Multiscale analysis of deformation and failure of materials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2011
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Microsystem and nanotechnology series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXVI, 481 S. |
ISBN: | 9780470744291 9780470972281 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV037435530 | ||
003 | DE-604 | ||
005 | 20110706 | ||
007 | t | ||
008 | 110603s2011 xxk |||| 00||| eng d | ||
010 | |a 2010025737 | ||
020 | |a 9780470744291 |c cloth |9 978-0-470-74429-1 | ||
020 | |a 9780470972281 |c oBook |9 978-0-470-97228-1 | ||
035 | |a (OCoLC)707189558 | ||
035 | |a (DE-599)BVBBV037435530 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 | ||
050 | 0 | |a TA417.6 | |
082 | 0 | |a 620.1/123 | |
084 | |a UF 3150 |0 (DE-625)145572: |2 rvk | ||
100 | 1 | |a Fan, Jinghong |e Verfasser |0 (DE-588)14318492X |4 aut | |
245 | 1 | 0 | |a Multiscale analysis of deformation and failure of materials |c Jinghong Fan |
250 | |a 1. publ. | ||
264 | 1 | |a Chichester |b Wiley |c 2011 | |
300 | |a XXVI, 481 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Microsystem and nanotechnology series | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Deformations (Mechanics) | |
650 | 4 | |a Materials |x Analysis |x Data processing | |
650 | 4 | |a Multivariate analysis | |
650 | 0 | 7 | |a Deformationsverhalten |0 (DE-588)4148995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bruchmechanik |0 (DE-588)4112837-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multivariate Analyse |0 (DE-588)4040708-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deformationsverhalten |0 (DE-588)4148995-0 |D s |
689 | 0 | 1 | |a Bruchmechanik |0 (DE-588)4112837-0 |D s |
689 | 0 | 2 | |a Multivariate Analyse |0 (DE-588)4040708-1 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-0-470-97227-4 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022587539&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-022587539 |
Datensatz im Suchindex
_version_ | 1804145744322494464 |
---|---|
adam_text | Contents
About the Author
xx¡
Series Preface
xxiii
Preface xxv
Abbreviations
xxvii
1
Introduction
1
1.1
Material Properties Based on Hierarchy of Material Structure
1
1.1.1
Property-structure Relationship at Fundamental Scale
1
1.1.2
Property-structure Relationship at Different Scales
2
1.1.3
Upgrading Products Based on Material Structure-property Relationships
2
1.1.4
Exploration of In-depth Mechanisms for Deformation
and Failure by Multiscale Modeling and Simulation
3
1.2
Overview of Multiscale Analysis
4
1.2.1
Objectives, Contents and Significance of Multiscale Analysis
4
1.2.2
Classification Based on Multiscale Modeling Schemes
4
1.2.3
Classification Based on the Linkage Feature at the Interface
Between Different Scales
5
1.3
Framework of Multiscale Analysis Covering a Large Range
of Spatial Scales
6
1.3.1
Two Classes of Spatial Multiscale Analysis
6
1.3.2
Links Between the Two Classes of Multiscale Analysis
6
1.3.3
Different Characteristics of Two Classes of Multiscale Analysis
7
1.3.4
Minimum Size of Continuum
7
1.4
Examples in Formulating Multiscale Models from Practice
7
1.4.1
Cyclic Creep (Ratcheting) Analysis of Pearlitic Steel Across
Micro/meso/macroscopic Scales
8
1.4.2
Multiscale Analysis for Brittle-ductile Transition
of Material Failure
10
1.5
Concluding Remarks
12
References
13
viii Contents
2 Basics
of Atomistic Simulation
15
2.1
The Role of Atomistic Simulation
15
2.1.1
Characteristics, History and Trends
15
2.1.2
Application Areas of Atomistic Simulation
16
2.1.3
An Outline of Atomistic Simulation Process
17
2.1.4
An Expression of Atomistic System
19
2.2
Interatomic Force and Potential Function
19
2.2.1
The Relation Between interatomic Force and Potential Function
19
2.2.2
Physical Background and Classifications of Potential Functions
20
2.3
Pair Potential
21
2.3.1
Lennard-Jones (LJ) Potential
22
2.3.2
The
6-12
Pair Potential
23
2.3.3
Morse Potential
24
2.3.4
Units for Atomistic Analysis and Atomic Units
(au)
25
2.4
Numerical Algorithms for Integration and Error Estimation
27
2.4.1
Motion Equation of Particles
27
2.4.2
Verlet
Numerical Algorithm
29
2.4.3
Velocity
Verlet
(W)
Algorithm
30
2.4.4
Other Algorithms
31
2.5
