Relaxation and diffusion in complex systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2011
|
Schriftenreihe: | Partially ordered systems
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XXI, 835 S. graph. Darst. 235 mm x 155 mm |
ISBN: | 9781441976499 9781441976482 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037284597 | ||
003 | DE-604 | ||
005 | 20110913 | ||
007 | t | ||
008 | 110316s2011 d||| |||| 00||| eng d | ||
015 | |a 10,N31 |2 dnb | ||
016 | 7 | |a 1005136335 |2 DE-101 | |
020 | |a 9781441976499 |c ebook |9 978-1-4419-7649-9 | ||
020 | |a 9781441976482 |c GB. : ca. EUR 149.75 (freier Pr.), ca. sfr 201.00 (freier Pr.) |9 978-1-4419-7648-2 | ||
024 | 3 | |a 9781441976482 | |
028 | 5 | 2 | |a 11384618 |
035 | |a (OCoLC)734050752 | ||
035 | |a (DE-599)DNB1005136335 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-384 |a DE-29T | ||
084 | |a UG 2000 |0 (DE-625)145616: |2 rvk | ||
084 | |a UG 3900 |0 (DE-625)145629: |2 rvk | ||
084 | |a 520 |2 sdnb | ||
100 | 1 | |a Ngai, K. L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Relaxation and diffusion in complex systems |c K. L. Ngai |
264 | 1 | |a New York [u.a.] |b Springer |c 2011 | |
300 | |a XXI, 835 S. |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Partially ordered systems | |
650 | 0 | 7 | |a Komplexes System |0 (DE-588)4114261-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Relaxation |0 (DE-588)4049365-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffusion |0 (DE-588)4012277-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kondensierte Materie |0 (DE-588)4132810-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Relaxation |0 (DE-588)4049365-9 |D s |
689 | 0 | 1 | |a Diffusion |0 (DE-588)4012277-3 |D s |
689 | 0 | 2 | |a Kondensierte Materie |0 (DE-588)4132810-3 |D s |
689 | 0 | 3 | |a Komplexes System |0 (DE-588)4114261-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3518635&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021197319&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-021197319 |
Datensatz im Suchindex
_version_ | 1805095597486637056 |
---|---|
adam_text |
Titel: Relaxation and Diffusion in Complex Systems
Autor: Ngai, K.L
Jahr: 2011
Contents
1 Introduction to the Problems of Relaxation
and Diffusion in Complex Systems. 1
1.1 Historical Perspective. 1
1.2 Relaxation and Diffusion. 12
1.2.1 Macroscopic Description of Dynamics: Time- and
Frequency-Dependent Mechanical Properties. 14
1.2.1.1 Shear Creep and Recovery. 14
1.2.1.2 Shear Stress Relaxation. 15
1.2.1.3 Dynamic Shear Modulus. 16
1.2.1.4 Dynamic Shear Compliance. 17
1.2.1.5 Tensile (Bulk, Longitudinal)
Compliance and Tensile (Bulk,
Longitudinal) Modulus . 19
1.2.2 Macroscopic Description of Dynamics: Time- and
Frequency-Dependent Dielectric Properties. 20
1.2.2.1 Dielectric Permittivity. 20
1.2.2.2 Electric Modulus. 21
1.2.3 Macroscopic Description: Spectroscopy Based
on Other Variables. 22
1.2.3.1 Heat Capacity Spectroscopy. 22
1.2.3.2 Spectroscopy Based on Other
Macroscopic Dynamic Variables . 23
1.3 Molecular Description of Dynamics in the Linear
Response Regime. 24
1.3.1 Dielectric Relaxation. 29
1.3.2 Light Scattering. 33
1.3.3 Nuclear Magnetic Resonance. 34
1.3.4 Neutron Scattering. 35
1.3.5 The Green-Kubo Relation Between Transport
Coefficients and Time Correlation Functions. 37
1.3.6 The Fluctuation-Dissipation Theorem. 39
1.4 Obstacles of Progress in Finding a Solution. 40
Contents
1.4.1 An Unsolved Many-Body Problem. 40
1.4.2 Plethora of Experimental Facts: Anomalies
are the Real Guides to Solution. 41
1.4.3 An Interdisciplinary Research Area: Downside and Upside 44
