Plasma physics and engineering:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL [u.a.]
CRC Press
2011
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXXV, 905 S. Ill., graph. Darst. |
ISBN: | 9781439812280 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037346882 | ||
003 | DE-604 | ||
005 | 20150701 | ||
007 | t | ||
008 | 110419s2011 xxuad|| |||| 00||| eng d | ||
010 | |a 2010044426 | ||
020 | |a 9781439812280 |c hardback |9 978-1-4398-1228-0 | ||
035 | |a (OCoLC)731896663 | ||
035 | |a (DE-599)BVBBV037346882 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-11 |a DE-29T |a DE-91 |a DE-83 |a DE-384 |a DE-634 | ||
050 | 0 | |a QC718 | |
082 | 0 | |a 530.4/4 | |
084 | |a UR 8000 |0 (DE-625)146642: |2 rvk | ||
084 | |a PHY 570f |2 stub | ||
100 | 1 | |a Fridman, Alexander A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Plasma physics and engineering |c Alexander Fridman ; Lawrence A. Kennedy |
250 | |a 2. ed. | ||
264 | 1 | |a Boca Raton, FL [u.a.] |b CRC Press |c 2011 | |
300 | |a XXXV, 905 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Plasma (Ionized gases) | |
650 | 4 | |a Plasma engineering | |
650 | 7 | |a SCIENCE / Nuclear Physics |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics |2 bisacsh | |
650 | 0 | 7 | |a Plasmatechnik |0 (DE-588)4140353-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Plasmaphysik |0 (DE-588)4046259-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Plasmaphysik |0 (DE-588)4046259-6 |D s |
689 | 0 | 1 | |a Plasmatechnik |0 (DE-588)4140353-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kennedy, Lawrence A. |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022500449&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-022500449 |
Datensatz im Suchindex
_version_ | 1804145634871083008 |
---|---|
adam_text | Titel: Plasma physics and engineering
Autor: Fridman, Alexander A
Jahr: 2011
Contents
Preface............................................................... xxxi
Acknowledgments................................................... xxxiii
Authors.............................................................. xxxv
Part I Fundamentals of Plasma Physics and Plasma
Chemistry
1. Plasma in Nature, in the Laboratory, and in Industry ...........3
1.1 Occurrence of Plasma: Natural and Man Made.............4
1.2 Gas Discharges.....................................6
1.3 Plasma Applications, Plasmas in Industry.................8
1.4 Plasma Applications for Environmental Control........... 10
1.5 Plasma Applications in Energy Conversion............... 11
1.6 Plasma Application for Material Processing............... 13
1.7 Breakthrough Plasma Applications in Modern Technology ... 14
2. Elementary Processes of Charged Species in Plasma...........15
2.1 Elementary Charged Particles in Plasma and Their Elastic
and Inelastic Collisions.............................. 15
2.1.1 Electrons................................... 15
2.1.2 Positive Ions................................. 17
2.1.3 Negative Ions................................ 17
2.1.4 Elementary Processes of the Charged Particles....... 18
2.1.5 Fundamental Parameters of Elementary Processes .... 19
2.1.6 Reaction Rate Coefficients....................... 21
2.1.7 Elementary Elastic Collisions of Charged Particles .... 22
2.2 Ionization Processes................................ 23
2.2.1 Direct Ionization by Electron Impact............... 24
2.2.2 Direct Ionization Rate Coefhcient................. 25
2.2.3 Peculiarities of Dissociation of Molecules by Electron
Impact: The Frank-Condon Principle and the Process of
Dissociative Ionization......................... 27
2.2.4 Stepwise Ionization by Electron Impact............. 28
2.2.5 Ionization by High Energy Electron Beams.......... 31
2.2.6 Photo-Ionization Processes...................... 32
2.2.7 Ionization by Collisions of Heavy Particles, Adiabatic
Principle, and Parameter Massey................. 33
v
vi Contents
2.2.8 Penning Ionization Effect and Process of Associative
Ionization................................... 34
2.3 Mechanisms of Electron Losses: The Electron-Ion
Recombination.................................... 35
2.3.1 Different Mechanisms of Electron-Ion Recombination . . 36
2.3.2 Dissociative Electron-Ion Recombination...........36
2.3.3 Ion Conversion Reactions as a Preliminary Stage of the
Dissociative Electron-Ion Recombination...........38
2.3.4 Three-Body Electron-Ion Recombination ...........39
2.3.5 Radiative Electron-Ion Recombination.............40
2.4 Electron Losses Due to Formation of Negative Ions: Electron
Attachment and Detachment Processes..................40
2.4.1 Dissociative Electron Attachment to Molecules.......41
2.4.2 Three-Body Electron Attachment to Molecules.......43
2.4.3 Other Mechanisms of Formation of Negative Ions.....46
2.4.4 Mechanisms of Negative Ion Destruction: Associative
Detachment Processes ......................... 46
2.4.5 Electron Impact Detachment..................... 48
2.4.6 Detachment in Collisions with Excited Particles......49
2.5 Ion-Ion Recombination Processes...................... 50
2.5.1 Ion-Ion Recombination in Binary Collisions.........50
2.5.2 Three-Body Ion-Ion Recombination,
Thomson s Theory............................ 53
2.5.3 High Pressure Limit of the Three-Body Ion-Ion
Recombination, Langevin Model..................54
2.6 The Ion-Molecular Reactions.........................56
2.6.1 Ion-Molecular Polarization Collisions: The Langevin
Rate Coefficient.............................. 56
2.6.2 The Ion-Atom Charge Transfer Processes...........59
2.6.3 Nonresonant Charge Transfer Processes............61
2.6.4 The Ion-Molecular Reactions with Rearrangement of
Chemical Bonds.............................. 63
2.6.5 Ion-Molecular Chain Reactions and Plasma Catalysis . . 63
2.6.6 Ion-Molecular Processes of Cluster Growth: The
Winchester Mechanism......................... 65
Problems and Concept Questions.......................... 66
3. Elementary Processes of Excited Molecules
and Atoms in Plasma................................... 71
3.1 Electronically Excited Atoms and Molecules in Plasma......71
3.1.1 Electronically Excited Particles, Resonance, and
Metastable States............................. 71
3.1.2 Electronically Excited Atoms..................... 72
3.1.3 Electronic States of Molecules and
Their Classification............................ 75
Contents vii
3.1.4 Electronically Excited Molecules,
Metastable Molecules.......................... 75
3.2 Vibrationally and Rotationally Excited Molecules.......... 78
3.2.1 Potential Energy Curves for Diatomic Molecules, Morse
Potential.................................... 80
3.2.2 Vibration of Diatomic Molecules, Model of Harmonie
Oscillator................................... 82
3.2.3 Vibration of Diatomic Molecules, Model of Anharmonic
Oscillator...................................83
3.2.4 Vibrationally Excited Polyatomic Molecules, the Case of
Discrete Vibrational Levels...................... 85
3.2.5 Highly Vibrationally Excited Polyatomic Molecules:
Vibrational Quasi-Continuum....................89
3.2.6 Rotationally Excited Molecules................... 91
3.3 Elementary Processes of Vibrational, Rotational, and Electronic
Excitation of Molecules in Plasma......................94
3.3.1 Vibrational Excitation of Molecules by Electron Impact . 94
3.3.2 Lifetime of Intermediate Ionic States during the
Vibrational Excitation..........................95
3.3.3 Rate Coefficients of Vibrational Excitation by Electron
Impact: Semi-Empirical Fridman s Approximation .... 97
3.3.4 Rotational Excitation of Molecules by Electron Impact. . 99
3.3.5 Electronic Excitation of Atoms and Molecules by
Electron Impact..............................100
3.3.6 Rate Coefficients of Electronic Excitation in Plasma by
Electron Impact..............................101
3.3.7 Dissociation of Molecules by Direct Electron Impact . . . 104
3.3.8 Distribution of Electron Energy in Nonthermal
Discharges between Different Channels of Excitation
and Ionization...............................106
3.4 Vibration (VT) Relaxation, Landau-Teller Formula.........112
3.4.1 Vibrational-Translational (VT) Relaxation: Slow
Adiabatic Elementary Process....................112
3.4.2 Quantitative Relations for Probability of the Elementary
Process of Adiabatic VT-Relaxation................114
3.4.3 VT-Relaxation Rate Coefficients for Harmonie