Geometric Model Development of Atomistic System
31
2.6
Boundary Conditions
35
2.6.1
Periodic Boundary Conditions (PBC)
35
2.6.2
Non-PBC and Mixed Boundary Conditions
36
2.7
Statistical Ensembles
37
2.7.1
Nve Ensemble
37
2.7.2
Nvt Ensemble
37
2.7.3
Npt Ensemble
38
2.8
Energy Minimization for Preprocessing and Statistical Mechanics
Data Analyses
39
2.8.1
Energy Minimization
39
2.8.2
Data Analysis Based on Statistical Mechanics
39
2.9
Statistical Simulation Using Monte Carlo Methods
40
2.9.1
Introduction of Statistical Method
41
2.9.2
Metropolis-Hastings Algorithm for Statics Problem
42
2.9.3
Dynamical Monte Carlo Simulations
43
2.9.4
Adsorption-desorption Equilibrium
43
2.10
Concluding Remarks
50
References
51
3
Applications of Atomistic Simulation in Ceramics and Metals
53
Part
3.1
Applications in Ceramics and Materials with Ionic and Covalent Bonds
53
3.1
Covalent and Ionic Potentials and Atomistic Simulation for Ceramics
53
3.1.1
Applications of High-performance Ceramics
53
3.1.2
Ceramic Atomic Bonds in Terms of Electronegativity
54
3.2
Born Solid Model for Ionic-bonding Materials
55
3.2.1
Born Model
55
3.2.2
Born-Mayer and Buckingham Potentials
55
Contents
j
3.3 Shell Model 56
3.4 Determination
of
Parameters
of Short-distance
Potential
for
Oxides 58
3.4.1 Basic
Assumptions
5g
3.4.2 General
Methods in Determining
Potential Parameters 59
3.4.3
Three
Basic
Methods for
Potential Parameter Determination
by
Experiments 50
3.5 Applications in
Ceramics: Defect Structure in Scandium Doped Ceria
Using Static Lattice Calculation
61
3.6
Applications in Ceramics: Combined Study of Atomistic Simulation
with XRD for Nonstoichiometry Mechanisms in Y3A15O,2 (YAG) Garnets
64
3.6.1
Background
64
3.6.2
Structure and Defect Mechanisms of YAG Garnets
65
3.6.3
Simulation Method and Results
66
3.7
Applications in Ceramics: Conductivity of the YSZ Oxide Fuel Electrolyte
and Domain Switching of Ferroelectric Ceramics Using MD
68
3.7.1
MD Simulation of the Motion of Oxygen Ions in SOFC
68
3.8
Tersoff and Brenner Potentials for Covalent Materials
71
3.8.1
Introduction of the Abell-Tersoff Bonder-order Approach
71
3.8.2
Tersoff and Brenner Potential
72
3.9
The Atomistic Stress and Atomistic-based Stress Measure
75
3.9.1
The Virial Stress Measure
76
3.9.2
The Computation Form for the Virial Stress
76
3.9.3
The Atomistic-based Stress Measure for Continuum
78
Part
3.2
Applications in Metallic Materials and Alloys
79
3.10
Metallic Potentials and Atomistic Simulation for Metals
79
3.11
Embedded Atom Methods
E
AM and MEAM
79
3.11.1
Basic EAM Formulation
79
3.11.2
EAM Physical Background
81
3.11.3
EAM Application for Hydrogen Embrittlement
82
3.11.4
Modified Embedded Atom Method (MEAM)
83
3.11.5
Summary and Discussions
85
3.12
Constructing Binary and High Order Potentials from Monoatomic Potentials
87
3.12.1
Determination of Parameters in LJ Pair Function for Unlike Atoms
by Lorentz-Berthelet Mixing Rule
88
3.12.2
Determination of Parameters in Morse and Exponential Potentials
for Unlike Atoms
88
3.12.3
Determination of Parameters in EAM Potentials for Alloys
89
3.12.4
Determination of Parameters in MEAM Potentials for Alloys
90
3.13
Application Examples of Metals: MD Simulation Reveals Yield Mechanism
of Metallic Nanowires
90
3.14
Collecting Data of Atomistic Potentials from the Internet Based on a Specific
Technical Requirement
92
3.14.1
Background About Galvanic Corrosion of Magnesium
and Nano-Ceramics Coating on Steel
93
3.14.2
Physical and Chemical Vapor Deposition to Produce Ceramics
Thin Coating Layers on Steel Substrate
93
Contents
3.14.3 Technical
Requirement for
Potentials
and Searching Results
94
3.14.4
Using Obtained Data for Potential Development and Atomistic
Simulation
95
Appendix 3.A Potential Tables for Oxides and Thin-Film Coating Layers
96
References
101
4
Quantum Mechanics and Its Energy Linkage with Atomistic Analysis
105
4.1
Determination of Uranium Dioxide Atomistic Potential and
the Significance of QM
105
4.2
Some Basic Concepts of QM
106
4.3
Postulates of QM
107
4.4
The Steady State
Schrödinger
Equation of a Single Particle
113
4.5
Example Solution: Square Potential Well with Infinite Depth
114
4.5.1
Observations and Discussions
115
4.6 Schrödinger
Equation of Multi-body Systems and Characteristics
