Fundamental molecular biology:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2012
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVI, 656 S. Ill., graph. Darst. |
ISBN: | 9781118059814 1118059816 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037374668 | ||
003 | DE-604 | ||
005 | 20140904 | ||
007 | t | ||
008 | 110502s2012 ad|| |||| 00||| eng d | ||
020 | |a 9781118059814 |9 978-1-1180-5981-4 | ||
020 | |a 1118059816 |9 1-1180-5981-6 | ||
035 | |a (OCoLC)751747490 | ||
035 | |a (DE-599)BVBBV037374668 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-578 |a DE-1028 |a DE-11 |a DE-19 | ||
082 | 0 | |a 572.8 |2 22 | |
084 | |a WD 4150 |0 (DE-625)148177: |2 rvk | ||
084 | |a QU 450 |2 nlm | ||
084 | |a BIO 220f |2 stub | ||
100 | 1 | |a Allison, Lizabeth A. |d 1958- |e Verfasser |0 (DE-588)135991862 |4 aut | |
245 | 1 | 0 | |a Fundamental molecular biology |c Lizabeth A. Allison |
250 | |a 2. ed. | ||
264 | 1 | |a Hoboken, NJ |b Wiley |c 2012 | |
300 | |a XXVI, 656 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Molekularbiologie |0 (DE-588)4039983-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Molekularbiologie |0 (DE-588)4039983-7 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022527942&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-022527942 |
Datensatz im Suchindex
_version_ | 1804145657452167168 |
---|---|
adam_text | Titel: Fundamental molecular biology
Autor: Allison, Lizabeth A.
Jahr: 2012
BRIEF CONTENTS
Preface xxiii
Chapter 1: The Beginnings of Molecular Biology 1
Chapter 2: The Structure of DNA 17
Chapter 3: The Versatility of RNA 39
Chapter 4: Protein Structure and Folding 65
Chapter 5: Genome Organization and Evolution 91
Chapter 6: DNA Replication and Telomere Maintenance 117
Chapter 7: DNA Repair Pathways 159
Chapter 8: Recombinant DNA Technology
and Molecular Cloning 185
Chapter 9: Tools for Analyzing Gene Expression 227
Chapter 10: Transcription in Bacteria 263
Chapter 11: Transcription in Eukaryotes 292
Chapter 12: Epigenetic Mechanisms of Gene Regulation 354
Chapter 13: RNA Processing and Post-Transcriptional
Gene Regulation 403
Chapter 14: The Mechanism of Translation 451
Chapter 15: Genetically Modified Organisms:
Use in Basic and Applied Research 479
Chapter 16: Genome Analysis: DNA Typing,
Genomics, and Beyond 511
Chapter 17: Medical Molecular Biology 545
Glossary 582
Index 632
CONTENTS
Preface
xxni
1
Chapter 1: The Beginnings of Molecular Biology
1.1 Introduction 1
1.2 Insights into the nature of the heredity material 4
Mendel s laws of inheritance 4
The chromosome theory of inheritance 6
The transforming principle is DNA 6
Creativity in approach leads to the one gene-one enzyme hypothesis 8
The importance of technological advances: the Hershey-Chase experiment 10
1.3 A model for the structure of DNA: the DNA double helix 11
1.4 The central dogma of molecular biology 12
1.5 An evolutionary framework for heredity 13
Chapter summary 15
Analytical questions 15
Bibliography 16
Chapter 2: The Structure of DNA 17
2.1 Introduction 17
2.2 Primary structure: the components of nucleic acids 18
Five-carbon sugars 18
Nitrogenous bases 19
The phosphate functional group 19
Nucleosides and nucleotides 20
Nomenclature of nucleotides 21
The length of RNA and DNA chains 21
Significance of 5 and 3 21
2.3 Secondary structure of DNA 22
Hydrogen bonds form between the bases 22
Base stacking provides chemical stability to the DNA double helix 23
Structure of the Watson-Crick DNA double helix 24
VII
viii Contents
Distinguishing between features of alternative double-helical
structures
DNA can undergo reversible strand separation 29
2.4 Unusual DNA secondary structures 31
Slipped structures 31
Cruciform structures 32
Triple helix DNA 33
34
2.5 Tertiary structure of DNA 34
Supercoiling of DNA 34
What is the significance of supercoiling in vivo? 35
Chapter summary 37
Analytical questions 37
Bibliography 37
Chapter 3: The Versatility of RNA 39
3.1 Introduction 39
3.2 RNA is involved in a wide range of cellular processes 40
3.3 Structural motifs of RNA 42
Secondary structure of RNA 42
