |
classification_tum | MTA 600f CHE 170f |
ctrlnum | (OCoLC)314729060 (DE-599)BSZ254401422 |
discipline | Chemie / Pharmazie Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02000nam a2200469 c 4500</leader><controlfield tag="001">BV039107542</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121112 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110629s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527312771</subfield><subfield code="9">978-3-527-31277-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)314729060</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ254401422</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-91S</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-1029</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 1200</subfield><subfield code="0">(DE-625)145614:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VC 6340</subfield><subfield code="0">(DE-625)147090:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 6000</subfield><subfield code="0">(DE-625)147131:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 170f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical thermodynamics for process simulation</subfield><subfield code="c">Jürgen Gmehling ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 735 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozesssimulation</subfield><subfield code="0">(DE-588)4176077-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Thermochemie</subfield><subfield code="0">(DE-588)4078260-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessentwicklung</subfield><subfield code="g">Technik</subfield><subfield code="0">(DE-588)4278925-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Thermochemie</subfield><subfield code="0">(DE-588)4078260-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Prozessentwicklung</subfield><subfield code="g">Technik</subfield><subfield code="0">(DE-588)4278925-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chemische Verfahrenstechnik</subfield><subfield code="0">(DE-588)4069941-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Thermochemie</subfield><subfield code="0">(DE-588)4078260-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Prozesssimulation</subfield><subfield code="0">(DE-588)4176077-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gmehling, Jürgen</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)108209148</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022651335&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022651335</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV039107542 |
illustrated | Illustrated |
indexdate | 2024-07-09T23:25:31Z |
institution | BVB |
isbn | 9783527312771 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022651335 |
oclc_num | 314729060 |
open_access_boolean | |
owner | DE-634 DE-91S DE-BY-TUM DE-703 DE-29T DE-11 DE-83 DE-355 DE-BY-UBR DE-526 DE-1029 DE-92 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
owner_facet | DE-634 DE-91S DE-BY-TUM DE-703 DE-29T DE-11 DE-83 DE-355 DE-BY-UBR DE-526 DE-1029 DE-92 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
physical | XXV, 735 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Chemical thermodynamics for process simulation Jürgen Gmehling ... Weinheim Wiley-VCH 2012 XXV, 735 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Prozesssimulation (DE-588)4176077-3 gnd rswk-swf Chemische Verfahrenstechnik (DE-588)4069941-9 gnd rswk-swf Thermochemie (DE-588)4078260-8 gnd rswk-swf Prozessentwicklung Technik (DE-588)4278925-4 gnd rswk-swf Thermochemie (DE-588)4078260-8 s Prozessentwicklung Technik (DE-588)4278925-4 s DE-604 Chemische Verfahrenstechnik (DE-588)4069941-9 s Prozesssimulation (DE-588)4176077-3 s 1\p DE-604 Gmehling, Jürgen 1946- Sonstige (DE-588)108209148 oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022651335&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chemical thermodynamics for process simulation Prozesssimulation (DE-588)4176077-3 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Thermochemie (DE-588)4078260-8 gnd Prozessentwicklung Technik (DE-588)4278925-4 gnd |
subject_GND | (DE-588)4176077-3 (DE-588)4069941-9 (DE-588)4078260-8 (DE-588)4278925-4 |
title | Chemical thermodynamics for process simulation |
title_auth | Chemical thermodynamics for process simulation |
title_exact_search | Chemical thermodynamics for process simulation |
title_full | Chemical thermodynamics for process simulation Jürgen Gmehling ... |
title_fullStr | Chemical thermodynamics for process simulation Jürgen Gmehling ... |
title_full_unstemmed | Chemical thermodynamics for process simulation Jürgen Gmehling ... |
title_short | Chemical thermodynamics for process simulation |
title_sort | chemical thermodynamics for process simulation |
topic | Prozesssimulation (DE-588)4176077-3 gnd Chemische Verfahrenstechnik (DE-588)4069941-9 gnd Thermochemie (DE-588)4078260-8 gnd Prozessentwicklung Technik (DE-588)4278925-4 gnd |
topic_facet | Prozesssimulation Chemische Verfahrenstechnik Thermochemie Prozessentwicklung Technik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022651335&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gmehlingjurgen chemicalthermodynamicsforprocesssimulation |