of its Eigenvalues and Ground State Energy
116
4.6.1
General Expression of the
Schrödinger
Equation and Expectation
Value of Multi-body Systems
116
4.6.2
Example:
Schrödinger
Equation for Hydrogen Atom Systems
117
4.6.3
Variation Principle to Determine Approximate Ground State Energy
118
4.7
Three Basic Solution Methods for Multi-body Problems in QM
119
4.7.1
First-principle or
ab initio
Methods
120
4.7.2
An Approximate Method
120
4.8
Tight Binding Method
121
4.9
Hartree-Fock (HF) Methods
123
4.9.1
Hartree
Method for a Multi-body Problem
123
4.9.2
Hartree-Fock (HF) Method for the Multi-body Problem
124
4.10
Electronic Density Functional Theory (DFT)
125
4.11
Brief Introduction on Developing Interatomic Potentials
by DFT Calculations
127
4.11.1
Energy Linkage Between QM and Atomistic Simulation
127
4.11.2
More Information about Basis Set and Plane-wave Pseudopotential
Method for Determining Atomistic Potential
128
4.11.3
Using Spline Functions to Express Potential Energy Functions
128
4.11.4
A Systematic Method to Determine Potential Functions
by First-principle Calculations and Experimental Data
129
4.12
Concluding Remarks
130
Appendix
4.
A Solution to Isolated Hydrogen Atom
131
References
132
5
Concurrent Multiscak Analysis by Generalized Particle Dynamics Methods
133
5.1
Introduction
133
5.1.1
Existing Needs for Concurrent Multiscale Modeling
134
5.1.2
Expanding Model Size by Concurrent Multiscale Methods
134
5.1.3
Applications to Nanotechnology and Biotechnology
134
5.1.4
Plan for Study of Concurrent Multiscale Methods
134
Contents
x¡
5.2
The Geometric Model of the GP Method
135
5.3
Developing Natural Boundaries Between Domains of Different Scales
138
5.3.1
Two Imaginary Domains Next to the Scale Boundary
138
5.3.2
Neighbor-link Cells (NLC) of Imaginary Particles
139
5.3.3
Mechanisms for Seamless Transition
139
5.3.4
Linkage of Position Vectors at Different Scales by Spatial
and Temporal Averaging
140
5.3.5
Discussions
141
5.4
Verification of Seamless Transition via ID Model
141
5.5
An Inverse Mapping Method for Dynamics Analysis of Generalized
Particles
146
5.6
Applications of GP Method
150
5.7
Validation by Comparison of Dislocation Initiation and Evolution Predicted
byMDandGP
151
5.8
Validation by Comparison of Slip Patterns Predicted by MD and GP
155
5.9
Summary and Discussions
156
5.10
States of Art of Concurrent Multiscale Analysis
159
5.70.7
MAAD Concurrent Multiscale Method
159
5.10.2
Incompatibility Problems at Scale Boundary Illustrated with
the MAAD Method
160
5.10.3
Quasicontinuum (QC) Method
161
5.10.4
Coupling Atomistic Analysis with Discrete Dislocation (CADD)
Method
161
5.10.5
Existing Efforts to Eliminate Artificial Phenomena at the Boundary
162
5.70.6
Embedded Statistical Coupling Method (ESCM) with Comments
on Direct Coupling (DC) Methods
162
5.70.7
Conclusion
163
5.11
Concluding Remarks
164
References
164
6
Quasicontinuum Concurrent and Semi-analytical Hierarchical
Multiscale Methods Across Atoms/Continuum
167
6.1
Introduction
167
Part
6.1
Basic Energy Principle and Numerical Solution Techniques in Solid
Mechanics
168
6.2
Principle of Minimum Potential Energy of Solids and Structures
168
6.2.7
Strain Energy Density
Є
169
6.2.2
Work Potential
169
6.3
Essential Points of Finite Element Methods
170
6.3.1
Discretization of Continuum Domain Bc into Finite Elements
170
6.3.2
Using Gaussian Quadrature to Calculate Element Energy
171
6.3.3
Work Potential Expressed by Node Displacement Matrix
172
6.3.4
Total Potential Energy
Π
Expressed by Node Displacement Matrix
173
6.3.5
Developing Simultaneous Algebraic Equations for Nodal
Displacement Matrix
175
Contents
Part
6.2
Quasicontinuum (QC) Concurrent Method of Multiscale Analysis
178
6.4
The Idea and Features of the QC Method
178
6.4.1
Formulation of Representative Atoms and Total Potential Energy
in the QC Method
178
6.4.2
Using Interpolation Functions to Reduce Degrees of Freedom
179
6.4.3
Model Division
180
6.4.4
Using the Cauchy-Born Rule to Calculate Energy Density Function
W
from Interatomic Potential Energy
181
6.4.5
The Solution Scheme of the QC Method
183
6.4.6
Subroutine to Determine Energy Density
W
for Each Element
184
6.4.7
Treatment of the Interface
184
6.4.8
Ghost Force
184
6.5
Fully Non-localized QC Method
187
6.5.