Oscillators, Landau-Teller Formula................116
3.4.4 The Vibrational VT-Relaxation of Anharmonic
Oscillators..................................117
3.4.5 Fast Nonadiabatic Mechanisms of VT-Relaxation.....119
3.4.6 VT-Relaxation of Polyatomic Molecules ............121
3.4.7 Effect of Rotation on the Vibrational Relaxation of
Molecules...................................123
3.5 Vibrational Energy Transfer between Molecules,
W-Relaxation Processes.............................124
viü Contents
3.5.1 Resonant VV-Relaxation........................124
3.5.2 W-Relaxation of Anharmonic Oscillators...........126
3.5.3 Intermolecular W-Exchange....................129
3.5.4 W-Exchange of Polyatomic Molecules.............132
3.6 Processes of Rotational and Electronic Relaxation
of Excited Molecules................................134
3.6.1 Rotational Relaxation..........................134
3.6.2 Relaxation of Electronically Excited Atoms and
Molecules...................................136
3.6.3 Electronic Excitation Energy Transfer Processes.......137
3.7 Elementary Chemical Reactions of Excited Molecules:
Fridman-Macheret a-Model..........................138
3.7.1 Rate Coefficient of the Reactions of Excited Molecules . . 138
3.7.2 Potential Barriers of Elementary Chemical Reactions,
Activation Energy.............................139
3.7.3 Efficiency a of Vibrational Energy in Overcoming the
Activation Energy Barrier.......................141
3.7.4 Fridman-Macheret a-Model.....................142
3.7.5 Efficiency of Vibrational Energy in Elementary
Reactions Proceeding through Intermediate
Complexes..................................146
3.7.6 Dissociation of Molecules Stimulated by Vibrational
Excitation in Nonequilibrium Plasma..............149
3.7.7 Dissociation of Molecules in Nonequilibrium
Conditions with Essential Contribution of
Translational Energy...........................151
3.7.7.1 ParkModel............................152
3.7.7.2 Losev Model..........................154
3.7.7.3 Marrone-Treanor Model..................154
3.7.8 Chemical Reactions of Two Vibrationally Excited
Molecules in Plasma...........................155
Problems and Concept Questions..........................155
4. Plasma Statistics and Kinetics of Charged Particles............161
4.1 Statistics and Thermodynamics of Equilibrium and
Nonequilibrium Plasmas, the Boltzmann, Saha,
and Treanor Distributions............................161
4.1.1 Statistical Distribution of Particles over Different States:
The Boitzmarm Distribution..................... 161
4.1.2 Equilibrium Statistical Distribution of Diatomic
Molecules over Vibrational-Rotational States........163
4.1.3 Saha Equation for Ionization Equilibrium in Thermal
Plasma.....................................164
4.1.4 Dissociation Equilibrium in Molecular Gases........164
Contents ix
4.1.5 Equilibrium Statistical Relations for Radiation, the
Planck Formula, and the Stefan-Boltzmann Law......165
4.1.6 Concepts of Complete Thermodynamic Equilibrium
and Local Thermodynamic Equilibrium for Plasma
Systems....................................166
4.1.7 Partition Functions............................167
4.1.8 Thermodynamic Functions of Thermal
Plasma Systems..............................168
4.1.9 Nonequilibrium Statistics of Thermal and Nonthermal
Plasmas....................................170
4.1.10 Nonequilibrium Statistics of Vibrationally Excited
Molecules: The Treanor Distribution...............172
4.2 Boltzmann and Fokker-Planck Kinetic Equations: Electron
Energy Distribution Functions ........................176
4.2.1 Boltzmann Kinetic Equation.....................176
4.2.2 x-Approximation of the Boltzmann
Kinetic Equation..............................178
4.2.3 Macroscopic Equations Related to the Kinetic
Boltzmann Equation...........................179
4.2.4 Fokker-Planck Kinetic Equation for Determination of
Electron Energy Distribution Functions.............181
4.2.5 Different Specific Electron Energy Distribution
Functions: Druyvesteyn Distribution ..............183
4.2.6 Electron Energy Distribution Functions in Different
Nonequilibrium Discharge Conditions.............186
4.2.7 Relations between Electron Temperature and the
Reduced Electric Field.........................187
4.3 Electric and Thermal Conductivity in Plasma: Diffusion of
Charged Particles..................................188
4.3.1 Isotropie and Anisotropie Parts of Electron Distribution
Functions...................................188
4.3.2 Electron Mobility and Plasma Conductivity.........190
4.3.3 Similarity Parameters Describing Electron Motion in
Nonthermal Discharges........................192
4.3.4 Plasma Conductivity in Perpendicular Statte Uniform
Electric and Magnetic Fields.....................192
4.3.5 Conductivity of Strongly lonized Plasma...........196
4.3.6 Ion Energy and Ion Drift in the Electric Field.........197
4.3.7 Free Diffusion of Electrons and Ions...............198
4.3.8 The Einstein Relation between Diffusion Coefficient,
Mobility, and Mean Energy......................200
4.3.9 The Ambipolar Diffusion.......................200
4.3.10 Conditions of Ambipolar LTiffusion: The
Debye Radius................................201
4.3.11 Thermal Conductivity in Plasma..................202
Contents
4.4 Breakdown Phenomena: The Townsend and Spark
Mechanisms, Avalanches, Streamers and Leaders..........205
4.4.1 Electric Breakdown of Gases: The Townsend
Mechanism..................................205
4.4.2 The Critical Breakdown Conditions, Paschen Curves. . . 210
4.4.3 The Townsend Breakdown of Larger Gaps: Specific
Behavior of Electronegative Gases.................211
4.4.4 Sparks Mechanism Versus Townsend Breakdown
Mechanism..................................214
4.4.5 Physics of the Electron Avalanches................214
4.4.6 Cathode- and Anode-Directed Streamers ...........218
4.4.7 Criterion of Streamer Formation, the Meek Breakdown
Condition...................................220
4.4.8 Streamer Propagation Models....................222
4.4.9 Concept of a Leader, Breakdown of Meter, and
Kilometer Long Gaps..........................224
4.4.10 Streamers and Microdischarges...................225
4.4.11 Interaction of Streamers and Microdischarges........226
4.5 Steady-State Regimes of Nonequilibrium Electric Discharges . . 227
4.5.1 Steady-State Discharges Controlled by Volume and
Surface Recombination Processes.................227
4.5.2 Discharge Regime Controlled by Electron-Ion
Recombination...............................229
4.5.3 Discharge Regime Controlled by Electron Attachment. . 230
4.5.4 Discharge Regime Controlled by Charged Particles
Diffusion to the Walls: The Engel-Steenbeck Relation . . 231
4.5.5 Propagation of Electric Discharges................232
4.5.6 Propagation of the Nonthermal Ionization Wave
Self-Sustained by Diffusion of Plasma Chemical
Products....................................234
4.5.7 Nonequilibrium Behavior of Electron Gas, Difference
between Electron and Neutral Gas Temperatures.....236
4.5.8 Nonequilibrium Behavior of Electron Gas, Deviations
from the Saha?Degree of Ionization...............238
Problems and Concept Questions..........................238
5. Kinetics of Excited Particles in Plasma .....................245
5.1 Vibrational Distribution Functions in Nonequilibrium Plasma:
The Fokker-Planck Kinetic Equation....................245
5.1.1 Nonequilibrium Vibrational Distribution Functions:
General Concept of the Fokker-Plank Equation.......245
5.1.2 The Energy-Space Diffusion-Related VT-Flux of
Excited Molecules.............................246
5.1.3 The Energy-Space Diffusion-Related W-flux of
Excited Molecules.............................247
Contents xi
5.1.4 Linear W-Flux along the Vibrational
Energy Spectrum.............................249
5.1.5 Nonlinear W-Flux along the Vibrational
Energy Spectrum.............................249
5.1.6 Equation for Steady-State Vibrational Distribution
Function, Controlled by W- and VT-Relaxation
Processes...................................250
5.1.7 Vibrational Distribution Functions: The Strong
Excitation Regime.............................251
5.1.8 Vibrational Distribution Functions: The Intermediate
Excitation Regime.............................253
5.1.9 Vibrational Distribution Functions: The Regime of
Weak Excitation..............................254
