Black hole astrophysics: the engine paradigm
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester, UK
Praxis Publishing
[2012]
Heidelberg ; New York ; Dordrecht ; London Springer [2012] |
Schriftenreihe: | Springer-Praxis books in astronomy and planetary sciences
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | xxxi, 927 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9783642019357 9783642019364 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037465508 | ||
003 | DE-604 | ||
005 | 20160503 | ||
007 | t | ||
008 | 110608s2012 gw a||| |||| 00||| eng d | ||
015 | |a 10,N28 |2 dnb | ||
016 | 7 | |a 1004243847 |2 DE-101 | |
020 | |a 9783642019357 |c hbk. |9 978-3-642-01935-7 | ||
020 | |a 9783642019364 |c eBook |9 978-3-642-01936-4 | ||
035 | |a (OCoLC)734071455 | ||
035 | |a (DE-599)DNB1004243847 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-92 |a DE-11 |a DE-706 | ||
082 | 0 | |a 523.8875 |2 22/ger | |
084 | |a US 2200 |0 (DE-625)146682: |2 rvk | ||
100 | 1 | |a Meier, David L. |e Verfasser |0 (DE-588)1025847911 |4 aut | |
245 | 1 | 0 | |a Black hole astrophysics |b the engine paradigm |c David L. Meier |
264 | 1 | |a Chichester, UK |b Praxis Publishing |c [2012] | |
264 | 1 | |a Heidelberg ; New York ; Dordrecht ; London |b Springer |c [2012] | |
264 | 4 | |c © 2012 | |
300 | |a xxxi, 927 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer-Praxis books in astronomy and planetary sciences | |
650 | 0 | 7 | |a Schwarzes Loch |0 (DE-588)4053793-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schwarzes Loch |0 (DE-588)4053793-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.1007/978-3-642-01936-4 |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3500748&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022617380&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-022617380 |
Datensatz im Suchindex
_version_ | 1805096147684950016 |
---|---|
adam_text |
Titel: Black hole astrophysics
Autor: Meier, David L
Jahr: 2012
Contents
Preface. xix
List of Figures.xxiii
List of Tables.xxxi
Part I Observations of Black Hole Engines
1 Recognizing Black Holes. 3
1.1 Energy Output. 5
1.2 Compactness. 6
1.3 Engine Mass. 7
1.3.1 Binary X-Ray Star Masses . 7
1.3.2 Masses of Black Holes in the Centers of Stellar Systems . 7
1.3.3 Masses from Microlensing of Isolated Black Holes in the
Galaxy. 10
1.4 Relativistic Motion. 11
2 Macroquasars: Supermassive Black Holes in the Centers of Galaxies 13
2.1 The Early Days of Active Galactic Nuclei Research and Seyfert
Galaxies. 14
2.2 Radio Galaxies and Classical Quasars: Supermassive Black Holes
with Jets. 17
2.2.1 Extended Radio Galaxies. 17
2.2.2 Extended Radio QSRs: Unification by Brightness Contrast . 23
2.2.3 Compact Radio QSRs: Unification with Extended QSRs
by Viewing Angle. 25
2.2.4 Cosmic Evolution of Radio Galaxies and QSRs. 35
2.3 Seyfert Galaxies and Quasi-Stellar Objects: Supermassive Black
Holes with Weak or No Jets. 39
2.3.1 Unification of Classical Seyfert Galaxies by Viewing Angle 39
2.3.2 The X-Ray Spectrum of Seyfert Nuclei. 39
Contents
2.3.3 Narrow-Line Seyfert 1 Galaxies. 42
2.3.4 Quasi-Stellar Objects. 42
2.3.5 Cosmic Evolution of Seyferts and QSOs. 52
2.4 Low-Luminosity Active Galactic Nuclei (LLAGN). 52
2.4.1 Dwarf Seyferts, LINERs, Transition-type, and HII Nuclei. 52
2.4.2 Radio Cores. 53
2.4.3 Weak-Lined Radio Galaxies. 53
2.4.4 Sgr A*: The Quiescent Black Hole Engine at the Center of