1 Energy-based Non-local QC Model (CQC(m)-E)
187
6.5.2
Dead Ghost Force Correction in Energy-based Non-local QC
188
6.6
Applications of the QC Method
188
6.6.1
Nanoindentation
189
6.6.2
Crack-tip Deformation
190
6.6.3
Deformation and Fracture of Grain Boundaries
192
6.6.4
Dislocation Interactions
192
6.6.5
Polarizations Switching in Ferroelectrics
192
6.7
Short Discussion about the QC Method
193
Part
6.3
Analytical and Semi-analytical Multiscale Methods Across
Atomic/Continuum Scales
194
6.8
More Discussions about Deformation Gradient
and the Cauchy-Born Rule
195
6.8.1
Mathematical Definition of Deformation Gradient F(X)
195
6.8.2
Determination of Lattice Vectors and Atom Positions by the
Cauchy-Born Rule through Deformation Gradient
F
196
6.8.3
Physical Explanations of Components of Deformation Gradient
197
6.8.4
Expressions of
F
and
ε_
Components in Terms of
Displacement Vector
198
6.8.5
The Relationship Between Deformation Gradient, Strain
and Stress Tensors
200
6.9
Analytical/Semi-analytical Methods Across Atom/Continuum Scales
Based on the Cauchy-Born Rule
201
6.9.7
Application of the Cauchy-Born Rule in
a Centro-
symmetric Structure
201
6.9.2
Determination of Interatomic Length
r¡j
and Angle
θ^
of the Crystal
after Deformation by the Cauchy-Born Rule
202
6.9.3
A Short Discussion on the Precision of the Cauchy-Born Rule
204
6.10
Atomistic-based Continuum Model of Hydrogen Storage with
Carbon Nanotubes
205
6.10.1
Introduction of Technical Background and Three Types of Nanotubes
205
6.70.2
Interatomic Potentials Used for Atom/Continuum Transition
205
6.10.3
The Atomistic-based Continuum Theory of Hydrogen Storage
206
ContetltS
6.10.4
Atomistic-based Continuum Modeling to Determine the Hydrogen
Density and Pressure
ρ
211
6.10.5
Continuum Model of Interactions Between the
СЫТ
and Hydrogen
Molecules and Concentration of Hydrogen
212
6.10.6
Analytical Solution for the Concentration of Hydrogen Molecules
216
6.10.7
The Double Wall Effects on Hydrogen Storage
217
6.11
Atomistic-based Model for Mechanical, Electrical and Thermal Properties
of Nanotubes
218
6.11.1
Highlights of the Methods
219
6.11.2
Mechanical Properties
219
6.11.3
Electrical Property Change in Deformable Conductors
220
6.11.4
Thermal Properties
221
6.11.5
Other Work in Atomistic-based Continuum Model
222
6.12
A Proof of
3D
Inverse Mapping Rule of the GP Method
222
6.13
Concluding Remarks
223
References
223
7
Further Introduction to Concurrent Multiscale Methods
227
7.1
General Feature in Geometry of Concurrent Multiscale Modeling
227
7.1.1
Interface Design of the DC Multiscale Models
227
7.1.2
Connection and Compatibility Between Atom/Continuum
at the Interface
228
7.2
Physical Features of Concurrent Multiscale Models
229
7.2.1
Energy-based and Force-based Formulation
229
7.2.2
Constitutive Laws in the Formulation
230
7.3
MAAD Method for Analysis Across
ab initio,
Atomic and
Macroscopic Scales
231
7.3.1
Partitioning and Coupling of Model Region
231
7.3.2
System Energy and Hamiltonian in Different Regions
233
7.3.3
Handshake Region Design
234
7.3.4
Short Discussion on the MAAD Method
235
7.4
Force-based Formulation of Concurrent Multiscale Modeling
235
7.5
Coupled Atom Discrete Dislocation Dynamics (CADD) Multiscale Method
236
7.5.7
Realization of Force-based Formulation for CADD/FEAt
236
7.5.2
Basic Model for CADD
237
7.5.3
Solution Scheme: A Superposition of Three Types of Boundary
Value Problems
238
7.6
ID Model for a Multiscale Dynamic Analysis
240
7.6.1
The Internal Force and Equivalent Mass of a Dynamic System
240
7.6.2
Derivation of the FE/MD Coupled Motion Equation
242
7.6.3
Numerical Example of the Coupling Between MD and
F E
244
7.6.4
Results and Discussion
245
7.7
Bridging Domains Method
246
7.8
ID Benchmark Tests of Interface Compatibility for DC Methods
248
7.9
Systematic Performance Benchmark of Most DC
Atomistic/Continuum Coupling Methods
251
xjv
Contents
7.9.1 The Benchmark
Computation Test
251
7.9.2
Summary and Conclusion of the Benchmark Test
254
7.10
The Embedded Statistical Coupling Method (ESCM)
254
7.10.1
Why Does ESCM Use Statistical Averaging to Replace DCs
Direct Linkage?
