Dynamics in engineering practice:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton
Taylor & Francis
2011
|
Ausgabe: | 10. ed. |
Schriftenreihe: | Computational mechanics & applied analysis series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben ; "A CRC title." |
Beschreibung: | XV, 374 p. |
ISBN: | 9781439831250 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV037430703 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 110531s2011 xxu |||| 00||| eng d | ||
010 | |a 2010025875 | ||
020 | |a 9781439831250 |c alk. paper |9 978-1-4398-3125-0 | ||
035 | |a (OCoLC)731452872 | ||
035 | |a (DE-599)BVBBV037430703 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-573 | ||
050 | 0 | |a TA352 | |
082 | 0 | |a 620.1/04 | |
084 | |a UF 1950 |0 (DE-625)145567: |2 rvk | ||
100 | 1 | |a Childs, Dara |e Verfasser |4 aut | |
245 | 1 | 0 | |a Dynamics in engineering practice |c Dara W. Childs |
250 | |a 10. ed. | ||
264 | 1 | |a Boca Raton |b Taylor & Francis |c 2011 | |
300 | |a XV, 374 p. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Computational mechanics & applied analysis series | |
500 | |a Literaturangaben ; "A CRC title." | ||
650 | 4 | |a Dynamics | |
650 | 0 | 7 | |a Technische Mechanik |0 (DE-588)4059231-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Mechanik |0 (DE-588)4059231-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022582780&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-022582780 |
Datensatz im Suchindex
_version_ | 1804145737271869440 |
---|---|
adam_text | IMAGE 1
CONTENTS
...
PREFACE
.....................................................................................................................................................................................
XIU
1 . INTRODUCTION AND FUNDAMENTALS
.....................................................................................................................................
1
1.1 INTRODUCTION
.............................................................................................................................................................
1
1.2 A SHORT HISTORY OF DYNAMICS
................................................................................................................................
1
1.3 UNITS
..........................................................................................................................................................................
3
2 . PLANAR KINEMATICS OF PARTICLES
........................................................................................................................................
7
2.1 INTRODUCTION
.............................................................................................................................................................
7
2.2 MOTION IN A STRAIGHT LINE
.......................................................................................................................................
7
2.2.1 DISTANCE TRAVELED
.......................................................................................................................................
9
2.3 PARTICLE MOTION IN A PLANE: CARTESIAN COORDINATES
......................................................................................
10
2.4 COORDINATE TRANSFORMATIONS: RELATIONSHIPS BETWEEN COMPONENTS OF A
VECTOR IN TWO COORDINATE SYSTEMS
.................................................................................................................................
12
2.5 PARTICLE MOTION IN A PLANE: POLAR COORDINATES
..................................................................................................
14
2.6 PARTICLE MOTION IN A PLANE: NORMAL-TANGENTIAL (PATH) COORDINATES
......................................................... 17
2.7 MOVING BETWEEN CARTESIAN, POLAR, AND PATH-COORDINATE DEFINITIONS FOR
VELOCITY AND ACCELERATION COMPONENTS
.......................................................................................................................
20
2.7.1 AN EXAMPLE THAT 1S NATURALLY ANALYZED WITH CARTESIAN COMPONENTS
.......................................... 20
2.7.2 AN EXAMPLE THAT 1S NATURALLY ANALYZED USING POLAR COORDINATES
................................................ 23
2.7.3 AN EXAMPLE THAT 1S NATURALLY ANALYZED WITH PATH-COORDINATE
COMPONENTS .............................. 24 2.8 TIME-DERIVATIVE
RELATIONSHIPS IN TWO COORDINATE SYSTEMS
..................................................................... 26
2.9 VELOCITY AND ACCELERATION RELATIONSHIPS IN TWO CARTESIAN COORDINATE
SYSTEMS ....................................... 28 2.9.1 COMPARISONS TO
POLAR-COORDINATE DEFINITIONS
....................................................................................
30
2.9.2 COORDINATE-SYSTEM EXPRESSIONS FOR KINEMATIC EQUATIONS
.............................................................. 30
2.9.3 COORDINATE SYSTEM OBSERVERS
................................................................................................................
31
2.10 RELATIVE POSITION, VELOCITY, AND ACCELERATION VECTORS BETWEEN TWO
POINTS IN THE SAME COORDINATE SYSTEM
..........................................................................................................................