Our Galaxy. 54
2.5 "Inactive" Galactic Nuclei. 55
2.5.1 The M.-Mbuige Relation. 56
2.5.2 The M.- xv Relation. 57
2.5.3 The M,-rCOTe Relation . 57
2.6 Macroquasars - A Summary and Synthesis. 59
Microquasars: Black Holes (and Neutron Stars) of Stellar Mass in
Our Galaxy . 63
3.1 Isolated Neutron Stars: Pulsars and Magnetars. 65
3.1.1 "Normal" Pulsars. 65
3.1.2 Magnetars. 70
3.1.3 RRATs. 71
3.1.4 Geminga and Other Nearby Neutron Stars. 72
3.2 Neutron Stars with Companions: Neutron Stars in Binaries. 73
3.2.1 Neutron Star X-Ray Binaries . 73
3.2.2 The Strange Case of SS433. 81
3.2.3 Recycled Pulsars. 83
3.2.4 Binary Pulsars. 84
3.3 Neutron Stars in Formation: Supernovae. 84
3.4 Isolated Stellar-mass Black Holes: Twinkling of a Little Star. 87
3.5 Stellar-mass Black Holes with Companions: Black Hole Binary
Systems . 88
3.5.1 Black Hole X-Ray Binaries. 88
3.5.2 Classical Microquasars. 92
3.5.3 The Microquasar Explosion and the Relative and Absolute
Numbers of Neutron Stars and Black Holes. 99
3.6 Stellar-mass Black Holes in Formation: Gamma-Ray Bursts.101
3.6.1 The Long and Short of Gamma-Ray Bursts .101
3.6.2 Long-duration Gamma-Ray Bursts.102
3.6.3 Short-duration Gamma-Ray Bursts: The Neutron Star
Merger Model.109
3.6.4 Other Types of Gamma-Ray Bursts.Ill
3.6.5 The End of the World as We Know It?.112
Contents ix
4 Miniquasars: Elusive Black Holes of Intermediate Mass.115
4.1 Definition of an Intermediate Mass Black Hole (IMBH).116
4.2 First Type of IMBH Candidate: Ultra-Luminous X-Ray Sources
(ULXs) in Star-Forming Galaxies.116
4.2.1 Observational Properties of ULXs in Star-Forming Galaxies 117
4.2.2 Theoretical Reasons for Expecting IMBHs in Regions of
Rapid Star Formation.118
4.2.3 Temperature Problems: Black Hole Fever.119
4.2.4 Better ULX Spectral Fits.120
4.2.5 ULXs in Elliptical Galaxies .120
4.3 Second Type of IMBH Candidate: Kinematic and Dynamical
Evidence for IMBHs in Globular Cluster Cores in Our Galaxy and
the Andromeda Galaxy.121
4.3.1 Motivation.121
4.3.2 Observational Evidence.121
4.3.3 Weighty Problems .123
4.4 Third Type of IMBH Candidate: A Possible IMBH Near the
Center of the Milky Way .124
4.4.1 The Galactic Center in the Near-Infrared.125
4.4.2 The Need for a Second Black Hole at the Center of Our
Galaxy.125
4.4.3 The Discovery of a Possible Second Black Hole in the
Center of Our Galaxy.126
4.5 Fourth Type of IMBH Candidate: Low-Luminosity Hard
X-Ray/Radio Sources in the Galactic Bulge and Other Population
II Systems .126
4.5.1 Hard X-Ray Sources in the Galactic Bulge.126
4.5.2 Suggested Radio Searches for Low-Luminosity Miniquasars 128
4.6 Summary and Synthesis.128
Part II Physics of Black Hole Engines
5 Physics in Everyday Life: A Review of Newtonian Mechanics.133
5.1 Mechanics of Single Particles: Planetary Systems and Binary Stars . 133
5.1.1 Newton's Law of Conservation of Momentum.133
5.1.2 Newton's Law of Gravity .135
5.1.3 General Binary Star Motion in the Center-of-Mass Frame
of Reference.136
5.1.4 Motion of a Test Particle in a Gravitational Field.137
5.1.5 Motion of Two Comparable Masses in Each Other's
Gravitational Field: Orbits of Binary Planets and Stars.140
5.2 Mechanics of a System of Particles: Fluid Dynamics and the
Internal Structure of Stars.143
5.2.1 The Gravitational Force Produced by a Fluid - Inside and
Out.144
x Contents
5.2.2 Newtonian Conservation Laws for a Fluid in the
Lagrangian Frame .147