tRNA structure: important insights into RNA
structural motifs 44
Common tertiary structure motifs in RNA 46
Kinetics of RNA folding 50
3.4 The discovery of RNA catalysis 51
Tetrahymena self-splicing RNA 52
¦¦ ! ** 53
RNase P is a ribozyme 55
Ribozymes catalyze a variety of chemical reactions 56
3.5 RNA-based genomes
Eukaryotic RNA viruses
Retroviruses
Viroids and other subviral pathogens
Chapter summary
Analytical questions
Bibliography
59
59
59
61
62
62
63
63
Contents ix
Chapter 4: Protein Structure and Folding 65
4.1 Introduction 65
4.2 Primary structure: amino acids and the genetic code 67
The 22 amino acids found in proteins 67
Protein primary structure 67
Translating the genetic code 68
The 21 st and 22nd genetically encoded amino acids 70
Modified nucleotides and codon bias 70
d- and L-amino acids in nature 71
4.3 The three-dimensional structure of proteins 72
Secondary structure 72
Tertiary structure 74
Quaternary structure 77
4.4 Protein function and regulation of activity 77
Enzymes are biological catalysts 77
Regulation of protein activity by post-translational modifications 79
Allosteric regulation of protein activity 81
Macromolecular assemblages 83
4.5 Protein folding and misfolding 83
Molecular chaperones 83
Ubiquitin-mediated protein degradation 85
Protein misfolding diseases 86
Chapter summary 88
Analytical questions 89
Bibliography 89
Chapter 5: Genome Organization and Evolution 91
5.1 Introduction 91
5.2 Genome organization varies in different organisms 92
5.3 Packaging of the eukaryotic genome 95
Histones are small, positively charged proteins 95
Nucleosomes are the fundamental packing unit of chromatin 98
Higher order chromatin structure: the 30-nm fiber 99
Further packaging of DNA involves loop domains 99
Fully condensed chromatin: metaphase chromosomes 100
Organization and expression of the genetic material 102
x Contents
5.4 The majority of the eukaryotic genome is noncoding 104
Interspersed elements are primarily transposable elements 104
Tandem repetitive sequences are arranged in arrays with
variable numbers of repeats 105
5.5 Lateral gene transfer in the eukaryotic genome 106
Organelle genomes reflect an endosymbiont origin 107
Intercompartmental DNA transfer 108
5.6 Prokaryotic and viral genome organization 109
Bacterial genome organization 11°
Plasmid DNA 110
Archael genome organization 111
Viral genome organization 112
Chapter Summary 114
Analytical questions 114
Bibliography 115
Chapter 6: DNA Replication and
Telomere Maintenance 117
6.1 Introduction 117
6.2 Early insights into the mode of bacterial DNA replication 118
The Meselson-Stahl experiment 118
Visualization of replicating bacterial DNA 120
6.3 DNA polymerases are the enzymes that catalyze DNA
synthesis from 5 to 3 121
Semidiscontinuous DNA replication 121
6.4 Multi-protein machines mediate bacterial DNA replication 124
Bacterial DNA polymerases have multiple functions 124
Initiation of replication 125
Replication is mediated by the replisome 125
Topoisomerases relax supercoiled DNA 126
Is leading strand synthesis really continuous? 129
6.5 Multi-protein machines trade places during
eukaryotic DNA replication
Mapping origins of replication
Selective activation of origins of replication
Replication factories
Histone removal at the origins of replication
129
130
131
131
132
Contents XI
Prereplication complex formation and replication licensing 133
Focus box 6.1 The naming of genes involved in DNA replication 1 33
Duplex unwinding at replication forks 134
RNA priming of leading strand and lagging strand DNA synthesis 136
Polymerase switching 136
Elongation of leading strands and lagging strands 136
PCNA: a sliding clamp with many protein partners 136
Proofreading 138
Maturation of nascent DNA strands 139
Histone deposition 141
Topoisomerase untangles the newly synthesized DNA 142
143
6.6 Alternative modes of circular DNA replication 143
Rolling circle replication 143
Models for organelle DNA replication 144
Distiw bo* fi . KNaw MRP iml ijrlil.i£t-h.iir hvpnplauj 1 45
6.7 Telomere maintenance: the role of telomerase
in DNA replication, aging, and cancer 146
Telomeres 147