1.4.3.1 The Downside. 44
1.4.3.2 The Upside. 45
1.5 Universal (Anomalous) Properties: The Outstanding
Guides to Solution of the Problem. 46
Glass-Forming Substances and Systems. 49
2.1 Current Status of the Glass Transition Problem. 49
2.2 General Properties and Anomalies. 50
2.2.1 Non-exponential Time Correlation Function
of the Structural a-Relaxation, exp[-0/ra)1-*],
the Kohlrausch Stretched Exponential Function. 52
2.2.1.1 Crossover of Correlation Function from
exp(-t/r0) to exp[-(t/r)l~n] at tc,
a Temperature-Insensitive Time. 63
2.2.1.2 Crossover of Temperature Dependence
of Viscosity at High Temperatures. 70
2.2.1.3 A Relation Between Primitive
Relaxation Time and Many-Body
Relaxation Time Resulting from the
Crossover at tc (the Coupling Model). 73
2.2.2 Length Scale and Dynamic Heterogeneous Nature
of the Structural Relaxation. 88
2.2.2.1 Length Scale from the Free Volume Model . 88
2.2.2.2 Length Scale from the Configuration
Entropy Model. 88
2.2.2.3 Length Scale from the Thermodynamic
Fluctuation Theory. 95
2.2.2.4 Dynamic Heterogeneity and Its Length Scale . . 96
2.2.2.5 Length Scale from Relaxation Behavior
of Nanophase-Separated Side-Chain Polymers . 108
2.2.2.6 Length Scale from Nanoconfinement. 112
2.2.2.7 Length Scale from Multi-point
Dynamical Susceptibilities. 118
2.2.2.8 Length Scale Is Not Practical to Use as
Measure of Many-Body Dynamics. 123
2.2.2.9 Why Fixation on the Length Scale
of the a-Relaxation, and Disregard
of the Widthof the Dispersion?. 125
2.2.3 Tg-Scaled Temperature Dependence of r\ or ra
and the Steepness or "Fragility" Index. 127
Contents
2.2.3.1 The Tg-Scaled Plot of T) by
Oldekop-Laughlin-Uhlmann-Angell. 127
2.2.3.2 The Steepness or "Fragility" Index. 129
2.2.3.3 Isobaric Fragility mp Decreases with
Increasing Pressure . 132
2.2.3.4 The Isochoric "Fragility" my Is
Significantly Less Than the Isobaric
"Fragility" m/ . 132
2.2.3.5 Correlation Between Kinetic "Fragility"
and Thermodynamic "Fragility"?. 133
2.2.3.6 Correlation of Kinetic "Fragility" with
Other Quantities?. 140
2.2.3.7 Different Patterns of Change of m with
the Molecular Weight M of Polymers. 141
2.2.3.8 Breakdown of Correlation Between m and n . . 141
2.2.3.9 Restoration of Correlation Between
m and n When Restricted to the Same Family . . 144
2.2.3.10 Colloidal Suspension of Soft Spherical
Particles: Proving Non-exponentiality
(n) and Fragility (m) Are Parallel
Consequences of Inter-particle Interaction . 146
2.2.4 Invariance of the a-Dispersion to Various
Combinations of T and P While Keeping xa Constant . 150
2.2.4.1 Molecular Glassformers. 152
2.2.4.2 Amorphous Polymers. 157
2.2.4.3 Ionic Liquids. 161
2.2.4.4 Pharmaceutical and Saccharides. 162
2.2.4.5 Invariance of the a-Dispersion to
Different T and P Combinations at
Constant ta Investigated by Other
Techniques than Dielectric Spectroscopy . 164
2.2.4.6 The a-Dispersion of a Component in
Binary Polymer Blends Is Invariant to
Tand P When ra Is Constant. 165
2.2.4.7 The a-Dispersion of a Component in
Mixtures of Two Small Molecular
Glassformers Is Invariant to T and P
When ra Is Constant. 166
2.2.4.8 Impact on Theory by T-P
Superpositioning of the a-Dispersion at
Constant ra . 168
2.2.5 Other Structural Relaxation Properties Either
Governed by or Correlated with the Dispersion of
the a-Relaxation. 170
Contents
2.2.5.1 Failure of a Single Vogel-Fulcher-
Tammann-Hesse (VFTH) Expression
to Describe the Temperature
Dependence of ta(T) . 171
2.2.5.2 Theg-W-^-DependenceofTa. 193
2.2.5.3 Non-linear Enthalpy Relaxation of
Glassformers Near and Below Tg. 195
2.2.5.4 Correlation Between n and Aging Time. 201