5.2.3 Newtonian Conservation Laws for a Fluid in the Inertial
Eulerian Frame.155
5.2.4 Simple Polytropic Stellar Structure.156
5.3 Summary.163
6 Geometry and Physics without Gravity: Special Relativity.165
6.1 Why Geometry? .165
6.2 Two-Dimensional Pythagorean Geometry.166
6.2.1 The Line Element.166
6.2.2 Line Element Has the Same Length in Any Coordinates . 167
6.2.3 Matrix Form for the Geometry Equations.169
6.2.4 A Word of Warning: Global vs. Local Transformations.174
6.3 Three-Dimensional Euclidean Geometry.175
6.4 Four-Dimensional Minkowski Geometry.177
6.4.1 The Four-Dimensional Minkowski Line Element.178
6.4.2 Time Dilation.179
6.4.3 The FitzGerald Contraction.179
6.4.4 Minkowski Metric is the Same for All Travelers .180
6.4.5 Working with Minkowski Geometry: Spacetime Diagrams
and Light Cones.181
6.4.6 The Meaning of the Proper Distance As: Proper Time.182
6.5 Mechanics in Four Dimensions.183
6.5.1 Mechanics of Single Particles in Four Dimensions.183
6.5.2 Fluid Mechanics in Four Dimensions.188
6.5.3 The Doppler Effect, the Doppler Factor, and "Beaming"_188
6.6 Electricity and Magnetism in Four Dimensions.191
6.6.1 Review of Electricity and Magnetism in the 3+1 Form.191
6.6.2 Electricity and Magnetism in Four-Dimensional, Covariant
Form .200
6.6.3 Summary of Section 6.6 .207
7 Physics in Curved Spacetime: General Relativity and Black Holes . 209
7.1 The Clash between Special Relativity and Newtonian Gravity, and
its Resolution.210
7.2 Curved Space and the Riemann Curvature Tensor.212
7.2.1 Simple Examples of Curved, and Not Curved, Space .212
7.2.2 Testing for Curvature Using the Riemann Tensor.213
7.3 A Quick Road to Einstein's Theory of Gravity.217
7.3.1 Determining the Form of the Gravitational Field Equations Q 217
7.3.2 Determining the Constant of Proportionality K.219
7.3.3 The Meaning of Gauge in Einstein's Theory of Gravity . 220
7.3.4 Curvature without Local Matter.221
7.3.5 E M in a General Four-Dimensional Curved Space.221
Contents
7.4 Four-Dimensional Schwarzschild Geometry: Non-Rotating Black
Holes.222
7.4.1 The Schwarzschild Metric and Schwarzschild Radius.222
7.4.2 Physics in Curved Schwarzschild Geometry.224
7.4.3 Motion in the Schwarzschild Metric .229
7.4.4 Only Schwarzschild-Hilbert Coordinates are Singular at
the Horizon, Not the Schwarzschild Metric.232
7.5 Four-Dimensional Kerr Geometry: Rotating Black Holes .234
7.5.1 The Kerr Metric in Boyer-Lindquist Coordinates .234
7.5.2 The Kerr Metric in Horizon-Penetrating Coordinates .242
7.6 Four-Dimensional Kerr-Newman Geometry: Rotating, Charged
Black Holes.244
7.7 A Return to Physics in Three-Space Plus Time: Saying Goodbye
to the Four-Dimensional Formalism.245
7.7.1 The General Non-Stationary "3+1" Metric.247
7.7.2 Electromagnetism in a Stationary "3+1" Metric .249
7.7.3 Return to Orthonormal Vectors in Stationary "3+1"
Metrics: Saying Goodbye to Contravariant Vectors and
1-Forms.250
Four-Dimensional Evolving Geometry: Gravitational Waves and
Gravitational Collapse.253
8.1 Plane Gravitational Waves.254
8.1.1 Basic Physics of Gravitational Waves .254
8.1.2 Plane Gravitational Waves in a Vacuum.256
8.1.3 Plane Gravitational Waves Generated by a Time-Varying
Stress-Energy Distribution .260
8.1.4 Example of a Gravitational Wave Source: A Close Binary
System of Point Masses.263
8.2 Nonlinear Gravitational Wave Sources and Numerical Relativity:
The Merger of Black Hole Binary Systems.269
8.2.1 The Different Phases of a Binary Merger and Methods