255
7.10.2
The ESCM Model
255
7.10.3
MD/FE Interface
255
7.10.4
Surface MD Region
257
7.10.5
Validation
258
References
258
8
Hierarchical Multiscale Methods for Plasticity
261
8.1
A Methodology of Hierarchical Multiscale Analysis Across
Micro/meso/macroscopic Scales and Information Transformation
Between These Scales
261
8.1.1
Schematic View of Hierarchical Multiscale Analysis
261
8.1.2
Using Two-face Feature of Meso-cell to Link Both Microscopic
and Macroscopic Scales
263
8.2
Quantitative Meso-macro Bridging Based on Self-consistent Schemes
263
8.2.1
Basic Assumption
263
8.2.2
Introduction to Self-consistent Schemes
(SCS)
264
8.2.3
Weakening Constraint Effect of Aggregate on Inclusion with Increase
of Plastic Deformation
265
8.2.4
Quantitative Linkage of Variables Between Mesoscopic
and Macroscopic Scales
266
8.3
Basics of Continuum Plasticity Theory
267
8.3.1
Several Basic Elements of Continuum Plasticity Theory
267
8.3.2
Description of Continuum Plasticity Theory Within
Deviatone
Stress Space
268
8.4
Internal Variable Theory, Back Stress and Elastoplastic
Constitutive Equations
270
8.4.1
Internal Variable Theory Expressed by a Mechanical Model
270
8.4.2
Calculation of Back Stress
Ry
in Terms of Plastic Strain
272
8.4.3
Expressing Elastoplastic Constitutive Equations for Each
Constituent Phase
273
8.5
Quantitative Micro-meso Bridging by Developing Meso-cell
Constitutive Equations Based on Microscopic Analysis
274
8.5.1
Developing Meso-cell (Inclusion) Constitutive Equations
274
8.5.2
Bridging Micro- and Macroscopic Variables via the Meso-cell
Constitutive Equation
275
8.5.3
Solution Technique
276
8.6
Determining Size Effect on Yield Stress and Kinematic Hardening
Through Dislocation Analysis
276
8.6.1
Basic Idea to Introduce Size Effects in Plasticity
277
8.6.2
Expressing Size Effects on Yielding and Hardening Behavior
by Dislocation Pile-up Theory
277
Contents xv
8.6.3
Tangential Modulus and Hardening Behavior Under Shear Force
by Continuum Plasticity Theory
279
8.6.4
Equating Dislocation-obtained Shear Stress increment with
that Obtained by Continuum Plasticity Theory
279
8.6.5
Explicit Expressions of Size Effects on Tangential Modulus
and Kinematic Hardening Behavior
280
8.7
Numerical Methods to Link Plastic Strains at the Mesoscopic
and Macroscopic Scales
281
8.7.1
Bridging Plastic Variables at Different Scales from Bottom-up
and Top-down to Complete the Iterative Process
281
8.7.2
Numerical Procedure for the Iterative Process
281
8.7.3
How to Carrying on the Volume Averaging of Meso-cell Plastic-
Strain to Find Macroscopic Strain
282
8.8
Experimental Study on Layer-thickness Effects on Cyclic Creep (Ratcheting)
283
8.9
Numerical Results and Comparison Between Experiments and Multiscale
Simulation
284
8.9.1
General Features of the Numerical Simulation
284
8.9.2
Determination of Basic Material Parameters
285
8.9.3
Determining Size Effects on Material Parameters by Size Laws
286
8.9.4
Comparison Between the Results of Three-scale Multiscale
Simulation with Data of Cyclic Experiments
286
8.10
Findings in Microscopic Scale by Multiscale Analysis
288
8.11
Summary and Conclusions
291
8.11.1
Methods for Bridging Three Scales
291
8.11.2
Methods in Bridging Atomistic Dislocation Analysis and the
Second Class of Multiscale Analysis
292
8.11.3
Size Effects on Yield Stress and Kinematic Hardening of Plasticity
292
8.11.4
Experimental Validation for the Size Effects on Ratcheting
292
8.11.5
Failure Mechanisms of Thicker Layer
292
8.11.6
The Formulation and Important Role of Residual Stress
292
8.11.7
Wide Scope of Applications of the Proposed Multiscale Methodology
293
Appendix 8.A Constitutive Equations and Expressions of Parameters
293
Appendix 8.B Derivation of Equation
(8.1
2e) and Matrix Elements
295
References
297
9
Topics in Materials Design, Temporal Multiscale Problems and Bio-materials
299
Part
9.1
Materials Design
299
9.1
Multiscale Modeling in Materials Design
299
9.1.1
The Role of Multiscale Analysis in Materials Design
299
9.1.2
Issues of Bottom-up Multiscale Modeling in Deductive Material
Design Process
300
9.1.3
Choices of Multiscale Methods in Materials Design
301
Part
9.2
Temporal Multiscale Problems
301
9.2
Introduction to Temporal Multiscale Problems
301
9.2.1
Material Behavior Versus Time Scales
302
Contents
9.2.2 Brief
Introduction
to Methods for Temporal Multiscale Problems
302
9.3
Concepts of Infrequent Events
304
9.4
Minimum Energy Path
(МЕР)
and Transition State Theory in Atomistic
Simulation
305
9.4.