5.2 Nonequilibrium Vibrational Kinetics: eV-Processes,
Polyatomic Molecules, Non-Steady-State Regimes..........257
5.2.1 eV-Flux along the Vibrational Energy Spectrum.......257
5.2.2 Influence of eV-Relaxation on Vibrational Distribution
at High Degrees of Ionization....................258
5.2.3 Influence of eV-Relaxation on Vibrational Distribution
at Intermediate Degrees of Ionization..............259
5.2.4 Diffusion in Energy Space and Relaxation Fluxes of
Polyatomic Molecules in Quasi-Continuum .........261
5.2.5 Vibrational Distribution Functions of Polyatomic
Molecules in Nonequilibrium Plasma..............264
5.2.6 Non-Steady-State Vibrational Distribution Functions... 265
5.3 Macrokinetics of Chemical Reactions and Relaxation of
Vibrationally Excited Molecules.......................266
5.3.1 Chemical Reaction Influence on the Vibrational
Distribution Function: The Weak Excitation Regime . . . 266
5.3.2 Macrokinetics of Reactions of Vibrationally Excited
Molecules: The Weak Excitation Regime............268
5.3.3 Macrokinetics of Reactions of Vibrationally Excited
Molecules in Regimes of Strong and Intermediate
Excitation...................................270
5.3.4 Macrokinetics of Reactions of Vibrationally Excited
Polyatomic Molecules..........................271
5.3.5 Macrokinetics of Reactions of Two Vibrationally
Excited Molecules.............................272
5.3.6 vibrational Energy Losses due to VT-Relaxation......273
5.3.7 VT-Relaxation Losses from Low Vibrational Levels: The
Losev Formula and the Landau-Teller Relation.......274
5.3.8 VT-Relaxation Losses from High Vibrational Levels . . . 274
5.3.9 Vibrational Energy Losses due to the Nonresonance
Nature of W-Exchange........................275
Xll
Contents
5.4 Vibrational Kinetics in Gas Mixtures, Isotropie Effect
in Plasma Chemistry................................277
5.4.1 Kinetic Equation and Vibrational Distribution
in Gas Mixture...............................277
5.4.2 Treanor Isotopic Effect in Vibrational Kinetics........279
5.4.3 Influence of VT-Relaxation on Vibrational Kinetics of
Mixtures, the Reverse Isotopic Effect...............282
5.4.4 Influence of eV-Relaxation on Vibrational Kinetics of
Mixtures and the Isotopic Effect..................284
5.4.5 Integral Effect of Isotope Separation...............286
5.5 Kinetics of Electronically and Rotationally Excited States,
Nonequilibrium Translational Distributions, Relaxation and
Reactions of Hot Atoms in Plasma....................287
5.5.1 Kinetics of Population of Electronically Excited States,
the Fokker-Planck Approach....................287
5.5.2 Simplest Solutions of Kinetic Equation for Electronically
Excited States................................288
5.5.3 Kinetics of the Rotationally Excited Molecules,
Rotational Distribution Functions.................290
5.5.4 NonequiUbrium Translational Energy Distribution
Functions: Effect of Hot Atoms .................292
5.5.5 Kinetics of Hot Atoms in Fast VT-Relaxation
Processes: The Energy-Space Diffusion Approximation . 292
5.5.6 Hot Atoms in Fast VT-Relaxation Processes: Discrete
Approach and Applications.....................294
5.5.7 Hot Atoms Formation in Chemical Reactions.......296
5.6 Energy Efficiency, Energy Balance, and Macrokinetics of
Plasma-Chemical Processes...........................298
5.6.1 Energy Efficiency of Quasi-Equilibrium and
Nonequilibrium Plasma-Chemical Processes.........298
5.6.2 Energy Efficiency of Plasma-Chemical Processes
Stimulated by Vibrational Excitation of Molecules.....299
5.6.3 Dissociation and Reactions of Electronically Excited
Molecules and Their Energy Efficiency.............300
5.6.4 Energy Efficiency of Plasma-Chemical Processes
Proceeding through Dissociative Attachment........300
5.6.5 Methods of Stimulation of the Vibrational-
Translational Nonequilibrium in Plasma............301
5.6.5.1 Vibrational-Translational Nonequilibrium,
Provided by High Degree of Ionization.......301
5.6.5.2 Vibrational-Translational Nonequilibrium,
Provided by Fast Gas Cooling..............302
5.6.6 Vibrational-Translational Nonequilibrium, Provided by
Fast Transfer of Vibrational Energy: The Treanor Effect
in vibrational Energy Transfer - .. ..................302
Contents xiii
5.6.7 Energy Balance and Energy Efficiency of
Plasma-Chemical Processes Stimulated by Vibrational
Excitation of Molecules.........................305
5.6.8 Energy Efficiency as a Function of Specific Energy
Input and Degree of Ionization...................306
5.6.9 Components of Total Energy Efficiency: Excitation,
Relaxation, and Chemical Factors.................308
5.7 Energy Efficiency of Quasi-Equilibrium Plasma-Chemical
Systems: Absolute, Ideal, and Super-Ideal Quenching.......311
5.7.1 Concepts of Absolute, Ideal, and Super-Ideal
Quenching..................................311
5.7.2 Ideal Quenching of C02-Dissociation Products in
Thermal Plasma..............................312
5.7.3 Nonequilibrium Effects during Product Cooling,
Super-Ideal Quenching.........................314
5.7.4 Mechanisms of Absolute and Ideal Quenching for
H20-Dissociation in Thermal Plasma..............315
5.7.5 Effect of Cooling Rate on Quenching Efficiency:
Super-Ideal Quenching of H20-Dissociation Products . . 316
5.7.6 Mass and Energy Transfer Equations in
Multicomponent Quasi-Equilibrium
Plasma-Chemical Systems ......................318
5.7.7 Influence of Transfer Phenomena on Energy Efficiency
of Plasma-Chemical Processes....................320
5.8 Surface Reactions of Plasma-Excited Molecules in Chemistry,
Metallurgy, and Bio-Medicine.........................324
5.8.1 Surface Relaxation of Excited Molecules,
Nonequilibrium Surface Heating and Evaporation in
Nonthermal Discharges........................324
5.8.2 Surface Reactions of Excited Hydrogen Molecules in the
Formation of Hydrids by Gasification of Elements and
Thin-Film Processing in Nonthermal Plasma.........328
5.8.3 Effect of Vibrational Excitation of CO Molecules on
Direct Surface Synthesis of Metal Carbonyls in
Nonthermal Plasma...........................329
5.8.4 Reactions of Plasma-Generated Singlet Oxygen and
Other Reactive Oxygen Species on Bioactive Surfaces . . 331
Problems and Concept Questions..........................332
6. Electrostatics, Electrodynamics, and Fluid Mechanics of Plasma . . 337
6.1 Electrostatic Plasma Phenomena: Debye Radius and Sheaths,
Plasma Oscillations and Plasma Frequency...............337
6.1.1 Ideal and Nonideal Plasmas.....................337
xiv Contents
6.1.2 Plasma Polarization, Screening of Electric Charges
and External Electric Fields: The Debye Radius in
Two-Temperature Plasma.......................337
6.1.3 Plasmas and Sheaths ..........................339
6.1.4 Physics of the DC Sheaths.......................340
6.1.5 High Voltage Sheaths, Matrix and Child Law Sheath
Models.....................................342
6.1.6 Electrostatic Plasma Oscillations: Langmuir or Plasma
Frequency ..................................343
6.1.7 Penetration of Slow Changing Fields into Plasma, Skin
Effect......................................344
6.2 Magneto-Hydrodynamics of Plasma....................345
6.2.1 Equations of Magneto-Hydrodynamics.............345
6.2.2 Magnetic Field Diffusion in a Plasma, Effect of
Magnetic Field Frozen in a Plasma................346
6.2.3 Magnetic Pressure, Plasma Equilibrium in Magnetic
Field.......................................348
6.2.4 The Pinch Effect..............................348
6.2.5 Two-Fluid Magneto-Hydrodynamics: The Generalized
Ohm s Law..................................350
6.2.6 Plasma Diffusion across Magnetic Field ............351
6.2.7 Conditions for Magneto-Hydrodynamic Behavior of
Plasma: The Alfven Velocity and the Magnetic
Reynolds Number............................353
6.3 Instabilities of Low-Temperature Plasma.................354
6.3.1 Types of Instabilities of Low-Temperature Plasmas,
Peculiarities of Plasma-Chemical Systems...........354
6.3.2 Thermal (Ionization Overheating) Instability in
Monatomic Gases.............................356
6.3.3 Thermal (Ionization Overheating) Instability in
Molecular Gases with Effective Vibrational Excitation . . 357
6.3.4 Physical Interpretation of Thermal and Vibrational
Instability Modes.............................359
6.3.5 Nonequilibrium Plasma Stabilization by Chemical
Reactions of Vibrationally Excited Molecules.........360