32
2.1 1 SUMMARY AND DISCUSSION
...................................................................................................................................
36
PROBLEMS
............................................................................................................................................................................
37
3 . PLANAR KINETICS OF PARTICLES
...........................................................................................................................................
43
3.1 INTRODUCTION
..........................................................................................................................................................
43
NOMENCLATURE
........................................................................................................................................................
43
3.2 DIFFERENTIAL EQUATIONS OF MOTION FOR A PARTICLE MOVING IN A STRAIGHT
LINE: AN INTRODUCTION TO PHYSICAL MODELING
..............................................................................................................
45
............................................................. 3.2.1
CONSTANT ACCELERATION: FREE FALL OF A PARTICLE WITHOUT DRAG 45
.............................................................. 3.2.2
ACCELERATION AS A FUNCTION OF DISPLACEMENT: SPRING FORCES 47
......................... 3.2.2.1 DERIVING THE EQUATION OF MOTION
STARTING WITH THE SPRING UNDEFLECTED 47
..................................... 3.2.2.2 DERIVING THE EQUATION OF
MOTION FOR MOTION ABOUT EQUILIBRIUM 48
3.2.2.3 DEVELOPING A TIME SOLUTION FOR THE EQUATION OF MOTION
................................................... 50
..................................................................
3.2.2.4 DEVELOPING A SOLUTION FOR Y AS A FUNCTION OF Y 51
...........................................................................
3.2.2.5 NEGATIVE SIGN FOR THE STIFFNESS COEFFICIENT 52
.................................................................................................
3.2.3 ENERGY DISSIPATION: VISCOUS DAMPING 52
3.2.3.1 VISCOUS DAMPER
........................................................................................................................
52
............................. 3.2.3.2 DERIVING THE EQUATION OF MOTION
FOR A MASS-SPRING-DAMPER SYSTEM 53 3.2.3.3 MOTION ABOUT THE EQUILIBRIUM
POSITION
.............................................................................
53
IMAGE 2
... VLLL CONTENTS
3.2.3.4 DEVELOPING A TIME SOLUTION FOR THE EQUATION OF MOTION
.................................................. 53
.........................................................................................................
3.2.3.5 CHARACTERIZING DAMPING 58
..................................................... 3.2.3.6 SOLUTION
FOR Y AS A FUNCTION OF Y INCLUDING DAMPING? 59
.......................................................................
3.2.3.7 NEGATIVE DAMPING AND DYNAMIC INSTABILITY 60
3.2.4 BASE EXCITATION FOR A SPRING-MASS-DAMPER SYSTEM
............................................................................
60
...........................................................................................
3.2.4.1 DERIVING THE EQUATION OF MOTION 60
................................................................................
3.2.4.2 RELATIVE MOTION DUE TO BASE EXCITATION 64
3.2.5 HARMONIC EXCITATION FOR A IDOF, SPRING-MASS-DAMPER SYSTEM:
SOLUTION FOR MOTION IN THE FREQUENCY DOMAIN
.......................................................................................................................
65
..........................................................................................................................
3.2.5.1 BASE EXCITATION 69
3.2.5.2 STEADY-STATE RELATIVE MOTION DUE TO BASE EXCITATION
......................................................... 71
................................................................................................
3.2.5.3 ROTATING-IMBALANCE EXCITATION 71
3.2.5.4 SUMMARY AND EXTENSIONS
........................................................................................................
74
3.2.6 ENERGY DISSIPATION: COULOMB DAMPING
..............................................................................................
75
3.2.7 QUADRATIC DAMPING: AERODYNAMIC DRAG
..........................................................................................
77
3.2.7.1 TENNINAL VELOCITY CALCULATION
.............................................................................................
78
.................................................................................................................................
3.2.8 CLOSURE AND REVIEW 80
3.3 MORE MOTION IN A STRAIGHT LINE: DEGREES OF FREEDOM AND EQUATIONS OF
KINEMATIC CONSTRAINTS
..................................................................................................................................
81
.............................................................. 3.3.1
PULLEYS: EQUATIONS OF MOTION AND EQUATIONS OF CONSTRAINT 81
..............................................................................