1 Minimum Energy Path
(МЕР)
and Saddle Point
305
9.4.2
Nudged Elastic Band (NEB) Method for Finding
МЕР
and Saddle Point
306
9.4.3
Mathematical Description of the NEB Method
310
9.4.4
Finding
МЕР
and Saddle Point for a 2D Test Problem ofLEPS
Potential via Implementation of the NEB Method
311
9.5
Applications and Impacts of NEB Methods
318
9.5.1
Governing Equations and Methods for Considering Strain Rate
and Temperature Effects on Dislocation Nucleation
318
9.5.2
Examples and Impact
(1):
Strain Rate and Temperature Effects
on Dislocation Nucleation from Free Surface of Nanowires
318
9.5.3
Examples and Impact
(2):
Departure Between Plasticity
and Creep Based on Activation Energy and Activation Volume
320
9.5.4
Examples and Impact
(3):
Findings for Mechanisms of High Strength
and High Ductility of Twin Nanostructured Metals
321
9.5.5
Other Methods in Extending Time Scale in Atomistic Analysis
322
Part
9.3
Multiscale Analysis of Protein Materials and Medical Implant Problems
324
9.6
Multiscale Analysis of Protein Materials
324
9.6.1
Hierarchical Structure of Protein Materials
324
9.6.2
Large Deformation and Dynamic Characteristics of Protein Material
325
9.6.3
At Molecular
(Nano)
Scale: Molecular Dynamics Simulation of Dime
r
and the Modified Bell Theorem
326
9.6.4
Unique Features of Deformation, Failure and Multiscale Analysis
of
Biomaterials
with Hierarchical Structure
328
9.7
Multiscale Analysis of Medical Implants
329
9.7.1
Background
329
9.7.2
At
Atom
-папо
and
Submicron
scale: Selection of Implant Chemical
Composition Based on Maximum Bonding Energy
329
9.7.3
At Mesoscopic Scale
(џт):
Cell Adhesion Strength is Calculated
and Characterized
330
9.7.4
Discussion
336
9.8
Concluding Remarks
337
Appendix 9A Derivation of Governing Equation
(9.11)
for Implicit
Relationship of Stress, Strain Rate, Temperature in Terms of Activation
Energy and Activation Volume
337
References
338
10
Simulation Schemes, Softwares, Lab Practice and Applications
343
Part
10.1
Basics of Computer Simulations
343
10.1
Basic Knowledge of UNIX System and Shell Commands
343
10.1.1
UNIX Operating System
343
10.1.2
UNIX Shell Commands
344
Contents
10.2
A
Simple MD Program 34g
10.2.1
Five Useful Commands of
Fortran 90 349
10.2.2
Module and Subroutine
353
10.2.3
Using crystal_M_simple.f90 to Create Initial Configuration
354
10.2.4
Use
multi
J.