6.3.6 Destabilizing Effect of Exothermic Reactions and Fast
Mechanisms of Chemical Heat Release.............362
6.3.7 Electron Attachment Instability...................363
6.3.8 Other Instability Mechanisms in Low-Temperature
Plasma.....................................365
6.4 Nonthermal Plasma Fluid Mechanics in Fast Subsonic and
Supersonic Flows..................................366
6.4.1 Nonequilibrium Supersonic and Fast Subsonic
Plasma-Chemical Systems......................366
Contents xv
6.4.2 Gas Dynamic Parameters of Supersonic Discharges:
Critical Heat Release...........................367
6.4.3 Supersonic Nozzle and Discharge Zone Profiling.....369
6.4.4 Pressure Restoration in Supersonic Discharge
Systems....................................371
6.4.5 Fluid Mechanics Equations of Vibrational Relaxation in
Fast Subsonic and Supersonic Flows of Nonthermal
Reactive Plasma..............................371
6.4.6 Dynamics of Vibrational Relaxation in Fast Subsonic
and Supersonic Flows..........................373
6.4.7 Effect of Chemical Heat Release on Dynamics of
Vibrational Relaxation in Supersonic Flows..........376
6.4.8 Spatial Nonuniformity of Vibrational Relaxation in
Chemically Active Plasma ......................377
6.4.9 Space Structure of Unstable Vibrational Relaxation .... 380
6.4.10 Plasma Interaction with High Speed Flows
and Shocks..................................383
6.4.11 Aerodynamic Effects of Surface and Dielectric Barrier
Discharges: Aerodynamic Plasma Actuators.........383
6.5 Electrostatic, Magneto-Hydrodynamic and Acoustic Waves
in Plasma........................................384
6.5.1 Electrostatic Plasma Waves......................384
6.5.2 Collisional Damping of Electrostatic Plasma Waves in
Weakly Ionized Plasma.........................385
6.5.3 The Ionic Sound..............................386
6.5.4 Magneto-Hydrodynamic Waves..................387
6.5.5 Collisionless Interaction of Electrostatic Plasma Waves
with Electrons ...............................388
6.5.6 Landau Damping.............................390
6.5.7 Beam Instability..............................391
6.5.8 Buneman Instability...........................392
6.5.9 Dispersion and Amplification of Acoustic Waves in
Nonequilibrium Weakly Ionized Plasma, General
Dispersion Equation...........................393
6.5.10 Analysis of Dispersion Equation for Sound Propagation
in Nonequilibrium Chemically Active Plasma........395
6.6 Propagation of Electro-Magnetic Waves in Plasma..........399
6.6.1 Complex Dielectric Permittivity of Plasma in
High-Frequency Electric Fields...................399
6.6.2 High-Frequency Plasma Conductivity and Dielectric
Permittivity.................................400
6.6.3 Propagation of Electromagnetic Waves in Plasma.....401
6.6.4 Absorption of Electromagnetic Waves in Plasmas:
Bouguer Law................................403
XVI
Contents
6.6.5 Total Reflection of Electromagnetic Waves from Plasma:
Critical Electron Density........................404
6.6.6 Electromagnetic Wave Propagation in Magnetized
Plasma.....................................405
6.6.7 Propagation of Ordinary and Extra-Ordinary Polarized
Electromagnetic Waves in Magnetized Plasma .......407
6.6.8 Influence of Ion Motion on Electromagnetic Wave
Propagation in Magnetized Plasma................408
6.7 Emission and Absorption of Radiation in Plasma, Continuous
Spectrum........................................409
6.7.1 Classification of Radiation Transitions..............409
6.7.2 Spontaneous and Stimulated Emission: Einstein
Coefficients .................................410
6.7.3 General Approach to Bremsstrahlung Spontaneous
Emission: Coefficients of Radiation Absorption and
Stimulated Emission during Electron Collisions with
Heavy Particles ..............................412
6.7.4 Bremsstrahlung Emission due to Electron Collisions
with Plasma Ions and Neutrais...................413
6.7.5 Recombination Emission .......................416
6.7.6 Total Emission in Continuous Spectrum............418
6.7.7 Plasma Absorption of Radiation in Continuous
Spectrum: The Kramers
and Unsold-Kramers Formulas...................419
6.7.8 Radiation Transfer in Plasma ....................421
6.7.9 Optically Thin Plasmas and Optically Thick Systems:
Blackbody Radiation...........................422
6.7.10 Reabsorption of Radiation, Emission of Plasma as Gray
Body: The Total Emissivity Coefficient.............423
6.8 Spectral Line Radiation in Plasma......................424
6.8.1 Probabilities of Radiative Transitions and Intensity of
Spectral Lines................................424
6.8.2 Natural Width and Profile of a Spectral Line.........425
6.8.3 Doppler Broadening of Spectral Lines..............426
6.8.4 Pressure Broadening of Spectral Lines..............427
6.8.5 Stark Broadening of Spectral Lines................429
6.8.6 Convolution of Lorentzian and Gaussian Profiles, the
Voigt Profile of Spectral Lines....................430
6.8.7 Spectral Emissivity of a Line, Constancy of a Spectral
Line Area...................................431
6.8.8 Selective Absorption of Radiation in Spectral Lines,
Absorption of One Qassical Oscillator.................431
6.8.9 The Oscillator Power..........................432
Contents xvii
6.8.10 Radiation Transfer in Spectral Lines, Inverse
Population of Excited States and Principle of Laser
Generation..................................433
6.9 Nonlinear Phenomena in Plasma ......................434
6.9.1 Nonlinear Modulation Instability: Lighthill
Criterion ...................................434
6.9.2 Korteweg-de Vries Equation.....................435
6.9.3 Solitones as Solutions of Korteweg-de Vries
Equation ...................................436
6.9.4 Formation of Langmuir Solitones in Plasma.........437
6.9.5 Evolution of Strongly Nonlinear Oscillations, the
Nonlinear Ionic Sound.........................438
6.9.6 Evolution of Weak Shock Waves in Plasma..........440
6.9.7 Transition from Weak to Strong Shock Wave.........442
Problems and Concept Questions..........................442
Part II Physics and Engineering of Electric Discharges
7. Glow Discharge.......................................451
7.1 Structure and Physical Parameters of Glow Discharge Plasma,
Current-Voltage Characteristics: Comparison of Glow and
Dark Discharges...................................451
7.1.1 General Classification of Discharges, Thermal and
Nonthermal Discharges........................451
7.1.2 Glow Discharge: General Structure
and Configurations............................452
7.1.3 Glow Pattern and Distribution of Plasma Parameters
along the Glow Discharge.......................454
7.1.4 General Current-Voltage Characteristic of Continuous
Seif-Sustained DC Discharges between Electrodes.....456
7.1.5 Dark Discharge Physics........................458
7.1.6 Transition of Townsend Dark to Glow Discharge......459
7.2 Cathode and Anode Layers of a Glow Discharge...........461
7.2.1 The Engel-Steenbeck Model of a Cathode Layer......461
7.2.2 Current-Voltage Characteristic of the Cathode Layer. . . 462
7.2.3 Normal Glow Discharge: Normal Cathode Potential
Drop, Normal Layer Thickness and Normal Current
Density ....................................463
7.2.4 Mechanism Sustaining the Normal Cathode Current
Density ....................................464
7.2.5 The Steenbeck Minimum Power Principle, Application
to the Effect of Normal Cathode Current Density .....467
xyjli Contents
7.2.6 Glow Discharge Regimes Different from Normal Ones:
Abnormal Discharge, Subnormal Discharge, and
Obstructed Discharge..........................468
7.2.7 Negative Glow Region of Cathode Layer, the Hollow
Cathode Discharge............................469
7.2.8 Anode Layer ................................470
7.3 Positive Column of Glow Discharge....................471
7.3.1 General Features of the Positive Column, Balance of
Charged Particles.............................471
7.3.2 General Current-Voltage Characteristics of a Positive
Column and of a Glow Discharge.................472
7.3.3 Heat Balance and Plasma Parameters of
Positive Column..............................474
7.3.4 Glow Discharge in Fast Gas Flows................476
7.3.5 Heat Balance and Its Influence on Current-Voltage
Characteristics of the Positive Column.............477
7.4 Glow Discharge Instabilities..........................478