Solution to the end replication problem 147
Maintenance of telomeres by telomerase 148
Other modes of telomere maintenance 148
Regulation of telomerase activity 150
Telomerase, aging, and cancer 150
pjs^ 0£$.3D^i ^tt^ 153
Chapter summary 155
Analytical questions 156
Bibliography 156
Chapter 7: DNA Repair Pathways 159
7.1 Introduction 159
7.2 Mutations and DNA damage 160
Transitions and transversions can lead to silent, missense, or nonsense mutations 160
Expansion of trinucleotide repeats leads to genetic instability 162
General classes of DNA damage 163
7.3 Lesion bypass 166
7.4 Direct reversal of DNA damage 167
Reversal of thymine-thymine dimers by DNA photolyase 167
Damage reversal by DNA methyltransferase 168
xii Contents
7.5 Repair of single base changes and structural distortions
by removal of DNA damage 169
Base excision repair 169
Mismatch repair 171
Oisiaur bra 7 ] Hejaliiarv nonpolyposi* ujlivierwl rjnii r a drha.i
in mismatch repair 172
Nucleotide• Xi is, n rt i^iit 174
;j3tj5jjise «!! 7 2XtJEndrrna pigmcniOMini and related tnoKLrs tlefc.it* m iiHcleniKle
exctsto fepur-
175
7.6 Double-strand break repair by removal of DNA damage 177
Homologous recombination 178
{liwsuetKA 7 J Hencficar) Ixvakr cancer syndromes, Jiniraiioru.
in BSTA1 and BRCA2 .. ¦ 178
Nonhomologous end-joining 180
Chapter summary 182
Analytical questions 183
Bibliography 183
Chapter 8: Recombinant DNA Technology
and Molecular Cloning iss
8.1 Introduction 185
8.2 The beginnings of recombinant DNA technology 186
Insights from bacteriophage lambda (X) cohesive sites 186
Insights from bacterial modification and restriction systems 186
The first cloning experiments 188
Focwlxw8.1 FcwrfreconifeBMni DNAmoJewJcs 189
8.3 Cutting and joining DNA 190
Major classes of restriction endonucleases 190
Recognition sequences for type II restriction endonucleases 190
DNA ligase joins linear pieces of DNA 194
8.4 Molecular cloning 195
Choice of vector is dependent on insert size and application 195
Plasmid DNA as a vector 196
Tool box 8.1 liquid dbiosnatography 199
Bacteriophage lambda {X) as a vector 201
Artificial chromosome vectors 201
Sources of DNA for cloning 203
lool txn 8.2 Complementary DNA (cI)NA) synthesis 203
Contents xiii
Tool box 8.3 Polymerase chain reaction (PCR) 205
Constructing DNA libraries 206
8.5 Library screening and probes 207
Types of DNA and RNA probes 207
Labeling of probes 209
lonl Inn h/t R^lioauiw ami nnmadioailive laMini; nutlnxls 210
lixil lnix 8.i Nutliu acid labeling 211
Library screening 212
Screening of expression libraries 214
8.6 Restriction mapping and RFLP analysis 214
Restriction mapping 214
Tool box 8.6 DNA and RNA Electrophoresis 215
Restriction fragment length polymorphism (RFLP) 216
Tool box 8.7 Southern blot 21 8
219
8.7 DNA sequencing 220
Manual DNA sequencing by the Sanger dideoxy DNA method 221
Automated DNA sequencing 222
Next-generation sequencing 223
Chapter summary 224
Analytical questions 225
Bibliography 226
Chapter 9: Tools for Analyzing Gene Expression 227
9.1 Introduction 227
I octb bta 9 1 Model otgmisms 228
9.2 Transient and stable transfection assays 230
9.3 Reporter genes 230
Commonly used reporter genes 231
Analysis of gene regulation 232
Purification and detection tags: fusion proteins 233
Tool box 9.1 Production of recombinant proteins 238
Tool bo* 9.2 Fluorescence, confocal, and multiphoton microscopy 239
9.4 In vitro mutagenesis 240
Deletion mutagenesis by PCR 241
Linker-scanning mutagenesis 242
Site-directed mutagenesis 242
xiv Contents
9.5 Analysis at the level of gene transcription: RNA
expression and localization 242
Northern blot 244
In situ hybridization 244
RNase protection assay (RPA) 244
Reverse transcription-PCR 245
Quantitative real-time PCR (Q-PCR) 245
9.6 Analysis at the level of translation: protein expression
and localization 246
Western blot 246
Tool box 9.3 Protein gel electrophoresis 246
Enzyme-linked immunosorbent assay (ELISA) 249
Tool box 9.4 Antibody production 250
9.7 Antisense technology 251
Antisense oligonucleotides 251
RNA interference (RNAi) 252
9.8 Analysis of DNA-protein interactions 253
