Blow-up in nonlinear Sobolev type equations:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2011
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications
15 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 648 S. graph. Darst. |
ISBN: | 9783110255270 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV037473332 | ||
003 | DE-604 | ||
005 | 20120203 | ||
007 | t | ||
008 | 110615s2011 d||| |||| 00||| eng d | ||
015 | |a 11,A24 |2 dnb | ||
016 | 7 | |a 1012190196 |2 DE-101 | |
020 | |a 9783110255270 |c geb. : EUR 129,95 |9 978-3-11-025527-0 | ||
035 | |a (OCoLC)734078360 | ||
035 | |a (DE-599)DNB1012190196 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-634 |a DE-824 |a DE-11 |a DE-83 |a DE-703 |a DE-M100 |a DE-12 |a DE-20 | ||
082 | 0 | |a 515.353 |2 22/ger | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 35M99 |2 msc | ||
084 | |a 35B44 |2 msc | ||
084 | |a 35G20 |2 msc | ||
084 | |a 35Q60 |2 msc | ||
084 | |a 35D30 |2 msc | ||
100 | 1 | |a Alʹšin, Aleksandr B. |e Verfasser |0 (DE-588)1017570418 |4 aut | |
245 | 1 | 0 | |a Blow-up in nonlinear Sobolev type equations |c Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2011 | |
300 | |a XII, 648 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter series in nonlinear analysis and applications |v 15 | |
650 | 0 | 7 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Blowing up |0 (DE-588)4508027-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudoparabolische Differentialgleichung |0 (DE-588)4176155-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pseudoparabolische Differentialgleichung |0 (DE-588)4176155-8 |D s |
689 | 0 | 1 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |D s |
689 | 0 | 2 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 0 | 3 | |a Lösung |g Mathematik |0 (DE-588)4120678-2 |D s |
689 | 0 | 4 | |a Blowing up |0 (DE-588)4508027-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Korpusov, Maksim Olegovič |e Verfasser |0 (DE-588)1017570582 |4 aut | |
700 | 1 | |a Svešnikov, Aleksej G. |d 1924- |e Verfasser |0 (DE-588)1012307123 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-11-025529-4 |
830 | 0 | |a De Gruyter series in nonlinear analysis and applications |v 15 |w (DE-604)BV005530011 |9 15 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022625036&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-022625036 |