7.4.1 Contraction of the Positive Column ...............478
7.4.2 Glow Discharge Conditions Resulting
in Contraction ...............................481
7.4.3 Comparison of Transverse and Longitudinal
Instabilities, Observation of Striations in Glow
Discharges..................................481
7.4.4 Analysis of Longitudinal Perturbations Resulting in
Formation of Striations.........................483
7.4.5 Propagation Velocity and Oscillation Frequency of
Striations...................................484
7.4.6 The Steenbeck Minimum Power Principle, Application
to Striations .................................487
7.4.7 Some Approaches to Stabilization of the Glow
Discharge Instabilities..........................487
7.5 Different Specific Glow Discharge Plasma Sources..........488
7.5.1 Glow Discharges in Cylindrical Tubes, in Parallel Plates
Configuration, in Fast Longitudinal and Transverse
Flows, and in Hollow Cathodes..................488
7.5.2 The Penning Glow Discharges ...................489
7.5.3 Plasma Centrifuge............................490
7.5.4 Magnetron Discharges.........................493
7.5.5 Magnetic Minor Effect in Magnetron Discharges......494
7.5.6 Glow Discharges at Atmospheric Pressure ..........496
75.7 Some Energy Efficiency Peculiarities of Glow
Discharge Application for Plasma-Chemical
Processes...................................497
Problems and Concept Questions..........................498
Contents xix
Are Discharges .......................................503
8.1 Physical Features, Types, Parameters, and Current-Voltage
Characteristics of Are Discharges ......................503
8.1.1 General Characteristic Features of Are Discharges.....503
8.1.2 Typical Ranges of Are Discharge Parameters.........503
8.1.3 Classification of Are Discharges ..................504
8.1.4 Current-Voltage Characteristics of Are Discharges ....505
8.2 Mechanisms of Electron Emission from Cathode...........507
8.2.1 Thermionic Emission: The Sommerfeld Formula......507
8.2.2 Schottky Effect of Electric Field on Work Function and
Thermionic Emission Current....................509
8.2.3 Field Electron Emission in Strong Electric Fields, the
Fowler-Nordheim Formula .....................510
8.2.4 Thermionic Field Emission......................513
8.2.5 Secondary Electron Emission....................513
8.3 Cathode and Anode Layers in Are Discharges.............515
8.3.1 General Features and Structure of Cathode Layer.....515
8.3.2 Electric Field in Cathode Vicinity.................518
8.3.3 Cathode Energy Balance and Electron Current Fraction
on Cathode (the S-factor).......................520
8.3.4 Cathode Erosion..............................521
8.3.5 Cathode Spots...............................521
8.3.6 Externa! Cathode Hearing.......................523
8.3.7 Anode Layer ................................523
8.4 Positive Column of Are Discharges.....................524
8.4.1 General Features of Positive Column of High
Pressure Ares................................524
8.4.2 Thermal Ionization in Are Discharges, the
Elenbaas-Heller Equation.......................525
8.4.3 Steenbeck Channel Model of Positive Column of Are
Discharges..................................527
8.4.4 Raizer Channel Model of Positive Column.........529
8.4.5 Plasma Temperature, Specific Power and Electric Field
in Positive Column According to the Channel Model. . . 531
8.4.6 Possible Difference between Electron and Gas
Temperatures in Thermal Discharges..............533
8.4.7 Dynamic Effects in Electric Ares..................534
8.4.8 Bennet Pinch Effect and Electrode Jet Formation......535
8.5 Different Configurations of Are Discharges...............536
8.5.1 Free-Burning Linear Ares.......................536
8.5.2 Wall-Stabilized Linear Ares......................537
8.5.3 Transferred Ares..............................538
8.5.4 Flow-Stabilized Linear Ares.....................539
8.5.5 Nontransferred Ares, Plasma Torches..............540
8.5.6 MagneticaUyStabilizedRotatingArcs..............541
xx Contents
8.6 Gliding Are Discharge ..............................542
8.6.1 General Features of the Gliding Are...............542
8.6.2 Physical Phenomenon of the Gliding Are ...........544
8.6.3 Equilibrium Phase of the Gliding Are..............546
8.6.4 Critical Parameters of the Gliding Are..............547
8.6.5 Fast Equilibrium -? Nonequilibrium Transition
(FENETRe Phenomenon).......................549
8.6.6 Gliding Are Stability Analysis....................551
8.6.7 Nonequilibrium Phase of the Gliding Are...........552
8.6.8 Effect of Self-Inductance on Gliding Are Evolution-----554
8.6.9 Special Configurations of Gliding Ares.............554
8.6.10 Gliding Are Stabilized in Reverse Vortex
(Tornado) Flow...............................556
Problems and Concept Questions..........................557
Nonequilibrium Cold Atmospheric Pressure Discharges.......561
9.1 Continuous Corona Discharge ........................561
9.1.1 General Features of the Corona Discharge...........561
9.1.2 Electric Field Distribution in Different Corona
Configurations...............................561
9.1.3 Negative and Positive Corona Discharges...........563
9.1.4 Corona Ignition Criterion in Air: The Peek Formula . . . 564
9.1.5 Active Corona Volume.........................565
9.1.6 Space Charge Influence on Electric Field Distribution
in a Corona Discharge..........................567
9.1.7 Current-Voltage Characteristics of
a Corona Discharge ...........................568
9.1.8 Power Released in the Continuous Corona Discharge . . 569
9.2 Pulsed Corona Discharge............................570
9.2.1 Why the Pulsed Corona? .......................570
9.2.2 Corona Ignition Delay .........................571
9.2.3 Pulse-Periodic Regime of the Positive Corona Discharge
Sustained by Continuous Constant Voltage: Flashing
Corona.......................................571
9.2.4 Pulse-Periodic Regime of the Negative Corona
Discharge Sustained by Continuous Constant Voltage:
Trichel Pulses................................572
9.2.5 Pulsed Corona Discharges Sustained by Nanosecond
Pulse Power Supplies..........................573
9.2.6 Specific Configurations of the Pulsed Corona
EHscharges................».;..;.,...........576
9.3 Dielectric-Barrier Discharge......... .................578
9.3.1 General Features of the Dielectric-Barrier Discharge ...578
9.3.2 General Configuration and Parameters of the DBD .... 581
9.3.3 Microdischarge Characteristics...................582
Contents xxi
9.3.4 Surface Discharges............................584
9.3.5 Packed-Bed Corona Discharge...................587
9.3.6 Atmospheric Pressure Glow Modification of the DBD . . 588
9.3.7 Ferroelectric Discharges........................589
9.4 Spark Discharges..................................590
9.4.1 Development of a Spark Channel: Back Wave of Strong
Electric Field and Ionization.....................590
9.4.2 Expansion of Spark Channel and Formation of an
Intense Spark................................591
9.4.3 Atmospheric Phenomena Leading to Lightning.......591
9.4.4 Lightning Evolution...........................593
9.4.5 Mysterious Phenomenon of Ball Lightning..........595
9.4.6 Laser-Directed Spark Discharges..................596
9.5 Atmospheric Pressure Glow Discharges.................597
9.5.1 Atmospheric Pressure Glow Mode of DBD..........597
9.5.2 Resistive Barrier Discharge......................599
9.5.3 One Atmosphere Uniform Glow Discharge Plasma .... 599
9.5.4 Electronically Sfabilized Atmospheric Pressure Glow
Discharges..................................600
9.5.5 Atmospheric Pressure Plasma Jets.................600
9.6 Microdisharges....................................602
9.6.1 General Features of Microdischarges...............602
9.6.2 Microglow Discharge..........................603
9.6.3 Micro-Hollow-Cathode Discharge.................605
9.6.4 Arrays of Microdischarges, Microdischarge
Self-Organization and Structures .................605
9.6.5 Microdischarges of 5 kHz Frequency Range.........606
9.6.6 RF Microdischarges...........................607
9.6.7 Microwave Microdischarges.....................608
Problems and Concept Questions..........................608
10. Plasma Created in High-Frequency Electromagnetic Fields:
Radio-Frequency, Microwave, and Optical Discharges.........613