Electrophoretic mobility shift assay (EMSA) 253
DNase I footprinting 253
Chromatin immunoprecipitation (ChIP) assay 253
9.9 Analysis of protein-protein interactions 255
Pull-down assay 255
Yeast two-hybrid assay 255
Coimmunoprecipitation assay 257
Fluorescence resonance energy transfer (FRET) 257
9.10 Structural analysis of proteins 257
X-ray crystallography 257
Nuclear magnetic resonance (NMR) spectroscopy 258
Cryoelectron microscopy 259
Atomic force microscopy (AFM) 259
Chapter summary 259
Analytical questions 261
Bibliography 262
Chapter 10: Transcription in Bacteria 263
10.1 Introduction 263
10.2 Mechanism of transcription 264
Bacterial promoter structure 265
Contents xv
Structure of bacterial RNA polymerase 265
Initiation of transcription 267
Elongation 268
Iwi* htn 10 1 Which ii ovw-tffct RNA polymerase or the DNA 270
Proofreading 271
Termination of transcription 272
10.3 Insights into gene regulation from the lactose {lac) operon 273
The Jacob-Monod operon model of gene regulation 274
Characterization of the Lac repressor 274
Lactose (lac) operon regulation 275
The lac promoter and lacZ structural gene are widely used
in molecular biology research 278
10.4 Mode of action of transcriptional regulators 279
Cooperative binding of proteins to DNA 279
Allosteric modifications and DNA binding 279
DNA looping 281
10.5 Control of gene expression by RNA 282
Differential folding of RNA: transcriptional attenuation of the tryptophan operon 283
Riboswitches 284
Riboswitch ribozymes 285
10.6 Gene regulatory networks 286
Alternative sigma factors 286
Quorum sensing 288
Chapter summary 288
Analytical questions 290
Bibliography 290
Chapter 11: Transcription in Eukaryotes 292
11.1 Introduction 292
11.2 Overview of transcriptional regulation 293
Chromosomal territories and transcription factories 293
Eukaryotes have different types of RNA polymerase 293
11.3 Protein-coding gene regulatory elements 295
Structure and function of promoter elements 296
Structure and function of long-range regulatory elements 298
Focus box ! 1.1 Position eflm and long range regulatory elements 299
Dbea«t^fl.lHii$*iwilrilHijmilan^ 302
fecaab»M.2bthcwattuefauiBatin 304
xvi Contents
11.4 The general transcription machinery 306
Components of the general transcription machinery 306
Structure of RNA polymerase II 307
General transcription factors and preinitiation complex formation 309
Mediator: a molecular bridge 312
Initiation of transcription 314
11.5 The role of specific transcription factors in gene regulation 314
Transcription factors mediate gene-specific transcriptional
activation or repression 315
Transcription factors are modular proteins 315
DNA-binding domain motifs 316
Kuus box 11 i HoiruiihoMs mil liomtHkluiiijiiis 31 7
I ise.)M box 11 2 l.iniKv. rihilnpiirnvnd. i.nk •.yiulionn- .mil
Sonu he-iU rhnj; ojtuIiii!; 320
1 imiiv hti 11 * Dchifrte lii .iom. itsr.lluti-.li rasi-s in
Kul inui in- I iviii sviidrunv 322
Transactivation domain 323
Dimerization domain 324
11.6 Transcriptional coactivators and corepressors 324
Chromatin modification complexes 324
Focus box 11.4 Is there a hisione code? 326
Linker histone variants 328
Chromatin remodeling complexes 328
11.7 Transcription complex assembly: the enhanceosome model
versus the hit-and-run model 331
Order of recruitment of various proteins that regulate transcription 331
Enhanceosome model 332
Hit-and-run model 333
Merging of models 333
11.8 Transcription elongation through nucleosomes 334
Transcription elongation 335
Proofreading and backtracking 335
Transcription elongation through the nucleosomal barrier 336
Disease box 11.4 Defects in Elongaror and Familial Dysauronomia 338
11.9 Nuclear import and export of proteins 339
Karyopherins mediate nuclear import and export 340
Nuclear import pathway 341
Focus rx« 11.5 The nudear pore complex 342
Nuclear export pathway 344
Contents xvii
11.10 Regulated nuclear import and signal transduction pathways 345
Regulated nuclear import of NF-kB 345
Regulated nuclear import of the glucocorticoid receptor 347
Chapter summary 348
Analytical questions 350
Bibliography 351
Chapter 12: Epigenetic Mechanisms