Used to Study Them.269
8.2.2 Simulating Colliding Black Holes on Supercomputers.270
8.2.3 Determining the Physics of Black Hole Systems by
Comparing Simulations and Observations.274
8.2.4 Astrophysics of Merging Black Holes from Gravitational
Wave Simulations: Black Hole Kick Velocities .275
8.3 Basic Gravitational Collapse: Formation of a Black Hole Horizon
in Collapsing Matter.277
8.3.1 The Equations for the Structure and Evolution of
Spherical, Adiabatic, Relativistic Stars and Gas Clouds_278
8.3.2 Collapse of Pressure-Free Dust to a Black Hole.281
8.3.3 More Realistic Collapse: Adiabatic Stars and Clouds with
Pressure.286
xii Contents
9 Nuts and Bolts of the Black Hole Engine: General Relativistic
Mechanics.291
9.1 Overview of General Relativistic Mechanics.292
9.1.1 Quantum Mechanics .292
9.1.2 Particle Mechanics.293
9.1.3 Statistical Mechanics.294
9.1.4 Kinetic Theory.295
9.1.5 General Relativistic (Electro-)Magnetohydrodynamics.297
9.2 The Conservation Laws of Relativistic Magnetohydrodynamics_298
9.2.1 Laws of Conservation of Rest Mass and Energy-Momentum 298
9.2.2 Laws of Conservation of Charge and Current.306
9.3 The Equations of State.312
9.3.1 Pressure and Internal Energy of Thermal Gases.313
9.3.2 Pressure and Internal Energy of Nonthermal Gases.320
9.3.3 Thermal Conductivity .322
9.3.4 Particle Viscosity.323
9.3.5 Turbulent Viscosity .324
9.3.6 Radiative Opacity.325
9.3.7 Radiative Heat Transport vs. Thermal Conduction.328
9.4 Optically Thin Radiative Emission.328
9.4.1 Bremsstrahlung (Free-Free Emission).329
9.4.2 Synchrotron.330
9.4.3 Comptonization .331
9.5 Useful Sets of Magnetohydrodynamic Equations for Solving
Black Hole Astrophysical Problems.335
9.5.1 Adiabatic Ideal Magnetohydrodynamics.335
9.5.2 Standard Force-Free Electrodynamics.340
9.5.3 An Alternate Form for FFDE: GRMHD with No Material
Forces .346
9.5.4 General Relativistic Hydrodynamics (GRHD).348
9.5.5 Special Relativistic Magnetohydrodynamics (SRMHD) . 348
9.5.6 Stationary, Axisymmetric SRMHD in Newtonian Gravity . 349
9.5.7 Non-Relativistic Dynamics.352
9.6 Waves and Instabilities in the Fluid Plasma.355
9.6.1 General Features of Wave Analysis.356
9.6.2 Non-Damped Waves .358
9.6.3 Instabilities in Non-Relativistic, Shearing HD and MHD
Flow.370
Part III Astrophysics of Black Hole Engines
10 Assembling the Engine Block: Formation of Black Holes in the
Universe.381
10.1 The Formation of Neutron Stars and the Synthesis of Heavy
Elements.382
xii Contents
9 Nuts and Bolts of the Black Hole Engine: General Relativistic
Mechanics.291
9.1 Overview of General Relativistic Mechanics.292
9.1.1 Quantum Mechanics .292
9.1.2 Particle Mechanics.293
9.1.3 Statistical Mechanics.294
9.1.4 Kinetic Theory.295
9.1.5 General Relativistic (Electro-)Magnetohydrodynamics.297
9.2 The Conservation Laws of Relativistic Magnetohydrodynamics_298
9.2.1 Laws of Conservation of Rest Mass and Energy-Momentum 298
9.2.2 Laws of Conservation of Charge and Current.306
9.3 The Equations of State.312
9.3.1 Pressure and Internal Energy of Thermal Gases.313
9.3.2 Pressure and Internal Energy of Nonthermal Gases.320
9.3.3 Thermal Conductivity .322
9.3.4 Particle Viscosity.323
9.3.5 Turbulent Viscosity .324
9.3.6 Radiative Opacity.325
9.3.7 Radiative Heat Transport vs. Thermal Conduction.328
9.4 Optically Thin Radiative Emission.328
9.4.1 Bremsstrahlung (Free-Free Emission).329
9.4.2 Synchrotron.330
9.4.3 Comptonization .331