10.1 Radio Fequency Discharges at High Pressures, Inductively
Coupled Thermal RF Discharges.......................613
10.1.1 General Features of the High-Frequency Generators of
Thermal Plasma.............................613
10.1.2 General Relations for Thermal Plasma Energy Balance:
The Flux Integral Relation......................613
10.1.3 Thermal Plasma Generation in the Inductively
Coupled RF Discharges .......................615
10.1.4 Metallic Cylinder Model of Long Inductively Coupled
RF Discharge...............................616
10.1.5 Electrodynamics of Thermal ICP Discharge in
Frameworks of the Metallic Cylinder Model........618
xxij Contents
10.1.6 Thermal Characteristics of the Inductively Coupled
Plasma in Framework of the Model of Metallic
Cylinder ..................................620
10.1.7 Temperature and Other Quasi-Equilibrium ICP
Parameters in the Framework of the Model of Metallic
Cylinder ..................................621
10.1.8 ICP Discharge in Weak Skin-Effect Conditions: The
Thermal ICP Limits ..........................622
10.1.9 ThelCPTorches.............................624
10.1.10 ICP Torch Stabilization in Vortex Gas Flow.........625
10.1.11 Capacitively Coupled Atmospheric Pressure RF
Discharges.................................627
10.2 Thermal Plasma Generation in Micro wave and Optical
Discharges.......................................628
10.2.1 Optical and Quasi-Optical Interaction of
Electromagnetic Waves with Plasma..............628
10.2.2 Microwave Discharges in Waveguides, Modes of
Electromagnetic Oscillations in the Waveguides
without Plasma .............................629
10.2.3 Microwave Plasma Generation by
Hoi-Electromagnetic Oscillation Mode
LnWaveguide...............................632
10.2.4 Microwave Plasma Generation in Resonators.......633
10.2.5 1-D Model of Electromagnetic Wave Interaction with
Thermal Plasma.............................633
10.2.6 Constant Conductivity Model of Microwave Plasma
Generation.................................635
10.2.7 Numerical Characteristics of the Quasi-Equilibrium
Microwave Discharge........................636
10.2.8 Microwave Plasma Torch and Other Nonconventional
Configurations of Thermal Microwave Discharges . . . 637
10.2.9 Continuous Optical Discharges .................638
10.2.10 Laser Radiation Absorption in Thermal Plasma as a
Function Gas Pressure and Temperature...........641
10.2.11 Energy Balance of the Continuous Optical Discharges
and Relation for Plasma Temperature.............642
10.2.12 Plasma Temperature and Critical Power of Continuous
Optical Discharges .............................643
10.3 Nonequilibrium RF Discharges, General Features of
Nonthermal CCP Discharges ........ .u...............645
10.3.1 Nonthermal RF Discharges.....................645
10.3.2 Capacitive and Inductive Coupling of the Nonthermal
RF Discharge Plasmas........................645
10.3.3 Electric Circuits for Inductive and Capadtive Plasma
Coupling with RF Generators___................646
Contents ? xxiii
10.3.4 Motion of Charged Particles and Electric Field
Distribution in Nonthermal RF CCP Discharges .....647
10.3.5 Electric Current and Voltages in Nonthermal RF CCP
Discharge .................................648
10.3.6 Equivalent Scheme of a Capacitively Coupled RF
Discharge .................................651
10.3.7 Electron and Ion Motion in the
CCP Discharge Sheaths........................652
10.4 Nonthermal CCP Discharges of Moderate Pressure.........654
10.4.1 General Features of the Moderate Pressure CCP
Discharges.................................654
10.4.2 a- and y-Regimes of Moderate Pressure CCP
Discharges, Luminosity and Current-Voltage
Characteristics..............................655
10.4.3 a-Regime of Moderate Pressure
CCP Discharges.............................657
10.4.4 Sheath Parameters in a-Regime of Moderate Pressure
CCP Discharges.............................658
10.4.5 The y-Regime of Moderate Pressure
CCP Discharges.............................660
10.4.6 Normal Current Density of y-Discharges ..........661
10.4.7 Physical Analysis of Current-Voltage Characteristics
of the Moderate Pressure CCP Discharges..........663
10.4.8 a-y Transition in Moderate Pressure CCP
Discharges.................................664
10.4.9 Some Frequency Limitations for Moderate Pressure
CCPDischarges.............................666
10.5 Low-Pressure CCP RF Discharges......................666
10.5.1 General Features of Low-Pressure CCP Discharges . . . 666
10.5.2 Plasma Electrons Behavior in the Low-Pressure
Discharges.................................667
10.5.3 Two Groups of Electrons, Ionization Balance, and
Electric Fields in Low-Pressure CCP Discharges .....668
10.5.4 High and Low Current-Density Regimes of Low
Pressure CCP Discharges ......................669
10.5.5 Electron Kinetics in Low-Pressure CCP Discharges ... 670
10.5.6 Stochastic Effect of Electron Heating..............672
10.5.7 Contribution of y-electrons in Low-Pressure
Capacitive RF Discharge.......................673
10.5.8 Analytical Relations for the Low-Pressure RF CCP
Discharge Parameters.........................674
10.5.9 NumericalValuesof the Low-Pressure RF CCP
Discharge Parameters.........................677
10.6 Asymmetrie, Magnetron and Other Special Forms of
Low-Pressure Capacitive RF Discharges.................678
xxjv Contents
10.6.1 Asymmetrie Discharges .......................678
10.6.2 Comparison of Parameters Related to Powered and
Grounded Electrodes in Asymmetrie Discharges.....679
10.6.3 Battery Effect, Short Circuit Regime of Asymmetrie
RF Discharges...............................680
10.6.4 Secondary-Emission Resonant Discharge...........681
10.6.5 Radio-Frequency Magnetron Discharge, General
Features...................................681
10.6.6 Dynamics of Electrons in RF Magnetron Discharge ... 683
10.6.7 Properties of RF Magnetron Discharges............685
10.6.8 Low-Frequency RF CCP Discharge,
General Features.............................686
10.6.9 Physical Characteristics and Parameters of
Low-Frequency RF CCP Discharges ..............687
10.6.10 Electron Energy Distribution Functions in
Low-Frequency RF CCP Discharges..............690
10.7 Nonthermal ICP Discharges..........................693
10.7.1 General Features of Nonthermal ICP Discharges.....693
10.7.2 Inductively Coupled RF Discharge
in Cylindrical Coil ...........................695
10.7.3 Equivalent Scheme of Inductively Coupled RF
Discharge..................................697
10.7.4 Analytical Relations for ICP Discharge Parameters . . . 698
10.7.5 Moderate-Pressure and Low-Pressure Regimes of ICP
Discharges.................................699
10.7.5.1 Moderate-Pressure Regime...............699
10.7.5.2 Low-Pressure Regime...................700
10.7.6 Abnormal Skin Effect and Stochastic Hearing of
Electrons..................................702
10.7.7 Planar Coil Configuration of ICP Discharges........703
10.7.8 Helical Resonator Discharges...................705
10.8 Nonthermal Low-Pressure Microwave and Other
Wave-Heated Discharges............................707
10.8.1 Nonthermal Wave-Heated Discharges.............707
10.8.2 Electron Cyclotron Resonance Microwave Discharges,
General Features»............................707
10.8.3 General Scheme and Main Parameters of
ECR-Microwave Discharges....................708
10.8.4 Electron Heating in ECR-Microwave Discharges.....709
10.8.5 Helicon Discharges: General Features.............711
10.8.6 Whistlers and Helicon Modes of Electromagnetic
Waves Applied in Helicon Discharges.............713
10.8.7 Antenna Coupling of Helicon Modes and Their
Absorption in Plasma ..............,..........714
Contents xxv
10.8.8 Electromagnetic Surface Wave Discharges, General
Features...................................716
10.8.9 Electric and Magnetic Field Oscillation Amplitudes in
the Planar Surface Wave Discharges..............716
10.8.10 Electromagnetic Wave Dispersion and Resonance in
the Planar Surface Wave Discharges..............718
10.9 Nonequilibrium Microwave Discharges of
Moderate Pressure.................................719
10.9.1 Nonthermal Plasma Generation in Microwave
Discharges at Moderate Pressures................719
10.9.2 About Energy Efficiency of Plasma-Chemical
Processes in Moderate-Pressure
Microwave Discharges........................720
