Singularities of integrals: homology, hyperfunctions and microlocal analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Springer
2011
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBM01 UBT01 UBW01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780857296023 9780857296030 |
DOI: | 10.1007/978-0-85729-603-0 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV037398654 | ||
003 | DE-604 | ||
005 | 20140327 | ||
007 | cr|uuu---uuuuu | ||
008 | 110513s2011 |||| o||u| ||||||eng d | ||
020 | |a 9780857296023 |9 978-0-85729-602-3 | ||
020 | |a 9780857296030 |c Online |9 978-0-85729-603-0 | ||
024 | 7 | |a 10.1007/978-0-85729-603-0 |2 doi | |
035 | |a (OCoLC)725335204 | ||
035 | |a (DE-599)HBZTT050400525 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-20 |a DE-703 |a DE-19 |a DE-91 |a DE-29 |a DE-739 |a DE-384 |a DE-83 | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pham, Frédéric |e Verfasser |0 (DE-588)1018490094 |4 aut | |
245 | 1 | 0 | |a Singularities of integrals |b homology, hyperfunctions and microlocal analysis |c Frédéric Pham |
264 | 1 | |a London [u.a.] |b Springer |c 2011 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Differential equations, partial | |
650 | 0 | 7 | |a Hyperfunktion |0 (DE-588)4161056-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere Variable |0 (DE-588)4277015-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Singuläres Integral |0 (DE-588)4181533-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | 1 | |a Mehrere Variable |0 (DE-588)4277015-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Singuläres Integral |0 (DE-588)4181533-6 |D s |
689 | 1 | 1 | |a Hyperfunktion |0 (DE-588)4161056-8 |D s |
689 | 1 | 2 | |a Mikrolokale Analysis |0 (DE-588)4169832-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-85729-603-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-022551390 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-85729-603-0 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804145690783252480 |
---|---|
any_adam_object | |
author | Pham, Frédéric |
author_GND | (DE-588)1018490094 |
author_facet | Pham, Frédéric |
author_role | aut |
author_sort | Pham, Frédéric |
author_variant | f p fp |
building | Verbundindex |
bvnumber | BV037398654 |
classification_rvk | SK 780 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)725335204 (DE-599)HBZTT050400525 |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-85729-603-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02948nmm a2200661 c 4500</leader><controlfield tag="001">BV037398654</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140327 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">110513s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780857296023</subfield><subfield code="9">978-0-85729-602-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780857296030</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-85729-603-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-85729-603-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725335204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZTT050400525</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pham, Frédéric</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1018490094</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singularities of integrals</subfield><subfield code="b">homology, hyperfunctions and microlocal analysis</subfield><subfield code="c">Frédéric Pham</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperfunktion</subfield><subfield code="0">(DE-588)4161056-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singuläres Integral</subfield><subfield code="0">(DE-588)4181533-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere Variable</subfield><subfield code="0">(DE-588)4277015-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Singuläres Integral</subfield><subfield code="0">(DE-588)4181533-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hyperfunktion</subfield><subfield code="0">(DE-588)4161056-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Mikrolokale Analysis</subfield><subfield code="0">(DE-588)4169832-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022551390</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-85729-603-0</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV037398654 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T23:23:28Z |
institution | BVB |
isbn | 9780857296023 9780857296030 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022551390 |
oclc_num | 725335204 |
open_access_boolean | |
owner | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
owner_facet | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Pham, Frédéric Verfasser (DE-588)1018490094 aut Singularities of integrals homology, hyperfunctions and microlocal analysis Frédéric Pham London [u.a.] Springer 2011 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Universitext Mathematik Mathematics Geometry, algebraic Differential equations, partial Hyperfunktion (DE-588)4161056-8 gnd rswk-swf Mehrere Variable (DE-588)4277015-4 gnd rswk-swf Mikrolokale Analysis (DE-588)4169832-0 gnd rswk-swf Singuläres Integral (DE-588)4181533-6 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Funktionentheorie (DE-588)4018935-1 s Mehrere Variable (DE-588)4277015-4 s DE-604 Singuläres Integral (DE-588)4181533-6 s Hyperfunktion (DE-588)4161056-8 s Mikrolokale Analysis (DE-588)4169832-0 s 2\p DE-604 https://doi.org/10.1007/978-0-85729-603-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pham, Frédéric Singularities of integrals homology, hyperfunctions and microlocal analysis Mathematik Mathematics Geometry, algebraic Differential equations, partial Hyperfunktion (DE-588)4161056-8 gnd Mehrere Variable (DE-588)4277015-4 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd Singuläres Integral (DE-588)4181533-6 gnd Funktionentheorie (DE-588)4018935-1 gnd |
subject_GND | (DE-588)4161056-8 (DE-588)4277015-4 (DE-588)4169832-0 (DE-588)4181533-6 (DE-588)4018935-1 (DE-588)4123623-3 |
title | Singularities of integrals homology, hyperfunctions and microlocal analysis |
title_auth | Singularities of integrals homology, hyperfunctions and microlocal analysis |
title_exact_search | Singularities of integrals homology, hyperfunctions and microlocal analysis |
title_full | Singularities of integrals homology, hyperfunctions and microlocal analysis Frédéric Pham |
title_fullStr | Singularities of integrals homology, hyperfunctions and microlocal analysis Frédéric Pham |
title_full_unstemmed | Singularities of integrals homology, hyperfunctions and microlocal analysis Frédéric Pham |
title_short | Singularities of integrals |
title_sort | singularities of integrals homology hyperfunctions and microlocal analysis |
title_sub | homology, hyperfunctions and microlocal analysis |
topic | Mathematik Mathematics Geometry, algebraic Differential equations, partial Hyperfunktion (DE-588)4161056-8 gnd Mehrere Variable (DE-588)4277015-4 gnd Mikrolokale Analysis (DE-588)4169832-0 gnd Singuläres Integral (DE-588)4181533-6 gnd Funktionentheorie (DE-588)4018935-1 gnd |
topic_facet | Mathematik Mathematics Geometry, algebraic Differential equations, partial Hyperfunktion Mehrere Variable Mikrolokale Analysis Singuläres Integral Funktionentheorie Lehrbuch |
url | https://doi.org/10.1007/978-0-85729-603-0 |
work_keys_str_mv | AT phamfrederic singularitiesofintegralshomologyhyperfunctionsandmicrolocalanalysis |