9.5 Useful Sets of Magnetohydrodynamic Equations for Solving
Black Hole Astrophysical Problems.335
9.5.1 Adiabatic Ideal Magnetohydrodynamics.335
9.5.2 Standard Force-Free Electrodynamics.340
9.5.3 An Alternate Form for FFDE: GRMHD with No Material
Forces .346
9.5.4 General Relativistic Hydrodynamics (GRHD).348
9.5.5 Special Relativistic Magnetohydrodynamics (SRMHD) . 348
9.5.6 Stationary, Axisymmetric SRMHD in Newtonian Gravity . 349
9.5.7 Non-Relativistic Dynamics.352
9.6 Waves and Instabilities in the Fluid Plasma.355
9.6.1 General Features of Wave Analysis.356
9.6.2 Non-Damped Waves .358
9.6.3 Instabilities in Non-Relativistic, Shearing HD and MHD
Flow.370
Part III Astrophysics of Black Hole Engines
10 Assembling the Engine Block: Formation of Black Holes in the
Universe.381
10.1 The Formation of Neutron Stars and the Synthesis of Heavy
Elements.382
xiv Contents
11.2.1 Angular Momentum Accretion in Binary Systems.476
11.2.2 Angular Momentum Accretion onto Massive Black Holes
in AGN and Globular Clusters .477
11.2.3 Angular Momentum Accretion in Collapsed Supernova
Cores.480
12 The Combustion Chamber: Energy Generation by Gravitational
Accretion .483
12.1 Spherical Accretion and Winds.485
12.1.1 Physical Structure.485
12.1.2 Thermal Structure and Accretion Luminosity: The
Trapping Radius.490
12.1.3 Bondi Accretion vs. Begelman Accretion.491
12.2 Classical Turbulent Accretion Disk Theory.492
12.2.1 Physical Structure.493
12.2.2 Thermal Structure and Continuum Emission Spectrum.498
12.3 Magnetically-Dominated Accretion Disk Theory.530
12.3.1 The Case for Strong Magnetic Fields in the Center of
Low-Accretion Rate How.530
12.3.2 Magnetically-Advective (Transitional) Accretion Flow.532
12.3.3 Magnetically-Dominated Accretion Flows (MDAFs) .535
12.4 Magnetohydrodynamic Numerical Simulations of Accretion Flows . 547
12.4.1 The Current State of MRI Simulations.547
12.4.2 Local MRI Simulations.549
12.4.3 Semi-Local MRI Simulations.552
12.4.4 Global MRI Simulations.555
12.5 Chapter Summary.560
12.5.1 What We Know.560
12.5.2 What We Do Not Know.562
13 The Thermal Exhaust System: Radiation- and Thermally-Driven
Winds and Jets .563
13.1 Radiation-Driven Winds.564
13.1.1 Line-Driven, Sub-Eddington Winds.564
13.1.2 Continuum-Driven, Super-Eddington Winds.567
13.2 Thermally-Driven, ADIOS Winds: A Glimpse into the Disk-Wind
Interaction of All Advection-Dominated Accretion Flows.582
13.2.1 ADIOS Basics and Motivation.583
13.2.2 ADIOS Equations.583
13.2.3 ADIOS Models.585
13.3 Thermally-Driven Jets .586
13.3.1 Physical Structure.587
13.3.2 Plasma Conditions, Synchrotron Spectrum, and
Comparison with Data.589
Contents xv
14 The Non-Thermal Exhaust System I. Rotating Magnetospheres
that Drive the Turbo Exhaust.591
14.1 Isolated Pulsars: Rotating Neutron Star Magnetospheres with No
Accretion.592
14.1.1 Pulsar Basics: Dipole Radiation, Spindown Power, and
Light Cylinder Radius.592
14.1.2 The Basic Force-Free Pulsar Magnetosphere.594
14.2 Pulsars in Close Binary Systems: Rotating Neutron Star
Magnetospheres with Accretion .604
14.2.1 Plasma Flow onto Pulsars in the Accretion Regime.606
14.2.2 Plasma Flow onto Pulsars in the "Propeller" or Wind
Turbine Regime.608
14.3 "Isolated" Black Holes with Magnetospheres.609
14.3.1 No Strong Magnetic Fields around "Isolated" Black Holes. 610
14.3.2 Singular Surfaces of the Grad-Schliiter-Shafranov Equation 611
14.3.3 The Basic Force-Free Black Hole Magnetosphere.614