Datensatz im Suchindex
_version_ | 1804145782628024320 |
---|---|
adam_text | IMAGE 1
CONTENTS
PREFACE V
0 INTRODUCTION 1
0.1 LIST OF EQUATIONS 1
0.1.1 ONE-DIMENSIONAL PSEUDOPARABOLIC EQUATIONS 1
0.1.2 ONE-DIMENSIONAL WAVE DISPERSIVE EQUATIONS 2
0.1.3 SINGULAR ONE-DIMENSIONAL PSEUDOPARABOLIC EQUATIONS 3 0.1.4
MULTIDIMENSIONAL PSEUDOPARABOLIC EQUATIONS 3
0.1.5 NEW NONLINEAR PSEUDOPARABOLIC EQUATIONS WITH SOURCES . . .. 5
0.1.6 MODEL NONLINEAR EQUATIONS OF EVEN ORDER 6
0.1.7 MULTIDIMENSIONAL EVEN-ORDER EQUATIONS 7
0.1.8 RESULTS AND METHODS OF PROVING THEOREMS ON THE NONEXISTENCE AND
BLOW-UP OF SOLUTIONS FOR PSEUDOPARABOLIC EQUATIONS . .. 10 0.2 STRUCTURE
OF THE MONOGRAPH 13
0.3 NOTATION 14
1 NONLINEAR MODEL EQUATIONS OF SOBOLEV TYPE 20
1 . 1 MATHEMATICAL MODELS OF QUASI-STATIONARY PROCESSES IN CRYSTALLINE
SEMI- CONDUCTORS 20
1.2 MODEL PSEUDOPARABOLIC EQUATIONS 27
1.2.1 NONLINEAR WAVES OF ROSSBY TYPE OR DRIFT MODES IN PLASMA AND
APPROPRIATE DISSIPATIVE EQUATIONS 27
1.2.2 NONLINEAR WAVES OF OSKOLKOV-BENJAMIN-BONA-MAHONY TYPE 29 1.2.3
MODELS OF ANISOTROPIC SEMICONDUCTORS 34
1.2.4 NONLINEAR SINGULAR EQUATIONS OF SOBOLEV TYPE 37
1.2.5 PSEUDOPARABOLIC EQUATIONS WITH A NONLINEAR OPERATOR ON TIME
DERIVATIVE 38
1.2.6 NONLINEAR NONLOCAL EQUATIONS 39
1.2.7 BOUNDARY-VALUE PROBLEMS FOR ELLIPTIC EQUATIONS WITH
PSEUDOPARABOLIC BOUNDARY CONDITIONS 46
1.3 DISRUPTION OF SEMICONDUCTORS AS THE BLOW-UP OF SOLUTIONS 48 1.4
APPEARANCE AND PROPAGATION OF ELECTRIC DOMAINS IN SEMICONDUCTORS . 56
1.5 MATHEMATICAL MODELS OF QUASI-STATIONARY PROCESSES IN CRYSTALLINE
ELEC- TROMAGNETIC MEDIA WITH SPATIAL DISPERSION 60
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1012190196
DIGITALISIERT DURCH
IMAGE 2
VIII CONTENTS
1.6 MODEL PSEUDOPARABOLIC EQUATIONS IN ELECTRIC MEDIA WITH SPATIAL DIS-
PERSION 64
1.7 MODEL PSEUDOPARABOLIC EQUATIONS IN MAGNETIC MEDIA WITH SPATIAL DIS-
PERSION 66
2 BLOW-UP OF SOLUTIONS OF NONLINEAR EQUATIONS OF SOBOLEV TYPE 69 2.1
FORMULATION OF PROBLEMS 69
2.2 PRELIMINARY DEFINITIONS, CONDITIONS, AND AUXILIARY LEMMAS 70 2.3
UNIQUE SOLVABILITY OF PROBLEM (2.1) IN THE WEAK GENERALIZED SENSE AND
BLOW-UP OF ITS SOLUTIONS 78
2.4 UNIQUE SOLVABILITY OF PROBLEM (2.1) IN THE STRONG GENERALIZED SENSE
AND BLOW-UP OF ITS SOLUTIONS 101
2.5 UNIQUE SOLVABILITY OF PROBLEM (2.2) IN THE WEAK GENERALIZED SENSE
AND ESTIMATES OF TIME AND RATE OF THE BLOW-UP OF ITS SOLUTIONS I LL 2.6
STRONG SOLVABILITY OF PROBLEM (2.2) IN THE CASE WHERE B = 0 127 2.7
EXAMPLES 133
2.8 INITIAL-BOUNDARY-VALUE PROBLEM FOR A NONLINEAR EQUATION WITH DOUBLE
NONLINEARITY OF TYPE (2.1) 141
2.8.1 LOCAL SOLVABILITY OF PROBLEM (2.131)-(2.133)IN THE WEAK GEN-
ERALIZED SENSE 142
2.8.2 BLOW-UP OF SOLUTIONS 159
2.9 PROBLEM FOR A STRONGLY NONLINEAR EQUATION OF TYPE (2.2) WITH
INFERIOR NONLINEARITY 164
2.9.1 UNIQUE WEAK SOLVABILITY OF PROBLEM (2.185) 165
2.9.2 SOLVABILITY IN A FINITE CYLINDER AND BLOW-UP FOR A FINITE TIME . .
177 2.9.3 RATE OF THE BLOW-UP OF SOLUTIONS 183
2.10 PROBLEM FOR A SEMILINEAR EQUATION OF THE FORM (2.2) 187
