Negative binomial regression:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2011
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XVIII, 553 S. graph. Darst. |
ISBN: | 9780521198158 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037333121 | ||
003 | DE-604 | ||
005 | 20120529 | ||
007 | t | ||
008 | 110412s2011 d||| |||| 00||| und d | ||
020 | |a 9780521198158 |9 978-0-521-19815-8 | ||
035 | |a (OCoLC)723484174 | ||
035 | |a (DE-599)BVBBV037333121 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | |a und | ||
049 | |a DE-19 |a DE-355 |a DE-945 |a DE-N2 |a DE-824 |a DE-83 |a DE-Er8 | ||
084 | |a QH 233 |0 (DE-625)141548: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a MAT 628f |2 stub | ||
084 | |a MAT 603f |2 stub | ||
084 | |a 62J12 |2 msc | ||
084 | |a 62J02 |2 msc | ||
100 | 1 | |a Hilbe, Joseph M. |d 1944-2017 |e Verfasser |0 (DE-588)128751851 |4 aut | |
245 | 1 | 0 | |a Negative binomial regression |c Joseph M. Hilbe |
250 | |a 2. ed. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2011 | |
300 | |a XVIII, 553 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Negative Binomialverteilung |0 (DE-588)4194810-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Negative Binomialverteilung |0 (DE-588)4194810-5 |D s |
689 | 0 | 1 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 0 | |C b |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022486977&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-022486977 |
Datensatz im Suchindex
_version_ | 1804145616454942720 |
---|---|
adam_text | Titel: Negative binomial regression
Autor: Hilbe, Joseph
Jahr: 2011
Contents
Preface to the second edition page xi
1 Introduction 1
1.1 What is a negative binomial model? 1
1.2 A brief history of the negative binomial 5
1.3 Overview of the book 11
2 The concept of risk 15
2.1 Risk and 2x2 tables 15
2.2 Risk and 2xk tables 18
2.3 Risk ratio confidence intervals 20
2.4 Risk difference 24
2.5 The relationship of risk to odds ratios 25
2.6 Marginal probabilities: joint and conditional 27
3 Overview of count response models 30
3.1 Varieties of count response model 30
3.2 Estimation 38
3.3 Fit considerations 41
4 Methods of estimation 43
4.1 Derivation of the IRLS algorithm 43
4.1.1 Solving for 3 £ or U - the gradient 48
4.1.2 Solving for 92£ 49
4.1.3 The IRLS fitting algorithm 51
4.2 Newton-Raphson algorithms 53
4.2.1 Derivation of the Newton-Raphson 54
4.2.2 GLM with OIM 57
4.2.3 Parameterizing from µ to x ß 57
4.2.4 Maximum likelihood estimators 59
5 Assessment of count models 61
5.1 Residuals for count response models 61
5.2 Model fit tests 64
5.2.1 Traditional fit tests 64
5.2.2 Information criteria fit tests 68
5.3 Validation models 75
6 Poisson regression 77
6.1 Derivation of the Poisson model 77
6.1.1 Derivation of the Poisson from the binomial
distribution 78
6.1.2 Derivation of the Poisson model 79
6.2 Synthetic Poisson models 85
6.2.1 Construction of synthetic models 85
6.2.2 Changing response and predictor values 94
6.2.3 Changing multivariable predictor values 97
6.3 Example: Poisson model 100
6.3.1 Coefficient parameterization 100
6.3.2 Incidence rate ratio parameterization 109
6.4 Predicted counts 116
6.5 Effects plots 122
6.6 Marginal effects, elasticities, and discrete change 125
6.6.1 Marginal effects for Poisson and negative binomial
effects models 125
6.6.2 Discrete change for Poisson and negative
binomial models 131
6.7 Parameterization as a rate model 134
6.7.1 Exposure in time and area 134
6.7.2 Synthetic Poisson with offset 136
6.7.3 Example 138
7 Over dispersion 141
7.1 What is overdispersion? 141
7.2 Handling apparent overdispersion 142
7.2.1 Creation of a simulated base Poisson model 142
7.2.2 Delete a predictor 145
7.2.3 Outliers in data 145
7.2.4 Creation of interaction 149
7.2.5 Testing the predictor scale 150
7.2.6 Testing the link 152
7.3 Methods of handling real overdispersion 157
7.3.1 Scaling of standard errors / quasi-Poisson 158
7.3.2 Quasi-likelihood variance multipliers 163
7.3.3 Robust variance estimators 168
7.3.4 Bootstrapped and jackknifed standard errors 171
7.4 Tests of overdispersion 174
7.4.1 Score and Lagrange multiplier tests 175