3.3.2 LINKAGE PROBLEMS: MORE EQUATIONS OF CONSTRAINT 85
3.4 MOTION IN A PLANE: EQUATIONS OF MOTION AND FORCES OF CONSTRAINT
.............................................................. 88
3.4.1 CARTESIAN-COORDINATE APPLICATIONS: TRAJECTORY MOTION IN A VERTICAL
PLANE .................................... 89 3.4.1.1 DRAG-FREE MOTION
.....................................................................................................................
89
3.4.1.2 TRAJECTORY MOTION WITH AERODYNARNIC DRAG
.........................................................................
91
3.4.1.3 TRAJECTORY MOTION AND COULOMB DRAG
..................................................................................
92
3.4.2 POLAR-COORDINATE APPLICATIONS
...............................................................................................................
92
3.4.2.1 PARTICLE SLIDING ON THE INSIDE OF A HORIZONTAL CYLINDER WITHOUT
FRICTION ....................... 92 3.4.2.2 PARTICLE SLIDING ON THE
INSIDE OF A HORIZONTAL CYLINDER WITH COULOMB FRICTION
.......................................................................................................................................
93
3.4.2.3 THE SIMPLE PENDULUM
.............................................................................................................
95
3.4.2.4 THE SIMPLE PENDULUM WITH DAMPING
.............................................................................
96
3.4.3 PATH-COORDINATE APPLICATIONS
................................................................................................................
98
3.4.4 SUMMARY AND OVERVIEW
.......................................................................................................................
100
3.5 PARTICLE KINETICS EXAMPLES WITH MORE THAN ONE DEGREE OF FREEDOM
...................................................... 101
3.5.1 DEVELOPING EQUATIONS OF MOTION FOR PROBLEMS HAVING MORE THAN ONE
DEGREE OF FREEDOM
..............................................................................................................................................
101
3.5.1.1 DEVELOPING EQUATIONS OF MOTION FOR A TWO-MASS VIBRATION EXAMPLE
.......................... 101 3.5.1.2 DEVELOPING EQUATIONS OF MOTION
FOR A DOUBLE PENDULUM .............................................. 104
3.5.2 ANALYZING MULTI-DEGREE-OF-FREEDOM VIBRATION PROBLEMS
............................................................. 106
3.5.2.1 ANALYZING UNDAMPED TWO-DEGREE-OF-FREEDOM VIBRATION PROBLEMS
........................... 106 3.5.2.2 FREE MOTION FROM INITIAL
CONDITIONS (THE HOMOGENEOUS SOLUTION) ................................
111 3.5.2.3 MODAL DAMPING MODELS
.......................................................................................................
114
3.5.2.4 STEADY-STATE SOLUTIONS DUE TO HARMONIC EXCITATION
.......................................................... 115
3.5.2.5 HARMONIC RESPONSE WITH DAMPING
....................................................................................
118
3.6 WERK-ENERGY APPLICATIONS FOR ONE-DEGREE-OF-FREEDOM PROBLEMS IN PLANE
MOTION .............................. 119 3.6.1 THE WORK-ENERGY EQUATION
AND ITS APPLICATION
............................................................................
119
3.6.1.1 MORE ON SPRING FORCES AND SPRING POTENTIAL-ENERGY FUNCTIONS
..................................... 121 3.6.1.2 MORE ON THE FORCE OF
GRAVITY AND THE POTENTIAL-ENERGY FUNCTION FOR GRAVITY ............ 123
3.6.2 DERIVING EQUATIONS OF MOTION FROM WORK-ENERGY RELATIONS
........................................................ 125
3.7 LINEAR-MOMENTUM APPLICATIONS IN PLANE MOTION
.....................................................................................
130
3.7.1 COLLISION PROBLEMS IN ONE DIMENSION
...............................................................................................
130
3.7.2 THE COEFFICIENT OF RESTITUTION
..............................................................................................................
132
3.7.3 COLLISION PROBLEMS IN TWO DIMENSIONS
.............................................................................................
133
IMAGE 3
CONTENTS
3.8 MOMENT OF MOMENTUM
......................................................................................................................................
136
3.8.1 DEVELOPING THE MOMENT-OF-MOMENTUM EQUATION FOR A PARTICLE
.................................................. 136
3.8.2 APPLYING CONSERVATION OF MOMENT OF MOMENTUM FOR A PARTICLE
.................................................. 137
3.8.2.1 TWO PARTICLES CONNECTED BY AN INEXTENSIBLE CORD
........................................................... 137
3.8.2.2 CLOSING COMMENTS
.................................................................................................................