2.10.1 BLOW-UP OF CLASSICAL SOLUTIONS 187
2.11 ON SUFFICIENT CONDITIONS OF THE BLOW-UP OF SOLUTIONS OF THE
BOUSSINESQ EQUATION WITH SOURCES AND NONLINEAR DISSIPATION 196
2.11.1 LOCAL SOLVABILITY OF STRONG GENERALIZED SOLUTIONS 197 2.11.2
BLOW-UP OF SOLUTIONS 200
2.12 SUFFICIENT CONDITIONS OF THE BLOW-UP OF SOLUTIONS OF
INITIAL-BOUNDARY- VALUE PROBLEMS FOR A STRONGLY NONLINEAR
PSEUDOPARABOLIC EQUATION OF ROSENAU TYPE 203
2.12.1 LOCAL SOLVABILITY OF THE PROBLEM IN THE STRONG GENERALIZED SENSE
203
2.12.2 BLOW-UP OF STRONG SOLUTIONS OF PROBLEM (2.288)-(2.289) AND
SOLVABILITY IN ANY FINITE CYLINDER 211
2.12.3 PHYSICAL INTERPRETATION 215
IMAGE 3
CONTENTS IX
3 BLOW-UP OF SOLUTIONS OF STRONGLY NONLINEAR SOBOLEV-TYPE WAVE EQUA-
TIONS AND EQUATIONS WITH LINEAR DISSIPATION 216
3.1 FORMULATION OF PROBLEMS 216
3.2 PRELIMINARY DEFINITIONS AND CONDITIONS AND AUXILIARY LEMMA 217 3.3
UNIQUE SOLVABILITY OF PROBLEM (3.1) IN THE WEAK GENERALIZED SENSE AND
BLOW-UP OF ITS SOLUTIONS 219
3.4 UNIQUE SOLVABILITY OF PROBLEM (3.1) IN THE STRONG GENERALIZED SENSE
AND BLOW-UP OF ITS SOLUTIONS 244
3.5 UNIQUE SOLVABILITY OF PROBLEM (3.2) IN THE WEAK GENERALIZED SENSE
AND BLOW-UP OF ITS SOLUTIONS 254
3.6 UNIQUE SOLVABILITY OF PROBLEM (3.2) IN THE STRONG GENERALIZED SENSE
AND BLOW-UP OF ITS SOLUTIONS 273
3.7 EXAMPLES 278
3.8 ON CERTAIN INITIAL-BOUNDARY-VALUE PROBLEMS FOR QUASILINEAR WAVE
EQUA- TIONS OF THE FORM (3.2) 288
3.8.1 LOCAL SOLVABILITY IN THE STRONG GENERALIZED SENSE OF PROBLEMS
(3.141M3.143) 288
3.8.2 BLOW-UP OF SOLUTIONS 295
3.8.3 BREAKDOWN OF WEAKENED SOLUTIONS OF PROBLEM (3.141) . . .. 302 3.9
ON AN INITIAL-BOUNDARY-VALUE PROBLEM FOR A STRONGLY NONLINEAR EQUA- TION
OF THE TYPE (3.1) (GENERALIZED BOUSSINESQ EQUATION) 308 3.9.1 UNIQUE
SOLVABILITY OF THE PROBLEM IN THE WEAK SENSE 309
3.9.2 BLOW-UP OF SOLUTIONS AND THE GLOBAL SOLVABILITY OF THE PROBLEM 315
3.10 BLOW-UP OF SOLUTIONS OF A CLASS OF QUASILINEAR WAVE DISSIPATIVE
PSEU- DOPARABOLIC EQUATIONS WITH SOURCES 320
3.10.1 UNIQUE LOCAL SOLVABILITY OF THE PROBLEM IN THE STRONG SENSE AND
BLOW-UP OF ITS SOLUTIONS 320
3.10.2 EXAMPLES 327
3.11 BLOW-UP OF SOLUTIONS OF THE OSKOLKOV-BENJAMIN-BONA-MAHONY- BURGERS
EQUATION WITH A CUBIC SOURCE 329
3.11.1 UNIQUE LOCAL SOLVABILITY OF THE PROBLEM 330
3.11.2 GLOBAL SOLVABILITY AND THE BLOW-UP OF SOLUTIONS 333
3.11.3 PHYSICAL INTERPRETATION OF THE OBTAINED RESULTS 337
3.12 ON GENERALIZED BENJAMIN-BONA-MAHONY-BURGERS EQUATION WITH
PSEUDO-LAPLACIAN 337
3.12.1 BLOW-UP OF STRONG GENERALIZED SOLUTIONS 337
3.12.2 PHYSICAL INTERPRETATION OF THE OBTAINED RESULTS 340
3.13 SUFFICIENT, CLOSE TO NECESSARY, CONDITIONS OF THE BLOW-UP OF
SOLUTIONS OF ONE PROBLEM WITH PSEUDO-LAPLACIAN 341
3.13.1 BLOW-UP OF STRONG GENERALIZED SOLUTIONS 341
3.13.2 PHYSICAL INTERPRETATION OF THE OBTAINED RESULTS 345
IMAGE 4
CONTENTS
3.14 SUFFICIENT, CLOSE TO NECESSARY, CONDITIONS OF THE BLOW-UP OF
SOLUTIONS OF STRONGLY NONLINEAR GENERALIZED BOUSSINESQ EQUATION 345