14.3.4 Numerical Models of Force-Free Black Hole
Magnetospheres.617
14.4 Black Hole Magnetospheres in the Presence of Accretion Flow . 622
14.4.1 Origin and Generic Structure of the Black Hole Magnetic
Field.622
14.4.2 Structure of a Magnetosphere with an Accretion Disk that
Does Not Reach the Black Hole.625
14.4.3 Structure of a Rotating Black Hole Magnetosphere with
an Accretion Disk that Reaches into the Ergosphere.635
14.4.4 Relativistic Plasma Outflow from a Pure Split Monopole
Magnetosphere.641
14.5 Jet Launching from Accretion Disks Only.642
14.5.1 Magnetocentrifugal (Alfven) Launching.642
14.5.2 Magnetic Pressure (Fast-Mode) and Gas Pressure
(Slow-Mode) Launching.645
14.5.3 The Magnetic Tower Mechanism: Fast-Mode Launching
with Closed Field Lines.646
15 The Non-Thermal Exhaust System n. Magnetic Winds and Jets.655
15.1 Magnetized Wind and Jet Theory: The Formation of Jets.655
15.1.1 Non-Relativistic, Cold MHD Wind and Jet Theory.656
15.1.2 Relativistic, Cold MHD Wind and Jet Theory.672
15.1.3 Non-Relativistic, Warm MHD Wind and Jet Theory.678
15.1.4 Relativistic, Warm MHD Wind and Jet Theory.692
15.2 Beyond the Magnetosonic Horizon: Propagation of Ballistic Jets . 700
15.2.1 Hydrodynamic Jets: A Model for FRII Sources.701
15.2.2 Magnetohydrodynamic Jets: A Model for Perhaps Many
FR I Sources.711
xvi Contents
15.2.3 Possible Scenarios for Behavior of Jets beyond the
Magnetosonic Horizon.724
16 Putting it All Together: Black Hole Engines of All Sizes.727
16.1 Neutron Stars: 1 M0 Near-Black Holes.727
16.1.1 Neutron Star Formation.727
16.1.2 Isolated Neutron Stars.731
16.1.3 Accreting Neutron Stars in Binary Systems .735
16.2 Stellar-mass (10-100 M0) Black Holes: Rosetta Stones for
Deciphering the Ultimate Engines.743
16.2.1 Stellar-mass Black Hole Formation.743
16.2.2 Black Hole Astrophysics in a Nutshell.746
16.2.3 Isolated Stellar-mass Black Holes Accreting from the
Interstellar Medium.760
16.2.4 Stellar-mass Black Holes Accreting in Binary Systems.762
16.3 Intermediate Mass (102-104 M©) Black Holes: What They Might
Look Like and How to Find Them .784
16.3.1 Formation of IMBHs.784
16.3.2 Accretion-Powered IMBHs in the Local Universe.786
16.4 Massive (105-107MQ) Black Holes in Spiral Bulges,
Pseudobulges, and Dwarf Ellipticals.789
16.4.1 A Proposed Model for the Central Engines of Seyfert Is
and Quasars, from First Principles.791
16.4.2 Important Clues to How Massive Black Holes Form and
Grow.801
16.4.3 Formation, Growth, and Fueling of MBHs in Mergers.802
16.4.4 Formation, Growth, and Fueling of MBHs without Mergers . 807
16.5 Supermassive (108-1010 MQ) Black Holes: The Ultimate Engines . 810
16.5.1 Formation, Growth, and Fueling of SMBHs.811
16.5.2 Growth of the Elliptical Stellar Bulge.813
16.5.3 Jet Production and Propagation in the Mighty Quasars.815
16.6 Summary: Black Holes in the Universe .823
16.6.1 Neutron Stars .826
16.6.2 Stellar-mass Black Holes.826
16.6.3 Intermediate Mass Black Holes .828
16.6.4 Massive Black Holes.828
16.6.5 Supermassive Black Holes .829
Appendices
A Mathematical Notation Used in this Book.833
A. 1 Vector and Tensor Notation for Two- and Three-Dimensional Spaces. 833
A. 1.1 Two- and Three-Dimensional Vector and 1-Form Notation. 833
A. 1.2 Tensor Notation .834
A.2 Vector and Tensor Notation for Four-Dimensional Spacetime.834
Contents xvii
A.2.1 Vector and 1 -Form Notation in Four-Dimensional Spacetime 834