of Gene Regulation 354
12.1 Introduction 354
12.2 Epigenetic markers 355
Cytosine DNA methylation marks genes for silencing 355
1 kuraae box 111 C Jnowand epigenetfe 357
Stable mainleiunce of histone modifications 358
Diwasc box i 1.11 ufjk- V uu.iit.il ri-r.ird.Miun ind jlvrr.mt MNA mcrhvfatinn 359
12.3 Genomic imprinting 360
Disease box 12.3 Genomic imprinting and neurodevelopmental disorders 362
Establishing and maintaining the imprint 364
Mechanisms of monoallelic expression 365
Genomic imprinting is essential for normal development 367
Origins of genomic imprinting 368
12.4 X chromosome inactivation 368
Random X chromosome inactivation in mammals 369
Molecular mechanisms for stable maintenance
of X chromosome inactivation 370
Is there monoallelic expression of all X-linked genes? 370
12.5 Epigenetic control of transposable elements 371
Barbara McClintock s discovery of mobile genetic
elements in maize 372
DNA transposons have a wide host range 373
DNA transposons move by a cut-and-paste mechanism 376
Retrotransposons move by a copy-and-paste mechanism 377
Some LTR retrotransposons are active in the mammalian genome 378
Non-LTR retrotransposons include LINEs and SINEs 378
Methylation of transposable elements 379
Heterochromatin formation mediated by RNAi and RNA-directed
DNA methylation 380
xviii Contents
12.6 Epigenetics and nutritional legacy 381
A diet lacking folic acid can activate a retrotransposon in mice 381
Paternal epigenetic effects 383
12.7 Allelic exclusion 383
Yeast mating-type switching and silencing 383
Antigen switching in trypanosomes 387
Diuaaebox 12.5 IrypanoMimHSis. human sktptng mlIuuv. 388
V(D)J recombination and the adaptive immune response 393
Fo^bc« i iJpisi the V(I )] sv-iem c-iotvl horn i irjnt|Hwm 394
Chapter summary 398
Analytical questions 400
Bibliography 401
Chapter 13: RNA Processing and
Post-Transcriptional Gene Regulation 403
13.1 Introduction 403
13.2 The discovery of split genes 404
Funis box 1.1.1 Fiunm-i-nonded small nucleolar RKAs
and inside-out pim 406
13.3 Splicing occurs by a variety of mechanisms 407
Group I introns require an external G cofactor for splicing 407
Group II introns require an internal bulged A for splicing 408
Mobile group I and II introns 409
Archael introns are spliced by an endoribonuclease 410
Some nuclear tRNA genes contain an intron 410
13.4 Cotranscriptional processing of nuclear pre-mRNA 411
Addition of the 5-7-methylguanosine cap 413
Termination and polyadenylation 413
Splicing 414
Disease box 15.1 Qedoptarjttgeai t^wc^iS^^^w^bei^
tepeat expaoaonjn apdy^lfetd^a^^ , ** $ $ 415
Disease box 13.2 Spti^»»isc^;aet j^.i^ 417
Disease box. 13.3 /^0enei|^ar{^t$ui«« i^^!^p»., 422
13.5 Alternative splicing 423
Effects of alternative splicing on gene expression 424
Focus box l$2 The Dicamgsxt ejstreiiv jltcrnatiw splicing 424
Regulation of alternative splicing 425
Trans-splicing 426
Contents xix
13.6 RNA editing 428
RNA editing in trypanosomes 428
RNA editing in mammals 431
Disease box 11.-1 Amyotrophic lateral Heterosis a defect in RNA editing? 432
13.7 Post-transcriptional gene regulation by RNAi 434
The discovery of RNAi 436
RNAi machinery 437
The discovery of miRNA in Caenorhabditis elegans 438
Processing of miRNAs 439
miRNAs target mRNA for degradation and translational inhibition 440
13.8 RNA turnover in the nucleus and cytoplasm 442
Nuclear exosomes and quality control 442
Quality control and the formation of nuclear export-competent RNPs 442
Cytoplasmic RNA turnover 443
Chapter summary 445
Analytical questions 447
Bibliography 448
Chapter 14: The Mechanism of Translation 451
14.1 Introduction 451
14.2 Ribosome structure and assembly 451
Structure of ribosomes 452
The nucleolus 453
Ribosome biogenesis 455
14.3 Aminoacyl-tRNA synthetases 456
Aminoacyl-tRNA charging 456
Proofreading activity of aminoacyl-tRNA synthetases 457
14.4 Initiation of translation 458
Ternary complex formation and loading onto the 40S ribosomal subunit 459
Loading the mRNA on the 40S ribosomal subunit 459
Scanning and AUG recognition 461
Joining of the 40S and 60S ribosomal subunits 461