BLOW-UP OF SOLUTIONS OF STRONGLY NONLINEAR, DISSIPATIVE WAVE SOBOLEV-
TYPE EQUATIONS WITH SOURCES 357
4.1 INTRODUCTION. STATEMENT OF PROBLEM 357
4.2 UNIQUE SOLVABILITY OF PROBLEM (4.1) IN THE WEAK GENERALIZED SENSE
AND BLOW-UP OF ITS SOLUTIONS 358
4.3 UNIQUE SOLVABILITY OF PROBLEM (4.1) IN THE STRONG GENERALIZED SENSE
AND BLOW-UP OF ITS SOLUTIONS 380
4.4 EXAMPLES 385
4.5 BLOW-UP OF SOLUTIONS OF A SOBOLEV-TYPE WAVE EQUATION WITH NONLOCAL
SOURCES 391
4.5.1 UNIQUE LOCAL SOLVABILITY OF THE PROBLEM 391
4.5.2 BLOW-UP OF STRONG GENERALIZED SOLUTIONS 398
4.6 BLOW-UP OF SOLUTIONS OF A STRONGLY NONLINEAR EQUATION OF SPIN WAVES
. 402 4.6.1 UNIQUE LOCAL SOLVABILITY IN THE STRONG GENERALIZED SENSE . .
. . 403 4.6.2 BLOW-UP OF STRONG GENERALIZED SOLUTIONS AND THE GLOBAL
SOLV- ABILITY 412
4.6.3 PHYSICAL INTERPRETATION OF THE OBTAINED RESULTS 417
4.7 BLOW-UP OF SOLUTIONS OF AN INITIAL-BOUNDARY-VALUE PROBLEM FOR A
STRONGLY NONLINEAR, DISSIPATIVE EQUATION OF THE FORM (4.1) 417 4.7.1
LOCAL UNIQUE SOLVABILITY IN THE WEAK GENERALIZED SENSE . . .. 418 4.7.2
UNIQUE SOLVABILITY OF THE PROBLEM AND BLOW-UP OF ITS SOLUTION
FOR A FINITE TIME 435
SPECIAL PROBLEMS FOR NONLINEAR EQUATIONS OF SOBOLEV TYPE 439
5.1 NONLINEAR NONLOCAL PSEUDOPARABOLIC EQUATIONS 439
5.1.1 GLOBAL-ON-TIME SOLVABILITY OF THE PROBLEM 439
5.1.2 GLOBAL-ON-TIME SOLVABILITY OF THE PROBLEM IN THE STRONG GEN-
ERALIZED SENSE IN THE CASE Q 1 469
5.1.3 ASYMPTOTICBEHAVIOROFSOLUTIONSOFPROBLEM(5.1),(5.2)ASI - * +OO IN
THE CASE Q 0 471
5.2 BLOW-UP OF SOLUTIONS OF NONLINEAR PSEUDOPARABOLIC EQUATIONS WITH
SOURCES OF THE PSEUDO-LAPLACIAN TYPE 475
5.2.1 BLOW-UP OF WEAKENED SOLUTIONS OF PROBLEM (5.77) 476
5.2.2 BLOW-UP AND THE GLOBAL-ON-TIME SOLVABILITY OF PROBLEM (5.78) 477
5.2.3 BLOW-UP OF SOLUTIONS OF PROBLEM (5.79) 479
5.2.4 BLOW-UP OF WEAKENED SOLUTIONS OF PROBLEMS (5.80) AND (5.81) 482
5.2.5 INTERPRETATION OF THE OBTAINED RESULTS 484
IMAGE 5
CONTENTS XI
5.3 BLOW-UP OF SOLUTIONS OF PSEUDOPARABOLIC EQUATIONS WITH FAST INCREAS-
ING NONLINEARITIES 484
5.3.1 LOCAL SOLVABILITY AND BLOW-UP FOR A FINITE TIME OF SOLUTIONS OF
PROBLEMS (5.112) AND (5.113) 485
5.3.2 LOCAL SOLVABILITY AND BLOW-UP FOR A FINITE TIME OF SOLUTIONS OF
PROBLEM (5.114) 492
5.4 BLOW-UP OF SOLUTIONS OF NONHOMOGENEOUS NONLINEAR PSEUDOPARABOLIC
EQUATIONS 496
5.4.1 UNIQUE LOCAL SOLVABILITY OF THE PROBLEM 496
5.4.2 BLOW-UP OF STRONG GENERALIZED SOLUTIONS OF PROBLEM (5.154)-
(5.155) 499
5.4.3 BLOW-UP OF CLASSICAL SOLUTIONS OF PROBLEM (5.154)-(5.155) . . 502
5.5 BLOW-UP OF SOLUTIONS OF A NONLINEAR NONLOCAL PSEUDOPARABOLIC
EQUATION 503 5.5.1 UNIQUE LOCAL SOLVABILITY OF THE PROBLEM 504
5.5.2 BLOW-UP AND GLOBAL SOLVABILITY OF PROBLEM (5.177) 506 5.5.3
BLOW-UP RATE FOR PROBLEM (5.177) UNDER THE CONDITION Q = 0 . 509 5.6
EXISTENCE OF SOLUTIONS OF THE LAPLACE EQUATION WITH NONLINEAR DY- NAMIC
BOUNDARY CONDITIONS 511
5.6.1 REDUCTION THE PROBLEM TO THE SYSTEM OF THE INTEGRAL EQUATIONS 511
5.6.2 GLOBAL-ON-TIME SOLVABILITY AND THE BLOW-UP OF SOLUTIONS . .. 517