10.9.3 Microstructure and Energy Efficiency of Nonuniform
Microwave Discharges........................720
10.9.4 Macrostructure and Regimes of Moderate-Pressure
Microwave Discharges........................722
10.9.5 Radial Profiles of Vibrational Tv(r) and Translational
To(r) Temperatures in Moderate-Pressure Microwave
Discharges in Molecular Gases..................725
10.9.6 Energy Efficiency of Plasma-Chemical Processes in
Nonuniform Microwave Discharges..............725
10.9.7 Plasma-Chemical Energy Efficiency of Microwave
Discharges as a Function of Pressure............. . 727
10.9.8 Power and Flow Rate Scaling of Space-Nonuniform
Moderate-Pressure Microwave Discharges.........729
Problems and Concept Questions..........................730
11. Discharges in Aerosols, Dusty Plasmas, and Liquids...........739
11.1 Photoionization of Aerosols..........................739
11.1.1 General Remarks on Macro-Particles
Photoionization.............................739
11.1.2 Work Function of Small and Charged Aerosol
Particles, Related to Photoionization by
Monochromatic Radiation......................739
11.1.3 Equations Describing the Photoionization of
Monodispersed Aerosols by Monochromatic Radiation 740
11.1.4 Asymptotic Approximations of the Monochromatic
Photoionization.............................741
11.1.5 Photoionization of Aerosols by Continuous Spectrum
Radiation..................................743
11.1.6 Photoionization of Aerosols by Radiation with
Exponential Spectrum.........................743
11.1.7 Kinetics of Establishment of the Steady-State Aerosol
Photoionization Degree........................744
xxvi Contents
11.2 Thermal Ionization of Aerosols........................746
11.2.1 General Aspects of Thermal Ionization of Aerosol
Particles...................................746
11.2.2 Photo-Hearing of Aerosol Particles...............746
11.2.3 Ionization of Aerosol Particles due to Their
Photo-Heating, the Einbinder Formula............747
11.2.4 Space Distribution of Electrons around a Thermally
Ionized Macro-Particle: Case of High Aerosol
Concentration...............................749
11.2.5 Space Distribution of Electrons around a Thermally
Ionized Macro-Particle: Case of Low Concentration of
Aerosol Particles.............................751
11.2.6 Number of Electrons Participating in Electrical
Conductivity of Thermally Ionized Aerosols........752
11.2.7 Electrical Conductivity of Thermally Ionized Aerosols
as a Function of External Electric Field............753
11.3 Electric Breakdown of Aerosols........................754
11.3.1 Influence of Macro-Particles on Electric Breakdown
Conditions.................................754
11.3.2 General Equations of Electric Breakdown
in Aerosols.................................755
11.3.3 Aerosol System Parameters Related
to Its Breakdown.............................756
11.3.4 Pulse Breakdown of Aerosols...................757
11.3.5 Breakdown of Aerosols in High-Frequency
Electromagnetic Fields........................758
11.3.6 Townsend Breakdown of Aerosols................759
11.3.7 Effect of Macro-Particles on Vacuum Breakdown.....760
11.3.8 About Initiation of Electric Breakdown in Aerosols ...761
11.4 Steady-State DC Electric Discharge in Heterogeneous
Medium.........................................761
11.4.1 Two Regimes of Steady-State Discharges in
Heterogeneous Medium.......................761
11.4.2 Quasi-Neutral Regime of Steady-State DC Discharge
in Aerosols.................................762
11.4.3 Electron-Aerosol Plasma Regime of the Steady-State
DC Discharge, Main Equations Relating Electric Field,
Electron Concentration, and Current Density........763
11.4.4 Electron-Aerosol Plasma Parameters as a Function of
Current Density.............................764
11.4.5 Effect of Molecular Gas on the Electron-Aerosol
Plasma....................................765
11.5 Dusty Plasma Formation: Evolution of Nanoparticles
in Plasma........................................767
11.5.1 General Aspects of Dusty Plasma Kinetics..........767
Contents xxvii
11.5.2 Experimental Observations of Dusty Plasma
Formation in Low-Pressure Silane Discharge........768
11.5.3 Dust Particle Formation: A Story of Birth and
Catastrophic Life ............................769
11.6 Critical Phenomena in Dusty Plasma Kinetics.............772
11.6.1 Growth Kinetics of the First Generation of Negative
Ion Clusters................................772
11.6.2 Contribution of Vibrational Excitation in Kinetics of
Negative Ion-Cluster Growth...................773
11.6.3 Critical Size of Primary Nanoparticles.............775
11.6.4 Critical Phenomenon of Neutral Particle Trapping in
Plasma....................................776
11.6.5 Size-Selective Neutral Particle Trapping Effect in
Plasma....................................777
11.6.6 Temperature Effect on Selective Trapping and Particle
Production Rate.............................779
11.6.7 Critical Phenomenon of Supersmall Particle
Coagulation................................780
11.6.8 Critical Change of Plasma Parameters during Dust
Formation (the a-y Transition) ..................783
11.6.9 Electron Temperature Evolution in the a-y
Transition..................................784
11.7 Nonequilibrium Clusterization in Centrifugal Field.........786
11.7.1 Centrifugal Clusterization in Plasma Chemistry.....786
11.7.2 Clusterization Kinetics as Diffusion in Space of Cluster
Sizes......................................786
11.7.3 Quasi-Equilibrium Cluster Distribution over Sizes.... 787
11.7.4 Magic Clusters..............................788
11.7.5 Quazi-Steady-State Equation for the Cluster
Distribution Functionen, x)....................789
11.7.6 Nonequilibrium Distribution Functions/(n, x) of
Clusters without Magic Numbers in the Centrifugal
Field......................................790
11.7.7 Nonequilibrium Distribution Functions/(n, x) of
Clusters in the Centrifugal Field, Taking into Account
the Magic Cluster Effect.......................791
11.7.8 Radial Distribution of Cluster Density.............792
11.7.9 Average Cluster Sizes.........................794
11.7.10 Influence of Centrifugal Field on Average
Cluster Sizes................................795
11.7.11 Nonequilibrium Energy Efficiency Effect Provided by
Selectivity of Transfer Processes in Centrifugal
Field......................................795
11.8 Dusty Plasma Structures: Phase Transitions, Coulomb
Crystals, Special Oscillations..........................797
xxviü Contents
11.8.1 Interaction of Particles, and Structures in Dusty
Plasmas...................................797
11.8.2 Nonideality of Dusty Plasmas...................798
11.8.3 Phase Transitions in Dusty Plasma...............799
11.8.4 Coulomb Clusters Observation in Dusty Plasma of
Capacitively Coupled RF-Discharge..............800
11.8.5 3D-Coulomb Clusters in Dusty Plasmas of DC-Glow
Discharges.................................802
11.8.6 Oscillations and Waves in Dusty Plasmas: Dispersion
Equation...................................802
11.8.7 Ionic Sound Mode in Dusty Plasma, Dust Sound.....804
11.9 Discharges in Liquids...............................805
11.9.1 General Features of Electrical Discharges
in Liquids..................................805
11.9.2 Mechanisms and Characteristics of Plasma Discharges
in Water...................................805
11.9.3 Physical Kinetics of Water Breakdown.............806
Problems and Concept Questions..........................809
12. Electron Beam Plasmas.................................815
12.1 Generation and Properties of Electron-Beam Plasmas.......815
12.1.1 Electron-Beam Plasma Generation................815
12.1.2 Ionization Rate and Ionization Energy Cost
at Gas Irradiation by High Energy and Relativistic
Electrons ..................................816
12.1.3 Classification of Electron-Beam Plasmas According to
Beam Current and Gas Pressure.................817
12.1.4 Electron-Beam Plasma Generation Technique.......818
12.1.5 Transportation of Electron Beams................819
12.2 Kinetics of Degradation Processes, Degradation Spectrum.... 820
12.2.1 Kinetics of Electrons in Degradation
Processes..................................820
12.2.2 Energy Transfer Differential Cross Sections and
Probabiiities during Beam Degradation Process......820
12.2.3 The Degradation Spectrum Kinetic Equation........821