Tool box 14.1 Translation toeprinting assays 462
£$^j^^ 463
14.5 Elongation and events in the ribosome tunnel 463
Decoding the message 463
Peptide bond formation and translocation 466
XX Contents
Peptidyl transferase activity 466
Events in the ribosome tunnel 470
14.6 Termination of translation 471
14.7 Translational and post-translational control 472
Phosphorylation of elF2oc blocks ternary complex formation 473
elF2cc phosphorylation is mediated by four distinct protein kinases 474
Chapter summary 476
Analytical questions 477
Bibliography 477
Chapter 15: Genetically Modified Organisms:
Use in Basic and Applied Research 479
15.1 Introduction 479
15.2 Transgenic mice 480
F Krm box 15.1 OncoMouseparent 481
How to make a transgenic mouse 481
Tool box 15.J Transposon tagging 484
Inducible transgenic mice 485
15.3 Gene-targeted mouse models 486
Focus box 15.2 A mouse for every need 486
Knockout mice 487
Knockin mice 490
Knockdown mice 490
Conditional knockout and knockin mice 490
15.4 Other applications of transgenic animal technology 492
Fc^ms box 15.3 Transgenic artworfc the GFP bunny 493
Transgenic primates 493
Transgenic livestock 494
Gene pharming 494
15.5 Cloning by nuclear transfer 496
Genetic equivalence of somatic cell nuclei: frog cloning experiments 496
Cloning of mammals by nuclear transfer 497
Breakthrough of the year : the cloning of Dolly 497
Method for cloning by nuclear transfer 498
Source of mtDNA in clones 500
Why is cloning by nuclear transfer inefficient? 500
Applications of cloning by nuclear transfer 502
Hocus box 15.4 Genetically manipulated pets 502
Contents xxi
15.6 Transgenic plants 506
Focus box 15.5 Genetically modified crops: are you eating genetically engineered tomatoes? 506
T-DNA-mediated gene delivery 507
Electroporation and microballistics 508
Chapter summary 508
Analytical questions 509
Bibliography 510
Chapter 16: Genome Analysis: DNA Typing,
Genomics, and Beyond 511
16.1 Introduction 511
16.2 DNA typing 512
I ocidi box 16 1 DMA profile* of marijuana 51 2
IimM box 161 Nonhuman DNA typing 51 3
DNA polymorphisms: the basis of DNA typing 514
Minisatellite analysis 514
Polymerase chain reaction-based analysis 516
Short tandem repeat analysis 517
Mitochondrial DNA analysis 518
Y chromosome analysis 519
Randomly amplified polymorphic DNA (RAPD) analysis 519
16.3 Genomics, proteomics, and beyond 520
What is bioinformatics? 520
Genomics 523
Proteomics 523
The age of omics and systems biology 523
16.4 Whole-genome sequencing 523
Clone-by-clone genome assembly approach 524
Whole-genome shotgun approach 525
Rough drafts versus finished sequences 525
Comparative analysis of genomes 525
What is a gene and how many are there in the human genome? 528
16.5 High-throughput analysis of gene function 529
DNA microarrays 529
Protein arrays 531
Mass spectrometry 531
533
xxii Contents
16.6 Genome-wide association studies 534
Single nucleotide polymorphisms 535
I )i« I*.- htn I ft i M ippmf; diw i*i rfssin niiil ^NIV Alzheimer s disease 535
Copy number variants (CNVs) 537
Gene polymorphisms and human behavior 537
Aggressive, impulsive, and violent behavior 537
Schizophrenia susceptibility loci 539
Chapter summary 540
Analytical questions 542
Bibliography 543
Chapter 17: Medical Molecular Biology 545
17.1 Introduction 545
17.2 Molecular biology of cancer 546
Activation of proto-oncogenes and oncogenes 547
l;ocui box 17.1 How cancer cells metastasize: the role of Src 550
Inactivation of tumor-suppressor genes 552
Disease box 17.1 Knudsoris two-hit hypoilii sis ind u rmnlilisioma 553
Focus box 17.2 The discovery of p53 556
Inappropriate expression of microRNAs in cancer 557
Chromosomal rearrangements and cancer 558
Viruses and cancer 560
Disease box 17.2 Human papilloma virus (HPV) and cervical cancer 561
Chemical carcinogenesis 564
17.3 Gene therapy 566
Vectors for somatic cell gene therapy 566
PimmmtIkii l *.i( amcrgene tlitrapv a riujpi bullet 566
LWau. box P.4 RNAi therapies 567
Runs box I * 1 Ki-HW.jrjl imrluiid $*ni tr.in rer how Hi mike a safe nxtor 569
Focw, box 1 4 llir first gem- tlieupy fatality 571
Enhancement genetic engineering 571