5.7 CONDITIONS OF THE GLOBAL-ON-TIME SOLVABILITY OF THE CAUCHY PROBLEM
FOR A SEMILINEAR PSEUDOPARABOLIC EQUATION 525
5.7.1 REDUCTION OF THE PROBLEM TO AN INTEGRAL EQUATION 525
5.7.2 THEOREMS ON THE EXISTENCE/NONEXISTENCE OF GLOBAL-ON-TIME SO-
LUTIONS OF THE INTEGRAL EQUATION (5.219) 527
5.8 SUFFICIENT CONDITIONS OF THE BLOW-UP OF SOLUTIONS OF THE BOUSSINESQ
EQUATION WITH NONLINEAR NEUMANN BOUNDARY CONDITION 537
6 NUMERICAL METHODS OF SOLUTION OF INITIAL-BOUNDARY-VALUE PROBLEMS FOR
SOBOLEV-TYPE EQUATIONS 543
6.1 NUMERICAL SOLUTION OF PROBLEMS FOR LINEAR EQUATIONS 543
6.1.1 DYNAMIC POTENTIALS FOR ONE EQUATION 544
6.1.2 SOLVABILITY OF DIRICHLET PROBLEM 548
6.2 NUMERICAL METHOD OF SOLVING INITIAL-BOUNDARY-VALUE PROBLEMS FOR NON-
LINEAR PSEUDOPARABOLIC EQUATIONS BY THE ROSENBROCK SCHEMES 554 6.2.1
STIFF METHOD OF LINES 554
6.2.2 STIFF SYSTEMS OF ODE AND METHODS OF SOLVING THEM 555
6.2.3 STIFF STABILITY 555
6.2.4 SCHEMES OF ROSENBROCK TYPE 555
6.2.5 E-EMBEDDING METHOD 557
IMAGE 6
XII CONTENTS
6.3 RESULTS OF BLOW-UP NUMERICAL SIMULATION 560
6.3.1 BLOW-UP OF PSEUDOPARABOLIC EQUATIONS WITH A LINEAR OPERATOR BY THE
TIME DERIVATIVE 561
6.3.2 BLOW-UP OF STRONGLY NONLINEAR PSEUDOPARABOLIC EQUATIONS . . 566
6.3.3 BLOW-UP OF EQUATIONS WITH NONLOCAL TERMS (COEFFICIENTS OF THE
EQUATION DEPEND ON THE NORM OF THE FUNCTION) 575
APPENDIX A SOME FACTS OF FUNCTIONAL ANALYSIS 581
A.I SOBOLEV SPACES W S P(Q), WQ P(Q), AND W ^ F R) 581
A.2 WEAK AND *-WEAK CONVERGENCE 583
A.3 WEAK AND STRONG MEASURABILITY. BOCHNER INTEGRAL 584
A.4 SPACES OF INTEGRABLE FUNCTIONS AND DISTRIBUTIONS 585
A.5 NEMYTSKII OPERATOR. KRASNOSELSKII THEOREM 586
A.6 INEQUALITIES 588
A.7 OPERATOR CALCULUS 589
A.8 FIXED-POINT THEOREMS 589
A.9 WEAKENED SOLUTIONS OF THE POISSON EQUATION 589
A. 10 INTERSECTIONS AND SUMS OF BANACH SPACES 591
A. 11 CLASSICAL, WEAKENED, STRONG GENERALIZED, AND WEAK GENERALIZED
SOLU- TIONS OF EVOLUTIONARY PROBLEMS 592
A. 12 TWO EQUIVALENT FORMULATIONS OF WEAK SOLUTIONS IN L 2 (0,T; IB) 594
A. 13 GATEAUX AND FRECHET DERIVATIVES OF NONLINEAR OPERATORS 596 A. 14
ON THE GRADIENT OF A FUNCTIONAL 604
A. 15 LIONS COMPACTNESS LEMMA 606
A.16 BROWDER-MINTY THEOREM 607
A. 17 SUFFICIENT CONDITIONS OF THE INDEPENDENCE OF THE INTERVAL, ON
WHICH A SOLUTION OF A SYSTEM OF DIFFERENTIAL EQUATIONS EXISTS, OF THE
ORDER OF THIS SYSTEM 608
A. 18 ON THE CONTINUITY OF SOME INVERSE MATRICES 610
APPENDIX B TO CHAPTER 6 613
B.I CONVERGENCE OF THE E-EMBEDDING METHOD WITH THE CROS SCHEME . . . 613
BIBLIOGRAPHY 621
INDEX 647
|
any_adam_object | 1 |
author | Alʹšin, Aleksandr B. Korpusov, Maksim Olegovič Svešnikov, Aleksej G. 1924- |
author_GND | (DE-588)1017570418 (DE-588)1017570582 (DE-588)1012307123 |
author_facet | Alʹšin, Aleksandr B. Korpusov, Maksim Olegovič Svešnikov, Aleksej G. 1924- |
author_role | aut aut aut |
author_sort | Alʹšin, Aleksandr B. |
author_variant | a b a ab aba m o k mo mok a g s ag ags |
building | Verbundindex |
bvnumber | BV037473332 |
classification_rvk | SK 540 |