7.4.2 Boundary likelihood ratio test 177
7.4.3 #j; and R^d tests for Poisson and negative
binomial models 179
7.5 Negative binomial overdispersion 180
8 Negative binomial regression 185
8.1 Varieties of negative binomial 185
8.2 Derivation of the negative binomial 187
8.2.1 Poisson-gamma mixture model 188
8.2.2 Derivation of the GLM negative binomial 193
8.3 Negative binomial distributions 199
8.4 Negative binomial algorithms 207
8.4.1 NB-C: canonical negative binomial 208
8.4.2 NB2: expected information matrix 210
8.4.3 NB2: observed information matrix 215
8.4.4 NB2: R maximum likelihood function 218
9 Negative binomial regression: modeling 221
9.1 Poisson versus negative binomial 221
9.2 Synthetic negative binomial 225
9.3 Marginal effects and discrete change 236
9.4 Binomial versus count models 239
9.5 Examples: negative binomial regression 248
Example 1: Modeling number of marital affairs 248
Example 2: Heart procedures 259
Example 3: Titanic survival data 263
Example 4: Health reform data 269
10 Alternative variance parameterizations 284
10.1 Geometric regression: NB a = 1 285
10.1.1 Derivation of the geometric 285
10.1.2 Synthetic geometric models 286
10.1.3 Using the geometric model 290
10.1.4 The canonical geometric model 294
10.2 NB 1: The linear negative binomial model 298
10.2.1 NB las QL-Poisson 298
10.2.2 Derivation of NB1 301
10.2.3 Modeling with NB1 304
10.2.4 NB1: R maximum likelihood function 306
10.3 NB-C: Canonical negative binomial regression 308
10.3.1 NB-C overview and formulae 308
10.3.2 Synthetic NB-C models 311
10.3.3 NB-C models 315
10.4 NB-H: Heterogeneous negative binomial regression 319
10.5 The NB-P model: generalized negative binomial 323
10.6 Generalized Waring regression 328
10.7 Bivariate negative binomial 333
10.8 Generalized Poisson regression 337
10.9 Poisson inverse Gaussian regression (PIG) 341
10.10 Other count models 343
11 Problems with zero counts 346
11.1 Zero-truncated count models 346
11.2 Hurdle models 354
11.2.1 Theory and formulae for hurdle models 356
11.2.2 Synthetic hurdle models 357
11.2.3 Applications 359
11.2.4 Marginal effects 369
11.3 Zero-inflated negative binomial models 370
11.3.1 Overview of ZIP/ZINB models 370
11.3.2 ZINB algorithms 371
11.3.3 Applications 374
11.3.4 Zero-altered negative binomial 376
11.3.5 Tests of comparative fit 377
11.3.6 ZINB marginal effects 379
11.4 Comparison of models 382
12 Censored and truncated count models 387
12.1 Censored and truncated models - econometric
parameterization 387
12.1.1 Truncation 388
12.1.2 Censored models 395
12.2 Censored Poisson and NB2 models - survival
parameterization 399
13 Handling endogeneity and latent class models 407
13.1 Finite mixture models 408
13.1.1 Basics of finite mixture modeling 408
13.1.2 Synthetic finite mixture models 412
13.2 Dealing with endogeneity and latent class models 416
13.2.1 Problems related to endogeneity 416
13.2.2 Two-stage instrumental variables approach 417
13.2.3 Generalized method of moments (GMM) 421
13.2.4 NB2 with an endogenous multinomial treatment
variable 422
13.2.5 Endogeneity resulting from measurement error 425
13.3 Sample selection and stratification 428
13.3.1 Negative binomial with endogenous stratification 429
13.3.2 Sample selection models 433
13.3.3 Endogenous switching models 438
13.4 Quantile count models 441
14 Count panel models 447
14.1 Overview of count panel models 447
14.2 Generalized estimating equations: negative binomial 450
14.2.1 The GEE algorithm 450
14.2.2 GEE correlation structures 452
14.2.3 Negative binomial GEE models 455
14.2.4 GEE goodness-of-fit 464
14.2.5 GEE marginal effects 466
14.3 Unconditional fixed-effects negative binomial model 468
14.4 Conditional fixed-effects negative binomial model 474
14.5 Random-effects negative binomial 478
14.6 Mixed-effects negative binomial models 488
14.6.1 Random-intercept negative binomial models 488
14.6.2 Non-parametric random-intercept negative binomial 494
14.6.3 Random-coefficient negative binomial models 496
14.7 Multilevel models 500
15 Bayesian negative binomial models 502
15.1 Bayesian versus frequentist methodology 502
15.2 The logic of Bayesian regression estimation 506
15.3 Applications 510