12.2.4 Integral Characteristics of Degradation Spectram,
Energy Cost of a Particle.......................822
12.2.5 The Alkhazov s Equation for Degradation Spectrum of
High-Energy Beam Electrons....................822
12.2.6 Solutions of the Alkhazov s Equation.............823
12.3 Plasma-Beam Discharge.............................825
12.3.1 General Features of Plasma-Beam Discharges.......825
12.3.2 Operation Conditions of Plasma-Beam Discharges . . . 826
12.3.3 Plasma-Beam Discharge Conditions Effective for
Plasma-Chemical Processes.....................827
Contents xxix
12.3.4 Plasma-Beam Discharge Technique...............828
12.3.5 Plasma-Beam Discharge in Crossed Electric and
Magnetic Fields, Plasma-Beam Centrifuge..........829
12.3.6 Radial Ion Current in Plasma Centrifuges, and Related
Separation Effect.............................830
12.4 Nonequilibrium High-Pressure Discharges Sustained by
High-Energy Electron Beams .........................831
12.4.1 Non-Self-Sustained High Pressure Discharges.......831
12.4.2 Plasma Parameters of the Non-Self-Sustained
Discharges.................................832
12.4.3 Maximum Specific Energy Input and Stability of
Discharges Sustained by Short-Pulse Electron Beams . . 833
12.4.4 About Electric Field Uniformity in Non-Self-Sustained
Discharges.................................834
12.4.5 Nonstationary Effects of Electric Field Uniformity
in Non-Self-Sustained Discharges................835
12.5 Plasma in Tracks of Nuclear Fission Fragments, Plasma
Radiolysis .......................................836
12.5.1 Plasma Induced by Nuclear Fission Fragments......836
12.5.2 Plasma Radiolysis of Water Vapor................837
12.5.3 Maxwellization of Plasma Electrons and Plasma Effect
in Water Vapor Radiolysis......................838
12.5.4 Effect of Plasma Radiolysis on Radiation Yield of
Hydrogen Production.........................839
12.5.5 Plasma Radiolysis of Carbon Dioxide.............840
12.5.6 Plasma Formation in Tracks of Nuclear Fission
Fragments .................................841
12.5.7 Collisionless Expansion of Tracks of Nuclear Fission
Fragments .................................842
12.5.8 Energy Efficiency of Plasma Radiolysis in Tracks of
Nuclear Fission Fragments.....................843
12.6 Dusty Plasma Generation by a Relativistic Electron Beam .... 845
12.6.1 General Features of Dusty Plasma Generated by
Relativistic Electron Beam Propagation in Aerosols . . . 845
12.6.2 Charging Kinetics of Macro-Particles Irradiated by
Relativistic Electron Beam......................845
12.6.3 Conditions of Mostly Negative Charging of Aerosol
Particles...................................846
12.6.4 Conditions of Balance between Negative Charging of
Aerosol Particles by Plasma Electrons and Secondary
Electron Emission............................847
12.6.5 Regime of Intensive Secondary Electron Emission,
Conditions of Mostly Positive Charging of Aerosol
Particles...................................847
xxx Contents
12.6.6 Electron Beam Irradiation of Aerosols in Low
Pressure Gas................................848
Problems and Concept Questions..........................849
References.............................................................853
Index...................................................................875
|
any_adam_object | 1 |
author | Fridman, Alexander A. Kennedy, Lawrence A. |
author_facet | Fridman, Alexander A. Kennedy, Lawrence A. |
author_role | aut aut |
author_sort | Fridman, Alexander A. |
author_variant | a a f aa aaf l a k la lak |
building | Verbundindex |
bvnumber | BV037346882 |
callnumber-first | Q - Science |
callnumber-label | QC718 |
callnumber-raw | QC718 |
callnumber-search | QC718 |
callnumber-sort | QC 3718 |
callnumber-subject | QC - Physics |
classification_rvk | UR 8000 |
classification_tum | PHY 570f |
ctrlnum | (OCoLC)731896663 (DE-599)BVBBV037346882 |
dewey-full | 530.4/4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/4 |
dewey-search | 530.4/4 |
dewey-sort | 3530.4 14 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01779nam a2200481 c 4500</leader><controlfield tag="001">BV037346882</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150701 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110419s2011 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010044426</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439812280</subfield><subfield code="c">hardback</subfield><subfield code="9">978-1-4398-1228-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)731896663</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037346882</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC718</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UR 8000</subfield><subfield code="0">(DE-625)146642:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 570f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fridman, Alexander A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plasma physics and engineering</subfield><subfield code="c">Alexander Fridman ; Lawrence A. Kennedy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 905 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma (Ionized gases)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Nuclear Physics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmatechnik</subfield><subfield code="0">(DE-588)4140353-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmaphysik</subfield><subfield code="0">(DE-588)4046259-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plasmaphysik</subfield><subfield code="0">(DE-588)4046259-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Plasmatechnik</subfield><subfield code="0">(DE-588)4140353-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kennedy, Lawrence A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022500449&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022500449</subfield></datafield></record></collection> |
id | DE-604.BV037346882 |
illustrated | Illustrated |
indexdate | 2024-07-09T23:22:34Z |
institution | BVB |
isbn | 9781439812280 |
language | English |
lccn | 2010044426 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022500449 |
oclc_num | 731896663 |
open_access_boolean | |
owner | DE-11 DE-29T DE-91 DE-BY-TUM DE-83 DE-384 DE-634 |
owner_facet | DE-11 DE-29T DE-91 DE-BY-TUM DE-83 DE-384 DE-634 |
physical | XXXV, 905 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | CRC Press |
record_format | marc |
spelling | Fridman, Alexander A. Verfasser aut Plasma physics and engineering Alexander Fridman ; Lawrence A. Kennedy 2. ed. Boca Raton, FL [u.a.] CRC Press 2011 XXXV, 905 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index Plasma (Ionized gases) Plasma engineering SCIENCE / Nuclear Physics bisacsh SCIENCE / Physics bisacsh Plasmatechnik (DE-588)4140353-8 gnd rswk-swf Plasmaphysik (DE-588)4046259-6 gnd rswk-swf Plasmaphysik (DE-588)4046259-6 s Plasmatechnik (DE-588)4140353-8 s DE-604 Kennedy, Lawrence A. Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022500449&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fridman, Alexander A. Kennedy, Lawrence A. Plasma physics and engineering Plasma (Ionized gases) Plasma engineering SCIENCE / Nuclear Physics bisacsh SCIENCE / Physics bisacsh Plasmatechnik (DE-588)4140353-8 gnd Plasmaphysik (DE-588)4046259-6 gnd |
subject_GND | (DE-588)4140353-8 (DE-588)4046259-6 |
title | Plasma physics and engineering |
title_auth | Plasma physics and engineering |
title_exact_search | Plasma physics and engineering |
title_full | Plasma physics and engineering Alexander Fridman ; Lawrence A. Kennedy |
title_fullStr | Plasma physics and engineering Alexander Fridman ; Lawrence A. Kennedy |
title_full_unstemmed | Plasma physics and engineering Alexander Fridman ; Lawrence A. Kennedy |
title_short | Plasma physics and engineering |
title_sort | plasma physics and engineering |
topic | Plasma (Ionized gases) Plasma engineering SCIENCE / Nuclear Physics bisacsh SCIENCE / Physics bisacsh Plasmatechnik (DE-588)4140353-8 gnd Plasmaphysik (DE-588)4046259-6 gnd |
topic_facet | Plasma (Ionized gases) Plasma engineering SCIENCE / Nuclear Physics SCIENCE / Physics Plasmatechnik Plasmaphysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022500449&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT fridmanalexandera plasmaphysicsandengineering AT kennedylawrencea plasmaphysicsandengineering |