2.2.5.5 The Effect of Shear on the Non-
equilibrium Structural Dynamics of an
Aging Colloidal Suspension of Laponite . 205
2.2.5.6 Breakdown of the
Stokes-Einstein Equation
and the Debye-Stokes-Einstein
Relation. 206
2.2.5.7 Changes Effected by Mixing with
Another Glassformer. 232
2.2.5.8 Decrease of Relaxation Time by
Nanoconfinement. 247
2.2.5.9 Breakdown of Thermorheological
Simplicity of Relaxation Mechanisms
of Different Time/Length Scales, and
Viscoelastic Anomalies of Polymer:
Degree Depends on n. 251
2.2.5.10 Non-linear Deformation of Amorphous
Polymers. 267
2.3 A Fundamentally Important Class of Secondary Relaxations . . . 272
2.3.1 Background. 272
2.3.2 The Important Class of Secondary Relaxations That
Are Well Connected to the Primary a-Relaxation:
The Johari-Goldstein ^-Relaxations. 277
2.3.2.1 Correlation Between the Ratio ra/rjG
and n at a Predetermined Value of ra. 278
2.3.2.2 Good Correspondence Between rjo and
the Primitive Relaxation Time to at
Ambient Pressure. 285
2.3.2.3 Excess Loss over the Kohlrausch Fit of
the a-Relaxation, or the Excess Wing. 301
2.3.2.4 Excess Wing (Unresolved JG
ß-Relaxation) Eclipsed by the y-Relaxation . . . 306
2.3.2.5 Encroachment of the JG ß-Relaxation
Toward the y-Relaxation: The Cause
of the Purported Observation of
Anomalous T-Dependenee of xy . 312
Contents
2.3.2.6 Removing the Confusion Caused by the
Interpretation of the Excess Wing (EW)
ofOthers. 318
2.3.2.7 Digression on NCL. 324
2.3.2.8 tjg Like xa Is Pressure Dependent,
and Co-invariance of n and xalx}Q at
Constant ra . 327
2.3.2.9 From Causality: Dependence of ra on T,
P, V, and S Originäres from That of r0
(or tjG). 345
2.3.2.10 Systematic Increase of the Ratio
ra/rjG (or ra/To) of a Glassformer
A (by Increase of ri) on Mixing
with Increasing Concentration
of a Less Mobile Glassformer B. 345
2.3.2.11 Increase of the Ratio xalxjG (or xJxq)
on Polymerizing or Cross-Linking a
Glassformer (by Increase ofn) . 358
2.3.2.12 Systematic Decrease of the Ratio
ra/rjG (°r ra/ro) of a Glassformer
A (by Decrease of n) on Mixing
with Increasing Concentration
of a More Mobile Glassformer B. 359
2.3.2.13 Systematic Increase of the Ratio
r */rjG (or xJxq) on Increasing
the Molecular Weight of Polymers,
Constancy of r jg or to . 362
2.3.2.14 Changing the Ratio xJxiq (or
xJxq) by Change in Tacticity
of Polymers, Constancy of tjg or to. 363
2.3.2.15 Change of T-Dependence of tjg on
Crossing Tg . 364
2.3.2.16 Doubt on the Universal Presence of the
JG ß-Relaxation? Glassformers Only
Showing a Non-JG Secondary Relaxation . 380
2.3.2.17 Change of F-Dependence of Relaxation
Strength Acjq on Crossing Tg. 395
2.3.2.18 Correlation of JG ß-Relaxation
with a-Relaxation: Evidence from
Spin-Lattice Relaxation Weighted
Stimulated-Echo Spectroscopy. 398
2.3.2.19 JG ß-Relaxation in the Glassy State,
like the a-Relaxation, Is Sensitive to
Thermodynamic (TJ3) Path, Thermal
History, and Annealing . 399
Contents
2.3.2.20 Increase of Tß on Aging in Some Glassformers . 405
2.3.2.21 JG Relaxation Responsable for Structural
Change Deep in the Glassy State by Aging . . . 408
2.3.2.22 JG ß-Relaxation Governs the Rate of
Crystal Nucleation, the Initial Process of
Crystallization. 412
2.3.2.23 JG ß-Relaxation in Pharmaceuticals. 421
2.3.2.24 Relation Between the Arrhenius
Activation Energies of xa and tjg in the
Glassy State. 430
2.3.2.25 Aging of the JG ß-Relaxation Used to
Probe Structural Relaxation in the Glassy State . 432
2.3.2.26 The Carbohydrates, Monosaccharides,
Disaccharides, and Polysaccharides. 434
2.3.2.27 JG ß-Relaxation (or Primitive
Relaxation) of Water. 442