ctrlnum | (OCoLC)734078360 (DE-599)DNB1012190196 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02539nam a2200577 cb4500</leader><controlfield tag="001">BV037473332</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110615s2011 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">11,A24</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1012190196</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110255270</subfield><subfield code="c">geb. : EUR 129,95</subfield><subfield code="9">978-3-11-025527-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)734078360</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1012190196</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-M100</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35M99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35B44</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35G20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Q60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35D30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alʹšin, Aleksandr B.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1017570418</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Blow-up in nonlinear Sobolev type equations</subfield><subfield code="c">Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 648 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">15</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudoparabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4176155-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudoparabolische Differentialgleichung</subfield><subfield code="0">(DE-588)4176155-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Blowing up</subfield><subfield code="0">(DE-588)4508027-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korpusov, Maksim Olegovič</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1017570582</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Svešnikov, Aleksej G.</subfield><subfield code="d">1924-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1012307123</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-11-025529-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">15</subfield><subfield code="w">(DE-604)BV005530011</subfield><subfield code="9">15</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022625036&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022625036</subfield></datafield></record></collection> |
id | DE-604.BV037473332 |
illustrated | Illustrated |
indexdate | 2024-07-09T23:24:55Z |
institution | BVB |
isbn | 9783110255270 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022625036 |
oclc_num | 734078360 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-634 DE-824 DE-11 DE-83 DE-703 DE-M100 DE-12 DE-20 |
owner_facet | DE-19 DE-BY-UBM DE-634 DE-824 DE-11 DE-83 DE-703 DE-M100 DE-12 DE-20 |
physical | XII, 648 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | de Gruyter |
record_format | marc |
series | De Gruyter series in nonlinear analysis and applications |