Appendix A: Constructing and interpreting interaction terms 520
Appendix B: Data sets, commands, functions 530
References and further reading 532
Index 541
|
any_adam_object | 1 |
author | Hilbe, Joseph M. 1944-2017 |
author_GND | (DE-588)128751851 |
author_facet | Hilbe, Joseph M. 1944-2017 |
author_role | aut |
author_sort | Hilbe, Joseph M. 1944-2017 |
author_variant | j m h jm jmh |
building | Verbundindex |
bvnumber | BV037333121 |
classification_rvk | QH 233 SK 840 |
classification_tum | MAT 628f MAT 603f |
ctrlnum | (OCoLC)723484174 (DE-599)BVBBV037333121 |
discipline | Mathematik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01643nam a2200421 c 4500</leader><controlfield tag="001">BV037333121</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120529 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110412s2011 d||| |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521198158</subfield><subfield code="9">978-0-521-19815-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)723484174</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037333121</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-Er8</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 233</subfield><subfield code="0">(DE-625)141548:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 628f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 603f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62J12</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">62J02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilbe, Joseph M.</subfield><subfield code="d">1944-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128751851</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Negative binomial regression</subfield><subfield code="c">Joseph M. Hilbe</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 553 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Negative Binomialverteilung</subfield><subfield code="0">(DE-588)4194810-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Negative Binomialverteilung</subfield><subfield code="0">(DE-588)4194810-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022486977&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022486977</subfield></datafield></record></collection> |
id | DE-604.BV037333121 |
illustrated | Illustrated |
indexdate | 2024-07-09T23:22:17Z |
institution | BVB |
isbn | 9780521198158 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022486977 |
oclc_num | 723484174 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-945 DE-N2 DE-824 DE-83 DE-Er8 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-945 DE-N2 DE-824 DE-83 DE-Er8 |
physical | XVIII, 553 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Hilbe, Joseph M. 1944-2017 Verfasser (DE-588)128751851 aut Negative binomial regression Joseph M. Hilbe 2. ed. Cambridge [u.a.] Cambridge Univ. Press 2011 XVIII, 553 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Negative Binomialverteilung (DE-588)4194810-5 gnd rswk-swf Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Negative Binomialverteilung (DE-588)4194810-5 s Regressionsanalyse (DE-588)4129903-6 s b DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022486977&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hilbe, Joseph M. 1944-2017 Negative binomial regression Negative Binomialverteilung (DE-588)4194810-5 gnd Regressionsanalyse (DE-588)4129903-6 gnd |
subject_GND | (DE-588)4194810-5 (DE-588)4129903-6 |
title | Negative binomial regression |
title_auth | Negative binomial regression |
title_exact_search | Negative binomial regression |
title_full | Negative binomial regression Joseph M. Hilbe |
title_fullStr | Negative binomial regression Joseph M. Hilbe |
title_full_unstemmed | Negative binomial regression Joseph M. Hilbe |
title_short | Negative binomial regression |
title_sort | negative binomial regression |
topic | Negative Binomialverteilung (DE-588)4194810-5 gnd Regressionsanalyse (DE-588)4129903-6 gnd |
topic_facet | Negative Binomialverteilung Regressionsanalyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022486977&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hilbejosephm negativebinomialregression |