137
3.9 SUMMARY AND DISCUSSION
..................................................................................................................................
138
PROBLEMS
..........................................................................................................................................................................
139
4 . PLANAR KINEMATICS OF RIGID BODIES
...........................................................................................................................
155
4.1 INTRODUCTION
..................................................................................................................................................
155
..............................................................................................................................
4.2 ROTATION ABOUT A FIXED AXIS 155
4.3 VELOCITY AND ACCELERATION RELATIONSHIPS FOR TWO POINTS IN A RIGID
BODY ................................................ 157
4.4 ROLLING WITHOUT SLIPPING
....................................................................................................................................
161
...............................................................................................................................
4.4.1 A WHEEL ON A PLANE 161
4.4.1.1 GEOMETRIE DEVELOPMENT
...................................................................................................
161
4.4.1.2 VECTOR DEVELOPMENTS OF VELOCITY RELATIONSHIPS
............................................................. 163
4.4.1.3 VECTOR DEVELOPMENTS OF ACCELERATION RESULTS
................................................................... 164
4.4.2 A WHEEL ROLLING INSIDE OR ON A CYLINDRICAL SURFACE
.......................................................................
167
........................................................................
4.4.2.1 WHEEL ROLLING INSIDE A CYLINDRICAL SURFACE 167
4.4.2.2 WHEEL ROLLING ON THE OUTSIDE OF A CYLINDRICAL SURFACE
..................................................... 168
.............................................................................................................................................
4.5 PLANAR MECHANISMS 168
4.5.1 INTRODUCTION
............................................................................................................................................
168
..................................................................................................................
4.5.2 A SLIDER-CRANK MECHANISM 168
4.5.2.1 GEOMETRIE APPROACH
........................................................................................................
168
.................................................. 4.5.2.2 VECTOR
APPROACH FOR VELOCITY AND ACCELERATION RESULTS 170
...............................................................................................................
4.5.3 A FOUR-BAR-LMKAGE EXAMPLE 171
4.5.3.1 GEOMETRIC APPROACH
..............................................................................................................
172
....................................... 4.5.3.2 VECTOR APPROACH FOR
VELOCITY AND ACCELERA TION RELATIONSHIPS 174
.......................................................................................................
4.5.4 ANOTHER SLIDER-CRANK MECHANISM 177
..............................................................................................................
4.5.4.1 GEOMETRIE APPROACH 177
4.5.4.2 VECTOR, TWO-COORDINATE-SYSTEM APPROACH FOR VELOCITY
............................................................................................
AND ACCELERATION RELATIONSHIPS 179
..................................................... 4.5.4.3 SOLUTION
FOR THE VELOCITY AND ACCELERATION OF POINT D 181
.................................................................................................................
4.5.4.4 CLOSING COMMENTS 182
..................................................................................................................................
4.6 SUMMARY ARID DISCUSSION 183
PROBLEMS
..........................................................................................................................................................................
183
5 . PLANAR KINETICS OF RIGID BODIES
..............................................................................................................................
195
5.1 INTRODUCTION
...................................................................................................................................................
195
NOMENCLATURE
..................................................................................................................................................
195
...........................................................................................
5.2 INERTIA PROPERTIES AND THE PARALLEL-AXIS FORMULA 195
......................................................................................................
5.2.1 CENTROIDS AND MOMENTS OF INERTIA 195
....................................................................................................................
5.2.2 THE PARALLEL-AXIS FORMULA 197
.........................................................................
5.3 GOVEMING FORCE AND MOMENT EQUATIONS FOR A RIGID BODY 199
5.3.1 FORCE EQUATION
........................................................................................................................................
199
5.3.2 MOMENT EQUATION
...........................................................................................................................
201
.........................................................................
5.3.2.1 REDUCED FORMS FOR THE MOMENT EQUATION 203
5.4 KINETIC ENERGY FOR PLANAR MOTION OF A RIGID BODY
........................................................................................
203
.................................... 5.5 FIXED-AXIS-ROTATION
APPLICATIONS OF THE FORCE, MOMENT. AND ENERGY EQUATIONS 204 5.5.1 ROTOR
IN FRICTIONLESS BEARINGS: MOMENT EQUATION
......................................................................