f90
to Run a Molecular Dynamics Calculation
355
10.3
Static Lattice Calculations Using GULP
356
10.3.1
Installation and Structure of GULP
357
10.3.2
Input File Structure and Running GULP
357
10.3.3
Structure Optimization and Output File Structure
359
10.3.4
Determining Potential Parameters by Fitting Calculations
362
10.3.5
Shell Model
364
10.3.6
Defect Calculation
365
10.4
Introduction of Visualization Tools and Gnuplot
367
10.4.1
Gnuplot
367
70.4.2
Visual Molecular Dynamics (VMD)
371
10.4.3
AtomEye
374
10.5
Running an Atomistic Simulation Using a Public MD Software
DL_POLY
377
10.5.1
Introduction
377
10.5.2
Installation and Structure ofDL_POLY_2
378
10.5.3
General Features of DL_POLY_2 Files
378
10.5.4
Compile and Run
379
10.5.5
Units of Measure
381
10.5.6
Input Files ofDL_POLY
382
10.5.7
Output Files
384
10.5.8
Data-Processing for Variable Evolution Versus Time
by the ela_STATIS.f90 Code
386
10.5.9
Useful Tools for Operating and Monitoring MD Simulations
387
10.6
Nve and npt Ensemble in MD Simulation
389
10.6.1
Nve Simulation with DL_POLY
390
70.6.2
Npt Simulation with DL_POLY
393
10.6.3
Data Post-processing via STATIS and HISTORY Output Files
394
Part
10.2:
Simulation Applications in Metals and Ceramics by MD
397
10.7
Non-equilibrium MD Simulation of One-phase Model Under
External Shearing
(1) 397
70.7.7
Features and Procedures ofMD Simulation Under Shearing
Strain Rate
398
70.7.2
Preparation for Input Files and Running
3D
npt Equilibration
399
70.7.5
Post-processing Analysis for Equilibration Data
403
10.8
Non-equilibrium MD Simulation of a One-phase Model Under
External Shearing
(2) 404
10.8.1
Bi-periodic nvt Equilibration in 2D_EQUI_nvt
404
7O.&2
Reference Position Calculation via Producing MEAN.xyz
406
70.&5 MD simulation Under Shearing Rate on the Top Layer
408
10.8.4
Data Analysis Using ela_history_2009.f90 for Shearing
409
10.8.5
Tips to Reduce Error When Using ela_history_2009.f90
411
Contents
10.9
Non-equilibrium
MD Simulation
of a Two-phase Model Under
External Shearing
412
10.9.1
Dimensional Equilibration of the Individual Phase
412
70.9.2
Developing the Initial Configuration for the Two-phase Model
414
10.9.3
Run the 3D_npt Equilibration in the INI_CONF_coating Directory
416
10.9.4
Non-equilibrium Simulation of the Coating Layer Under Top
Shearing Strain Rate
417
10.9.5
Post-data Processing to Determine the Displacement of the
Coating Layer Under a Given Shearing Rate
418
Part
10.3:
Atomistic Simulation for Protein-Water System and Brief Introduction
of Large-scale Atomic/Molecular System (LAMMPS) and the GP Simulation
421
10.10
Using NAMD Software for Biological Atomistic Simulation
421
10.10.1
Introduction
421
10.10.2
A Simple Simulation Using VMD and NAMD
422
10.10.3
Post-processing Data Analysis
425
10.11
Stretching of a Protein Module
(1):
System Building and Equilibration
with VMD/NAMD
426
10.11.1
Preparation of the Initial Configuration with VMD
427
10.11.2
Preparation of the NAMD Input File
429
10.11.3
Run the NAMD Simulation
430
10.11.4
Error Messages and Recommended Action
430
10.12
Stretching of a Protein Module
(2):
Non-equilibrium MD Simulation
with NAMD
431
10.12.1
Preliminary Steps
431
10.12.2
Preparation of the NAMD Input Files
433
10.12.3
Explanation of Important Lines in the
fibro
_nonequi.conf File
435
10.12.4
Run NAMD Simulation and Data Processing
435
10.13
Brief Introduction to LAMMPS
437
10.13.1
General Features of LAMMPS
АЪ1
10.13.2
Structure of LAMMPS Package
438
10.13.3
Building LAMMPS and Run
438
10.13.4
Examples
440
10.14
Multiscale Simulation by Generalized Particle (GP) Dynamics
Method
447
10.14.1
Multiscale Model Development
447
10.14.2
Running Mater_Multi_2010_4.f90 to Produce the Model.MD
for Multiscale Simulation
450
10.14.3
Running mpi Simulation for Multiscale Analysis and Data
Processing
450
Appendix
10.
A Code Installation Guide
452
Prerequisites
452
10.A.1 Introduction
452
10.A.2 Using the KNOPPIX CD to Install the GNU/Linux System
452
10.A.3 ssh and scp
453
10.A.4 Fortran and
С
Compiler
454
Contents xix
10.A.5 Visual
Molecular
Dynamics (VMD) 456
10.A. 6 Installation
of
AtomEye 457
Appendix 1 O.B Brief
Introduction to
Fortran 90 457
1
O.B.I Program Structure, Write to Terminal and Write to File
457
10.B.2 Do Cycle, Formatted Output
459
10.B.3 Arrays and Allocation
460
10.B.4 IF THEN ELSE
461
Appendix 10.C Brief Introduction to VIM
461
1
O.C.I Introduction
461
I O.C.
2
Simple Commands
462
Appendix
10.
D
Basic Knowledge of Numerical Algorithm for Force
Calculation
463
I O.D.I Force Calculation in Atomistic Simulation
463
Appendix
10.
E
Basic Knowledge of Parallel Numerical Algorithm
464
10.E.I General Information
464
W.E.2 Atom Decomposition
465
10.E.3 Force Decomposition
466
10.
E
.4
Domain Decomposition
466
Appendix
10.