2.3.2.28 Hydrated Proteins. 474
2.3.2.29 m-DependenceofrjG. 528
2.3.2.30 Invariance of the Primitive Relaxation
Time, to, to Variations of P and T While
Keeping xa Constant Deduced from the
Same Observed on the Normal Mode
Relaxation Time, Tn, ofType-A Polymers . . . 543
2.3.2.31 TW -Dependence of the Primitive
Relaxation Time, to, Same as that of the
Normal Mode Relaxation Time, rn, of
Type-A Polymers . 546
2.3.2.32 Calorimetric Detection of JG Relaxation . 548
2.3.2.33 JG ß-Relaxation Causes Cage Decay
and Terminates the NCL. 550
2.3.2.34 Change of F-Dependence of NCL at Fg
in Analogy to the JG ß-Relaxation Strength . . . 559
2.3.2.35 Correlation Between the Level of NCL
at Fg and n(Tg). 562
2.3.2.36 Fast Relaxation (NCL) Senses the Hole
Volume from PALS. 569
2.3.2.37 Comparison of the MCT Description of
Caged Dynamics with NCL. 573
2.3.2.38 Conversion of a-Relaxation to the JG
ß-Relaxation or Primitive Relaxation by
Suppression of Cooperativity. 587
2.3.2.39 Connection Between the Fast Primitive
Relaxation and the Slow Structural
Relaxation of Aging Colloidal
Suspension ofLaponite. 610
Contents xix
2.3.2.40 Which Criteria Are Most Critical for
Identification of the Johari-Goldstein
ß-Relaxation?. 611
2.3.2.41 Broadening of a-Relaxation and
Concomitant Increase of Separation
from the JG ß-Relaxation in Glycerol
and Threitol at Elevated Pressure. 619
2.3.2.42 Narrowing of a-Relaxation and
Concomitant Decrease of Separation
from the JG ß-Relaxation at Elevated Pressure . 622
2.3.2.43 JG ß-Relaxation of Aqueous Mixture
Under High Pressure: Water-Propylene
Glycol Oligomer Mixtures. 625
2.3.2.44 JG ß-Relaxation of Aqueous Mixture
Under High Pressure: Water-Fructose Mixtures 628
2.3.2.45 Evidences of Primitive or ß-Relaxation
and Faster Relaxation Are Responsible
for the Stabilization of Dried Protein in
Sugar-Based Glass. 628
3 Universal Properties of Relaxation and Diffusion
in Interacting Complex Systems. 639
3.1 Introduction. 639
3.2 Universal Properties. 642
3.2.1 The Kohlrausch Stretched Exponential Correlation
Function exp[-(t/t)l~n] . 642
3.2.1.1 Mean-Square Displacement of Diffusion
in Interacting Systems. 643
3.2.1.2 Space-Time Pictures of Motions of Lt+
Ions Equivalent to Those of Motions of
Colloidal Particles by Confocal Microscopy . . 650
3.2.1.3 Support from Conductivity Relaxation
Data of Crystalline, Glassy, and Molten
lonic Conductors. 653
3.2.2 Stronger Interaction/Constraints Lead to Larger n. 656
3.2.2.1 Ionically Conducting Systems. 656
3.2.2.2 Entangled Polymer Chains. 657
3.2.2.3 Semidilute Polymer Solutions and
Associating Polymer Solutions. 657
3.2.2.4 Junction Dynamics of Cross-Linked Polymers . 658
3.2.3 Crossover from exp (-t/xo) to exp Ki/r)1-"] at tc. 658
3.2.3.1 Ionically Conducting Systems. 658
3.2.3.2 Entangled Polymer Chains. 670
3.2.3.3 Colloidal Suspensions. 671
3.2.3.4 Semidilute Polymer Solutions. 673
Contents
3.2.3.5 Polymerie Cluster Solutions. 673
3.2.3.6 Associating or Aggregating Polymer Solutions . 674
3.2.4 Anomalous £r2/(1~n) Dependence ofr. 675
3.2.5 Different Correlation Functions of the Same
Relaxation Can Have Different Kohlrausch
Exponents (1- n), Relaxation Times r, and
F-Dependences. 679
3.2.5.1 Glassy Ionic Conductors: Conductivity
vs.NMR. 680
3.2.5.2 Entangled Polymer Chains:
Self-Diffusion vs. Viscosity. 689
3.2.5.3 Semidilute Polymer Solutions. 694
3.2.6 Recovering or Discovering the Primitive Relaxation . 697
3.2.6.1 Influence of Mesophase Structures on
the ß-Relaxation in Side-Chain Liquid
Crystal Polymers (SCLCPs). 699
3.2.6.2 Dynamics of Cross-Linked Junction of a
Polymer Network. 703