Gene therapy for inherited immunodeficiency syndromes 572
Cystic fibrosis gene therapy 574
HIV-1 gene therapy 575
Focus box 17.5 H1V-4 fife evdfe 575
The future of gene therapy 577
Chapter summary 578
Analytical questions 580
Bibliography 580
Glossary 582
Index 632
|
any_adam_object | 1 |
author | Allison, Lizabeth A. 1958- |
author_GND | (DE-588)135991862 |
author_facet | Allison, Lizabeth A. 1958- |
author_role | aut |
author_sort | Allison, Lizabeth A. 1958- |
author_variant | l a a la laa |
building | Verbundindex |
bvnumber | BV037374668 |
classification_rvk | WD 4150 |
classification_tum | BIO 220f |
ctrlnum | (OCoLC)751747490 (DE-599)BVBBV037374668 |
dewey-full | 572.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.8 |
dewey-search | 572.8 |
dewey-sort | 3572.8 |
dewey-tens | 570 - Biology |
discipline | Biologie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01421nam a2200385 c 4500</leader><controlfield tag="001">BV037374668</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140904 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110502s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118059814</subfield><subfield code="9">978-1-1180-5981-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1118059816</subfield><subfield code="9">1-1180-5981-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)751747490</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037374668</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.8</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 4150</subfield><subfield code="0">(DE-625)148177:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QU 450</subfield><subfield code="2">nlm</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 220f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Allison, Lizabeth A.</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)135991862</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamental molecular biology</subfield><subfield code="c">Lizabeth A. Allison</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 656 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekularbiologie</subfield><subfield code="0">(DE-588)4039983-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022527942&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022527942</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV037374668 |
illustrated | Illustrated |
indexdate | 2024-07-09T23:22:56Z |
institution | BVB |
isbn | 9781118059814 1118059816 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022527942 |
oclc_num | 751747490 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-578 DE-1028 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-578 DE-1028 DE-11 DE-19 DE-BY-UBM |
physical | XXVI, 656 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Wiley |
record_format | marc |
spelling | Allison, Lizabeth A. 1958- Verfasser (DE-588)135991862 aut Fundamental molecular biology Lizabeth A. Allison 2. ed. Hoboken, NJ Wiley 2012 XXVI, 656 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Molekularbiologie (DE-588)4039983-7 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Molekularbiologie (DE-588)4039983-7 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022527942&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Allison, Lizabeth A. 1958- Fundamental molecular biology Molekularbiologie (DE-588)4039983-7 gnd |
subject_GND | (DE-588)4039983-7 (DE-588)4123623-3 |
title | Fundamental molecular biology |
title_auth | Fundamental molecular biology |
title_exact_search | Fundamental molecular biology |
title_full | Fundamental molecular biology Lizabeth A. Allison |
title_fullStr | Fundamental molecular biology Lizabeth A. Allison |
title_full_unstemmed | Fundamental molecular biology Lizabeth A. Allison |
title_short | Fundamental molecular biology |
title_sort | fundamental molecular biology |
topic | Molekularbiologie (DE-588)4039983-7 gnd |
topic_facet | Molekularbiologie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022527942&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT allisonlizabetha fundamentalmolecularbiology |