204
5.5.2 ROTOR IN FRICTIODESS BEARINGS: ENERGY EQUATION
.........................................................................
205
............................................................... 5.5.3
ROTOR IN BEARINGS WITH VISCOUS DRAG: MOMENT EQUATION 205
5.5.4 ROTOR IN BEAR-NGS WITH VISCOUS DRAG: ENERGY EQUATION
........................................................... 206
5.5.5 TORSIONAL VIBRATION EXAMPLE: MOMENT EQUATION
.......................................................................
206
IMAGE 4
CONTENTS
................................................................................
5.5.6 TORSIONAL VIBRATION EXAMPLE: ENERGY EQUATION 207
.................................................................................
5.5.7 PULLEY/WEIGHT EXAMPLE: FREE-BODY APPROACH 208
......................................................................................
5.5.8 PULLEY / WEIGHT EXAMPLE: ENERGY APPROACH 209
5.5.9 AN EXAMPLE INVOLVING A DISK AND A PARTICLE: NEWTONIAN APPROACH
............................................ 209
....................................... 5.5.10 AN EXAMPLE INVOLVING A
DISK AND A PARTICLE: WORK-ENERGY APPROACH 210 5.5.11 TWO DRIVEN PULLEYS
CONNECTED BY A BELT
......................................................................................
210
............................................. 5.5.12 TWO DRIVEN PULLEYS
CONNECTED BY A BELT: WORK-ENERGY APPROACH 211
................................................................................................................
5.6 COMPOUND-PENDULUM APPLICATIONS 211
................................................ 5.6.1 THE SIMPLE
COMPOUND PENDULUM: EOM, LINEARIZATION, STABILITY 211
........................................................................................
5.6.2 THE COMPOUND PENDULUM WITH DAMPING 216
5.6.3 COMPOUND PENDULUM/SPRING AND DAMPER CONNECTIONS: LINEARIZATION AND
EQUILIBRIUM
..........................................................................................................
217
5.6.3.1 COMPOUND PENDULUM WITH A SPRING ATTACHRNENT TO GROUND:
...................................................................................................................
MOMENT EQUATION 217
5.6.3.2 COMPOUND PENDULUM WITH A SPRING ATTACHMENT TO GROUND:
...................................................................................................................
ENERGY APPROACH 218
5.6.3.3 COMPOUND PENDULUM WITH A DAMPER ATTACHMENT TO GROUND: MOMENT
EQUATION
.................................................................................................................
219
..................................................... 5.6.3.4 BARS
SUPPORTED BY SPRINGS: PRELOAD AND EQUILIBRIUM 221
................................................................................
5.6.3.5 CLOSING COMMENTS AND (FREE) ADVICE 224
................................. 5.6.4 PRESCRIBED ACCELERATION OF A
COMPOUND PENDULUM S PIVOT SUPPORT POINT 224 5.7 GENERAL APPLICATIONS OF
FORCE, MOMENT, AND ENERGY EQUATIONS FOR PLANAR MOTION OF A RIGID BODY
..............................................................................................................................................
226
5.7.1 ROLLING-WITHOUT-SLIPPING EXAMPLES: NEWTONIAN AND ENERGY APPROACHES
.................................. 226 .............. 5.7.1.1 A CYLINDER
ROLLING DOWN AN INCLINED PLANE: FREE-BODY DIAGRAM APPROACH 226 5.7.1.2 A
CYLINDER ROLLING DOWN AN INCLINED PLANE: WORK-ENERGY APPROACH
........................ 228 5.7.1.3 AN IMBALANCED CYLINDER ROLLING DOWN
AN INCLINED PLANE:
............................................................................................................
NEWTONIAN APPROACH 229
5.7.1.4 AN IMBALANCED CYLINDER ROLLING DOWN AN INCLINED PLANE:
WORK-ENERGY APPROACH
.................................................................. 231
5.7.1.5 A HALF CYLINDER ROLLING ON A HORIZONTAL PLANE: NEWTONIAN
APPROACH ........................ 231 5.7.1.6 A HALF CYLINDER ROTATING
ON A HORIZONTAL PLANE: ENERGY APPROACH ............................. 233
5.7.1.7 A CYLINDER, RESTRAINED BY A SPRING AND ROLLING ON A PLANE:
NEWTONIAN APPROACH
............................................................................................................