3.2.6.3 Cooperative Oxygen Ion Dynamics in
Gd2Ti2-yZxy01 . 709
3.2.6.4 The Crystalline Lithium Ionic Conductor
Li^Lazo-xTiOs (LLTO). 711
3.2.6.5 The Crystalline Lithium Ion Conductor
Lii.2Tii.8Alo.2(P04)3 . 714
3.2.6.6 Ionic Conductivity of Nanometer Thin
Films of Yttria-StabilizedZirconia. 715
3.2.6.7 Activation Energy of the Snoek-
Köster Relaxation in Cold-Worked,
Body-Centered Cubic Metals. 718
3.2.6.8 Precipitates in Al-Ag Alloys, Ta-H, and
li-H Systems. 721
3.2.6.9 Grain Boundary Relaxation. 722
3.2.6.10 Conformational Transition Energy
Barrierof Polymers. 722
3.2.7 Changes Effected by Mixing or Interfacing. 722
3.2.7.1 Global Chain Dynamics of Each
Component in Binary Polymer Blends. 723
3.2.7.2 Other Examples of Change of Global
Chain Dynamics of Entangled Polymers
by Mixing. 727
3.2.7.3 Mixed Alkali Effect in Ionic Conductors . 728
3.2.8 Evidence of Ion Transport Governed by Ion-Ion
Interaction from Molecular Dynamics Simulation. 736
Contents
3.2.9 Haven Ratio, Breakdown of Nernst-Einstein
Relation: Analogue of Breakdown of
Stokes-Einstein Relation. 737
3.2.9.1 The Haven Ratio for Mixed Alkali Glass . 739
3.2.10 Caged Dynamics, Nearly Constant Loss, and
Termination by the Primitive Relaxation. 739
3.2.10.1 Caution for Those Who Prefer Data
Represented by a'(v) than M*(v). 749
3.2.10.2 Rationalization of the Observed
Properties of NCL by Its Relation
to the Primitive Relaxation . 750
3.2.11 A Problem Related to Glass Transition: Breakdown
of Thermorheological Simplicity and Associated
Viscoelastic Anomalies in Polymers. 754
3.2.11.1 AConundrum. 755
3.2.11.2 Problems Encountered in an Explanation
of the Breakdown of Thermorheological
Simplicity. 756
3.2.12 Looking Out for Universal Dynamics in Other
Complex Interacting Systems. 758
3.2.12.1 Charge Density Wave Systems . 759
3.2.12.2 Aqueous Colloidal Dispersions of
Magnetic Nanoparticles. 760
4 Afterword. 765
References. 773
Index. 823 |
any_adam_object | 1 |
author | Ngai, K. L. |
author_facet | Ngai, K. L. |
author_role | aut |
author_sort | Ngai, K. L. |
author_variant | k l n kl kln |
building | Verbundindex |
bvnumber | BV037284597 |
classification_rvk | UG 2000 UG 3900 |
ctrlnum | (OCoLC)734050752 (DE-599)DNB1005136335 |
discipline | Physik Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV037284597</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110913</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110316s2011 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N31</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1005136335</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441976499</subfield><subfield code="c">ebook</subfield><subfield code="9">978-1-4419-7649-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441976482</subfield><subfield code="c">GB. : ca. EUR 149.75 (freier Pr.), ca. sfr 201.00 (freier Pr.)</subfield><subfield code="9">978-1-4419-7648-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781441976482</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11384618</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)734050752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1005136335</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 2000</subfield><subfield code="0">(DE-625)145616:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 3900</subfield><subfield code="0">(DE-625)145629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">520</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ngai, K. L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Relaxation and diffusion in complex systems</subfield><subfield