A.2.2 Tensor Notation in Four-Dimensional Spacetime.835
A.3 Miscellaneous Notation.835
B Derivatives of Vectors and Tensors: Differential Geometry.837
B. 1 Covariant Gradients in Curved Spacetime.838
B.2 Divergences in Curved Spacetime.839
B.3 The Metric Has No Gradient or Divergence.840
C Derivation of the Adiabatic Relativistic Stellar Structure Equations. 841
C.l The Spherical Metric in Mass Coordinates.841
C.2 The Field Equations and Conservation Laws.842
C.3 The Adiabatic, Relativistic Stellar Evolution Equations.844
C.3.1 The Mass Shell Geometric Factor .844
C.3.2 The Density Equation .844
C.3.3 Conservation of Energy Equation.845
C.3.4 Equation of Motion in Mass Coordinates .845
C.3.5 Equation of Motion in Schwarzschild-Hilbert-like
Coordinates.846
D Derivation of the General Relativistic MHD Equations from Kinetic
Theory.847
D.l The Multi-Fluid Equations of General Relativistic
Magnetohydrodynamics.847
D.l.l The Zeroth Moment: Conservation of Particle Number.847
D. 1.2 The First Moment: Conservation of Particle Four-Momentum. 848
D.2 The One-Fluid Equations of General Relativistic
Magnetohydrodynamics.850
D.2.1 Conservation of Rest Mass and Four-Momentum.850
D.2.2 Conservation of Charge and Four-Current.851
E Derivation of the General Relativistic Grad-Schliiter-Shafranov
Equation.855
E.l The Magnetic Induction Equation.855
E.2 The Electric and Magnetic Field Equations.856
E.3 The Charge and Current Densities.857
E.4 The GSS Equation.858
F Derivation of the Equations for Stationary, Axisymmetric Ideal
SRMHD in Newtonian Gravity.859
F.l The Axisymmetric, Stationary Equation(s) Parallel to the
Magnetic Field.859
F. 1.1 Faraday's and Ohm's Laws and Conservation of Mass:
The Frozen-in Magnetic Field.860
F.l.2 Conservation of Specific Angular Momentum.862
F.1.3 Conservation of Specific Entropy.863
xviii Contents
F.1.4 Conservation of Specific Energy.863
F.2 The Axisymmetric, Stationary Equation(s) Normal to the
Magnetic Field.864
G Physical and Astrophysical Constants Used in this Book.865
References.867
Glossary .883
Index of Names.891
Subject Index.897 |
any_adam_object | 1 |
author | Meier, David L. |
author_GND | (DE-588)1025847911 |
author_facet | Meier, David L. |
author_role | aut |
author_sort | Meier, David L. |
author_variant | d l m dl dlm |
building | Verbundindex |
bvnumber | BV037465508 |
classification_rvk | US 2200 |
ctrlnum | (OCoLC)734071455 (DE-599)DNB1004243847 |
dewey-full | 523.8875 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 523 - Specific celestial bodies and phenomena |
dewey-raw | 523.8875 |
dewey-search | 523.8875 |
dewey-sort | 3523.8875 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV037465508</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160503</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110608s2012 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N28</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1004243847</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642019357</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-642-01935-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642019364</subfield><subfield code="c">eBook</subfield><subfield code="9">978-3-642-01936-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)734071455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1004243847</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">523.8875</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 2200</subfield><subfield code="0">(DE-625)146682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meier, David L.