234
5.7.1.8 A CYLINDER, RESTRAINED BY A SPRING AND ROLLING ON A PLANE:
ENERGY APPROACH
...................................................................................................................
235
5.7.1.9 A CYLINDER ROLLING INSIDE A CYLINDRICAL SURFACE
............................................................... 235
............................................................ 5.7.1.10
PULLEY-ASSEMBLY EXAMPLE: NEWTONIAN APPROACH 237
...................................................................
5.7.1.1 1 PULLEY-ASSEMBLY EXAMPLE: ENERGY APPROACH 238
5.7.1.12 CLOSING COMRNENTS
..............................................................................................................
238
5.7.2 ONE DEGREE OF FREEDOM, PLANAR-MOTION APPLICATIONS, NEWTONIAN AND
ENERGY APPROACHES
........................................................................................................................
239
5.7.2.1 A UNIFORM BAR, ACTED ON BY AN EXTEMAL FORCE, MOVING IN SLOTS,
AND CONSTRAINED BY SPRINGS
............................................................................................
239
5.7.2.2 ADDING VISCOUS DAMPING TO THE SLOTS SUPPORTING THE UNIFORM BAR
............................. 241 5.7.2.3 A BAR LEANING AND SLIDING ON A
SMOOTH FLOOR AND AGAINST A SMOOTH VERTICAL WALL
............................................................................................................................
243
5.7.2.4 A BAR LEANING AND SLIDING ON A FLOOR AND AGAINST A VERTICAL WALL
WITH COULOMB FRICTION
..........................................................................................................
245
5.7.2.5 SUMMARY AND DISCUSSION
................................................................................................
246
5.7.3 MULTI-BODY, SINGLECOORDINATE APPLICATIONS OF THE WORK-ENERGY
EQUATION ............................... 247 5.7.3.1 TWO BARS WITH AN
APPLIED FORCE AND A CONNECTING SPRING
............................................ 247
5.7.3.2 HINGED BAR/PLATE EXAMPLE
...............................................................................................
249
5.7.3.3 A PARALLEL, DOUBLE-BAR ARRANGEMENT FOR RETRACTING A CYLINDER
..................................... 251 5.7.3.4 CLOSING COMMENTS
..............................................................................................................
252
IMAGE 5
CONTENTS
5.7.4 EXAMPLES HAVING MORE THAN ONE DEGREE OF FREEDOM
................................................................... 252
5.7.4.1 TORSIONAL VIBRATION EXAMPLES
..............................................................................................
253
5.7.4.2 BEAMS AS SPRINGS: BENDING VIBRATION EXAMPLES
............................................................. 256
5.7.4.3 THE JEFFCOTTILAVAL ROTOR MODEL
...........................................................................................
263
5.7.4.4 A TRANSLATING MASS WITH AN ATTACHED COMPOUND PENDULUM
....................................... 265 5.7.4.5 A SWINGING BAR
SUPPORTED AT ITS END BY A CORD
.............................................................. 267
.........................................................................................
5.7.4.6 A DOUBLE COMPOUND PENDULUM 269
................................................................................................................................
5.7.5 PLANAR MECHANISMS 270
.......................................................................................................
5.7.5.1 SLIDER-CRANK MECHANISM 271
...............................................................................................
5.7.5.2 A FOUR-BAR-LINKAGE EXAMPLE 275
..................................................................................
5.7.5.3 ALTERNATIVE SLIDER-CRANK MECHANISM 277
.................................................................................................................
5.7.5.4 CLOSING COMMENTS 279
5.8 MOMENT OF MOMENTUM FOR PLANAR MOTION
.....................................................................................................
279
5.8.1 DEVELOPING MOMENT-OF-MOMENTUM EQUATIONS FOR PLANAR MOTION OF RIGID
BODIES ................... 279
................................................ 5.8.2 APPLYING
MOMENT-OF-MOMENTUM EQUATIONS IN PLANAR DYNAMICS 282
5.8.2.1 TWO SPINNING WHEELS CONNECTED BY AN ADJUSTABLE-TENSION BELT
.................................. 282
..................................................................
5.8.2.2 A PARTICLE IMPACTING A COMPOUND PENDULUM 284
5.8.2.3 A SPINNING BATON STRIKING THE GROUND
...............................................................................
285
................................................... 5.8.2.4 A ROLLING
CYLINDER THAT ENCOUNTERS AN INCLINED PLANE 287
..................................................................................................................................