series2 | De Gruyter series in nonlinear analysis and applications |
spelling | Alʹšin, Aleksandr B. Verfasser (DE-588)1017570418 aut Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov Berlin [u.a.] de Gruyter 2011 XII, 648 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier De Gruyter series in nonlinear analysis and applications 15 Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd rswk-swf Blowing up (DE-588)4508027-6 gnd rswk-swf Anfangsrandwertproblem (DE-588)4001990-1 gnd rswk-swf Lösung Mathematik (DE-588)4120678-2 gnd rswk-swf Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd rswk-swf Pseudoparabolische Differentialgleichung (DE-588)4176155-8 s Cauchy-Anfangswertproblem (DE-588)4147404-1 s Anfangsrandwertproblem (DE-588)4001990-1 s Lösung Mathematik (DE-588)4120678-2 s Blowing up (DE-588)4508027-6 s DE-604 Korpusov, Maksim Olegovič Verfasser (DE-588)1017570582 aut Svešnikov, Aleksej G. 1924- Verfasser (DE-588)1012307123 aut Erscheint auch als Online-Ausgabe 978-3-11-025529-4 De Gruyter series in nonlinear analysis and applications 15 (DE-604)BV005530011 15 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022625036&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Alʹšin, Aleksandr B. Korpusov, Maksim Olegovič Svešnikov, Aleksej G. 1924- Blow-up in nonlinear Sobolev type equations De Gruyter series in nonlinear analysis and applications Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Blowing up (DE-588)4508027-6 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd Lösung Mathematik (DE-588)4120678-2 gnd Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd |
subject_GND | (DE-588)4147404-1 (DE-588)4508027-6 (DE-588)4001990-1 (DE-588)4120678-2 (DE-588)4176155-8 |
title | Blow-up in nonlinear Sobolev type equations |
title_auth | Blow-up in nonlinear Sobolev type equations |
title_exact_search | Blow-up in nonlinear Sobolev type equations |
title_full | Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
title_fullStr | Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
title_full_unstemmed | Blow-up in nonlinear Sobolev type equations Alexander B. Al'shin ; Maxim O. Korpusov ; Alexey G. Sveshnikov |
title_short | Blow-up in nonlinear Sobolev type equations |
title_sort | blow up in nonlinear sobolev type equations |
topic | Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Blowing up (DE-588)4508027-6 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd Lösung Mathematik (DE-588)4120678-2 gnd Pseudoparabolische Differentialgleichung (DE-588)4176155-8 gnd |
topic_facet | Cauchy-Anfangswertproblem Blowing up Anfangsrandwertproblem Lösung Mathematik Pseudoparabolische Differentialgleichung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022625036&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV005530011 |
work_keys_str_mv | AT alʹsinaleksandrb blowupinnonlinearsobolevtypeequations AT korpusovmaksimolegovic blowupinnonlinearsobolevtypeequations AT svesnikovaleksejg blowupinnonlinearsobolevtypeequations |