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1025847911</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Black hole astrophysics</subfield><subfield code="b">the engine paradigm</subfield><subfield code="c">David L. Meier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, UK</subfield><subfield code="b">Praxis Publishing</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg ; New York ; Dordrecht ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxi, 927 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer-Praxis books in astronomy and planetary sciences</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwarzes Loch</subfield><subfield code="0">(DE-588)4053793-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schwarzes Loch</subfield><subfield code="0">(DE-588)4053793-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1007/978-3-642-01936-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3500748&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022617380&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022617380</subfield></datafield></record></collection> |
id | DE-604.BV037465508 |
illustrated | Illustrated |
indexdate | 2024-07-20T11:10:32Z |
institution | BVB |
isbn | 9783642019357 9783642019364 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022617380 |
oclc_num | 734071455 |
open_access_boolean | |
owner | DE-20 DE-92 DE-11 DE-706 |
owner_facet | DE-20 DE-92 DE-11 DE-706 |
physical | xxxi, 927 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Praxis Publishing Springer |
record_format | marc |
series2 | Springer-Praxis books in astronomy and planetary sciences |
spelling | Meier, David L. Verfasser (DE-588)1025847911 aut Black hole astrophysics the engine paradigm David L. Meier Chichester, UK Praxis Publishing [2012] Heidelberg ; New York ; Dordrecht ; London Springer [2012] © 2012 xxxi, 927 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier Springer-Praxis books in astronomy and planetary sciences Schwarzes Loch (DE-588)4053793-6 gnd rswk-swf Schwarzes Loch (DE-588)4053793-6 s DE-604 Erscheint auch als Online-Ausgabe 10.1007/978-3-642-01936-4 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3500748&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022617380&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Meier, David L. Black hole astrophysics the engine paradigm Schwarzes Loch (DE-588)4053793-6 gnd |
subject_GND | (DE-588)4053793-6 |
title | Black hole astrophysics the engine paradigm |
title_auth | Black hole astrophysics the engine paradigm |
title_exact_search | Black hole astrophysics the engine paradigm |
title_full | Black hole astrophysics the engine paradigm David L. Meier |
title_fullStr | Black hole astrophysics the engine paradigm David L. Meier |
title_full_unstemmed | Black hole astrophysics the engine paradigm David L. Meier |
title_short | Black hole astrophysics |
title_sort | black hole astrophysics the engine paradigm |
title_sub | the engine paradigm |
topic | Schwarzes Loch (DE-588)4053793-6 gnd |
topic_facet | Schwarzes Loch |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3500748&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022617380&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT meierdavidl blackholeastrophysicstheengineparadigm |