5.9 SUMMARY AND DISCUSSION 288
PROBLEMS
..........................................................................................................................................................................
290
APPENDIX A: ESSENTIALS OF MATRIX ALGEBRA
..................................................................................................................
313
APPENDIX B: ESSENTIALS OF DIFFERENTIAL EQUATIONS
......................................................................................................
315
B.L INTRODUCTION
.........................................................................................................................................................
315
............................................................................................................................
B.2 LINEAR DIFFERENTIAL EQUATIONS 315
.................................................................................................................
B.2.1 LINEAR FIRST-ORDER EQUATION 315
............................................... B.2.2 CONSTANT
COEFFICIENT, LINEAR. SECOND-ORDER DIFFERENTIAL EQUATIONS 316
...........................................................................................
8.2.2.1 UNDAMPED SPRING-MASS MODEL 316
.................................................................................................
B.2.2.2 SPRING-MASS-DAMPER MODEL 318
B.3 AN INTRODUCTION TO NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS
......................................................... 320
..........................................................................................
APPENDIX C: MASS PROPERTIES OF COMMON SOLID BODIES 323
PROBLEMS
..........................................................................................................................................................................
324
ANSWERS
..........................................................................................................................................................................
326
APPENDIX D: ANSWERS TO SELECTED PROBLEMS
...............................................................................................................
327
|
any_adam_object | 1 |
author | Childs, Dara |
author_facet | Childs, Dara |
author_role | aut |
author_sort | Childs, Dara |
author_variant | d c dc |
building | Verbundindex |
bvnumber | BV037430703 |
callnumber-first | T - Technology |
callnumber-label | TA352 |
callnumber-raw | TA352 |
callnumber-search | TA352 |
callnumber-sort | TA 3352 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 1950 |
ctrlnum | (OCoLC)731452872 (DE-599)BVBBV037430703 |
dewey-full | 620.1/04 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/04 |
dewey-search | 620.1/04 |
dewey-sort | 3620.1 14 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
edition | 10. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01412nam a2200409zc 4500</leader><controlfield tag="001">BV037430703</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110531s2011 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010025875</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439831250</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-1-4398-3125-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)731452872</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037430703</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA352</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/04</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1950</subfield><subfield code="0">(DE-625)145567:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Childs, Dara</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamics in engineering practice</subfield><subfield code="c">Dara W. Childs</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">10. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">Taylor & Francis</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 374 p.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational mechanics & applied analysis series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben ; "A CRC title."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Mechanik</subfield><subfield code="0">(DE-588)4059231-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Mechanik</subfield><subfield code="0">(DE-588)4059231-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022582780&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022582780</subfield></datafield></record></collection> |
id | DE-604.BV037430703 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T23:24:12Z |
institution | BVB |
isbn | 9781439831250 |
language | English |
lccn | 2010025875 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022582780 |
oclc_num | 731452872 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | XV, 374 p. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Taylor & Francis |
record_format | marc |
series2 | Computational mechanics & applied analysis series |
spelling | Childs, Dara Verfasser aut Dynamics in engineering practice Dara W. Childs 10. ed. Boca Raton Taylor & Francis 2011 XV, 374 p. txt rdacontent n rdamedia nc rdacarrier Computational mechanics & applied analysis series Literaturangaben ; "A CRC title." Dynamics Technische Mechanik (DE-588)4059231-5 gnd rswk-swf Technische Mechanik (DE-588)4059231-5 s DE-604 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022582780&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Childs, Dara Dynamics in engineering practice Dynamics Technische Mechanik (DE-588)4059231-5 gnd |
subject_GND | (DE-588)4059231-5 |
title | Dynamics in engineering practice |
title_auth | Dynamics in engineering practice |
title_exact_search | Dynamics in engineering practice |
title_full | Dynamics in engineering practice Dara W. Childs |
title_fullStr | Dynamics in engineering practice Dara W. Childs |
title_full_unstemmed | Dynamics in engineering practice Dara W. Childs |
title_short | Dynamics in engineering practice |
title_sort | dynamics in engineering practice |
topic | Dynamics Technische Mechanik (DE-588)4059231-5 gnd |
topic_facet | Dynamics Technische Mechanik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022582780&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT childsdara dynamicsinengineeringpractice |