code="c">K. L. Ngai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 835 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Partially ordered systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexes System</subfield><subfield code="0">(DE-588)4114261-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Relaxation</subfield><subfield code="0">(DE-588)4049365-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kondensierte Materie</subfield><subfield code="0">(DE-588)4132810-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Relaxation</subfield><subfield code="0">(DE-588)4049365-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diffusion</subfield><subfield code="0">(DE-588)4012277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kondensierte Materie</subfield><subfield code="0">(DE-588)4132810-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Komplexes System</subfield><subfield code="0">(DE-588)4114261-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3518635&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021197319&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021197319</subfield></datafield></record></collection> |
id | DE-604.BV037284597 |
illustrated | Illustrated |
indexdate | 2024-07-20T11:01:49Z |
institution | BVB |
isbn | 9781441976499 9781441976482 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021197319 |
oclc_num | 734050752 |
open_access_boolean | |
owner | DE-11 DE-384 DE-29T |
owner_facet | DE-11 DE-384 DE-29T |
physical | XXI, 835 S. graph. Darst. 235 mm x 155 mm |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series2 | Partially ordered systems |
spelling | Ngai, K. L. Verfasser aut Relaxation and diffusion in complex systems K. L. Ngai New York [u.a.] Springer 2011 XXI, 835 S. graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Partially ordered systems Komplexes System (DE-588)4114261-5 gnd rswk-swf Relaxation (DE-588)4049365-9 gnd rswk-swf Diffusion (DE-588)4012277-3 gnd rswk-swf Kondensierte Materie (DE-588)4132810-3 gnd rswk-swf Relaxation (DE-588)4049365-9 s Diffusion (DE-588)4012277-3 s Kondensierte Materie (DE-588)4132810-3 s Komplexes System (DE-588)4114261-5 s DE-604 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3518635&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021197319&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ngai, K. L. Relaxation and diffusion in complex systems Komplexes System (DE-588)4114261-5 gnd Relaxation (DE-588)4049365-9 gnd Diffusion (DE-588)4012277-3 gnd Kondensierte Materie (DE-588)4132810-3 gnd |
subject_GND | (DE-588)4114261-5 (DE-588)4049365-9 (DE-588)4012277-3 (DE-588)4132810-3 |
title | Relaxation and diffusion in complex systems |
title_auth | Relaxation and diffusion in complex systems |
title_exact_search | Relaxation and diffusion in complex systems |
title_full | Relaxation and diffusion in complex systems K. L. Ngai |
title_fullStr | Relaxation and diffusion in complex systems K. L. Ngai |
title_full_unstemmed | Relaxation and diffusion in complex systems K. L. Ngai |
title_short | Relaxation and diffusion in complex systems |
title_sort | relaxation and diffusion in complex systems |
topic | Komplexes System (DE-588)4114261-5 gnd Relaxation (DE-588)4049365-9 gnd Diffusion (DE-588)4012277-3 gnd Kondensierte Materie (DE-588)4132810-3 gnd |
topic_facet | Komplexes System Relaxation Diffusion Kondensierte Materie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3518635&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021197319&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ngaikl relaxationanddiffusionincomplexsystems |