F
Supplemental Materials and Software for Geometric Model
Development in Atomistic Simulation
467
10.F.1 Model Development for Model Coordinates Coincident
with Main Crystal Axes
468
10.F.2 Model Development for Model Coordinates not Coincident
with Crystal Axes
471
References
473
Postface
475
Index
477
|
any_adam_object | 1 |
author | Fan, Jinghong |
author_GND | (DE-588)14318492X |
author_facet | Fan, Jinghong |
author_role | aut |
author_sort | Fan, Jinghong |
author_variant | j f jf |
building | Verbundindex |
bvnumber | BV037435530 |
callnumber-first | T - Technology |
callnumber-label | TA417 |
callnumber-raw | TA417.6 |
callnumber-search | TA417.6 |
callnumber-sort | TA 3417.6 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 3150 |
ctrlnum | (OCoLC)707189558 (DE-599)BVBBV037435530 |
dewey-full | 620.1/123 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/123 |
dewey-search | 620.1/123 |
dewey-sort | 3620.1 3123 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01978nam a2200517zc 4500</leader><controlfield tag="001">BV037435530</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110706 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110603s2011 xxk |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010025737</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470744291</subfield><subfield code="c">cloth</subfield><subfield code="9">978-0-470-74429-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470972281</subfield><subfield code="c">oBook</subfield><subfield code="9">978-0-470-97228-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)707189558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037435530</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA417.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/123</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 3150</subfield><subfield code="0">(DE-625)145572:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fan, Jinghong</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14318492X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiscale analysis of deformation and failure of materials</subfield><subfield code="c">Jinghong Fan</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 481 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Microsystem and nanotechnology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deformations (Mechanics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield><subfield code="x">Analysis</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deformationsverhalten</subfield><subfield code="0">(DE-588)4148995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deformationsverhalten</subfield><subfield code="0">(DE-588)4148995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bruchmechanik</subfield><subfield code="0">(DE-588)4112837-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-0-470-97227-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022587539&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022587539</subfield></datafield></record></collection> |
id | DE-604.BV037435530 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T23:24:19Z |
institution | BVB |
isbn | 9780470744291 9780470972281 |
language | English |
lccn | 2010025737 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022587539 |
oclc_num | 707189558 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XXVI, 481 S. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley |
record_format | marc |
series2 | Microsystem and nanotechnology series |
spelling | Fan, Jinghong Verfasser (DE-588)14318492X aut Multiscale analysis of deformation and failure of materials Jinghong Fan 1. publ. Chichester Wiley 2011 XXVI, 481 S. txt rdacontent n rdamedia nc rdacarrier Microsystem and nanotechnology series Includes bibliographical references and index Datenverarbeitung Deformations (Mechanics) Materials Analysis Data processing Multivariate analysis Deformationsverhalten (DE-588)4148995-0 gnd rswk-swf Bruchmechanik (DE-588)4112837-0 gnd rswk-swf Multivariate Analyse (DE-588)4040708-1 gnd rswk-swf Deformationsverhalten (DE-588)4148995-0 s Bruchmechanik (DE-588)4112837-0 s Multivariate Analyse (DE-588)4040708-1 s DE-604 Erscheint auch als Online-Ausgabe, PDF 978-0-470-97227-4 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022587539&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fan, Jinghong Multiscale analysis of deformation and failure of materials Datenverarbeitung Deformations (Mechanics) Materials Analysis Data processing Multivariate analysis Deformationsverhalten (DE-588)4148995-0 gnd Bruchmechanik (DE-588)4112837-0 gnd Multivariate Analyse (DE-588)4040708-1 gnd |
subject_GND | (DE-588)4148995-0 (DE-588)4112837-0 (DE-588)4040708-1 |
title | Multiscale analysis of deformation and failure of materials |
title_auth | Multiscale analysis of deformation and failure of materials |
title_exact_search | Multiscale analysis of deformation and failure of materials |
title_full | Multiscale analysis of deformation and failure of materials Jinghong Fan |
title_fullStr | Multiscale analysis of deformation and failure of materials Jinghong Fan |
title_full_unstemmed | Multiscale analysis of deformation and failure of materials Jinghong Fan |
title_short | Multiscale analysis of deformation and failure of materials |
title_sort | multiscale analysis of deformation and failure of materials |
topic | Datenverarbeitung Deformations (Mechanics) Materials Analysis Data processing Multivariate analysis Deformationsverhalten (DE-588)4148995-0 gnd Bruchmechanik (DE-588)4112837-0 gnd Multivariate Analyse (DE-588)4040708-1 gnd |
topic_facet | Datenverarbeitung Deformations (Mechanics) Materials Analysis Data processing Multivariate analysis Deformationsverhalten Bruchmechanik Multivariate Analyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022587539&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fanjinghong multiscaleanalysisofdeformationandfailureofmaterials |