Introduction to glycobiology:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2011
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben S. [267] - 283 |
Beschreibung: | XIX, 283 S. Ill., graph. Darst. |
ISBN: | 9780199569113 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037270112 | ||
003 | DE-604 | ||
005 | 20110512 | ||
007 | t | ||
008 | 110309s2011 ad|| |||| 00||| eng d | ||
020 | |a 9780199569113 |9 978-0-19-956911-3 | ||
035 | |a (OCoLC)707165504 | ||
035 | |a (DE-599)BVBBV037270112 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-20 |a DE-355 |a DE-188 | ||
082 | 0 | |a 572.565 | |
082 | 0 | |a 572/.567 | |
084 | |a WD 5650 |0 (DE-625)148212: |2 rvk | ||
100 | 1 | |a Taylor, Maureen E. |e Verfasser |0 (DE-588)1028028660 |4 aut | |
245 | 1 | 0 | |a Introduction to glycobiology |c Maureen E. Taylor ; Kurt Drickamer |
246 | 1 | 3 | |a Glycobiology |
250 | |a 3. ed. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2011 | |
300 | |a XIX, 283 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben S. [267] - 283 | ||
650 | 0 | 7 | |a Glykoproteine |0 (DE-588)4071905-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Glykolipide |0 (DE-588)4157740-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Glykolipide |0 (DE-588)4157740-1 |D s |
689 | 0 | 1 | |a Glykoproteine |0 (DE-588)4071905-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Glykoproteine |0 (DE-588)4071905-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Drickamer, Kurt |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021183090&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-021183090 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804143893390819328 |
---|---|
adam_text | Part
1
Structures and biosynthesis of glycans
1
Concepts of glycobiology
3
1.1 The field of glycobiology encompasses the multiple
functions of sugars attached to proteins and iipids
3
1.2
There are three major classes of glycoconjugates
4
1.3
Glycans are composed of monosaccharides with related
chemical structures
5
1.4
Glycosidic linkages between monosaccharides exist in
multiple configurations
9
1.5
Formation of glycosidic linkages requires energy and is
catalysed by specific enzymes
10
1.6
Understanding structure-function relationships for glycans
can be more difficult than for other classes of biopolymers
13
1.7
Glycan structures are encoded indirectly in the genome
14
Summary
15
Key references
16
Questions
16
2
N-Linked glycosylation
17
2.1
Diverse N-linked glycans have a common core structure
17
2.2
Assembly of N-linked glycans occurs in three major stages
17
2.3
The precursor oligosaccharide for N-linked glycans is assembled
on the
lipid dolichol
18
2.4
The dolichot-linked precursor otigosaccharide is transferred to
asparagine residues of polypeptides
21
2.5
The core oligosaccharide structure is modified by glycosidases and
glycosyltransferases
23
2.6
Hybrid structures and poiylactosamine sequences are common
extensions of the core oligosaccharide
25
2.7
ABO Wood groups are determined by the presence of different
terminal sugars on glycans of red blood cells
26
2.8
The N-linked glycans of an individual glycoprotein are usually
heterogeneous
28
Contents
2.9
The nature of N-linked glycans attached to an individual
glycoprotein is determined by the protein and the cell in
which it is expressed
29
2.10
High mannose structures are present in lower eukaryotes,
but the glycosylation machinery has evolved to produce complex
glycans in higher organisms
29
Summary
30
Key references
30
Questions
31
3
О
-Linked glycosylation
33
3.1
Mucins are large, heavily O-glycosylated proteins that hold water
33
3.2
Some cell surface proteins have mucin-like domains
35
3.3
Many soluble and cell surface glycoproteins contain small
clusters of
О
-linked sugars
37
3.4
Biosynthesis of mucin-type sugars occurs by sequential
addition of monosaccharides to proteins in the Golgi apparatus
37
3.5
Proteoglycans are heavily O-glycosylated proteins that give
strength to the extracellular matrix
39
3.6
Biosynthesis of proteoglycans requires several modifying
enzymes in addition to glycosyltransferases
42
3.7
Unusual types of
О
-linked glycosylation are found on some proteins
43
3.8
Cytoplasmic and nuclear proteins can be modified by addition
ofO-linked N-acetylglucosamine
45
3.9
О
-linked N-acetylglucosamine is part of a metabolic sensor
system that is affected in diabetes
47
Summary
48
Key references
49
Questions
50
4
Glycolipids and membrane protein glycosylation
51
4.1
Most integral membrane proteins are glycosylated
51
4.2
Membranes contain glycolipids as well as glycoproteins
52
4.3
Glycosphingolipid biosynthesis occurs in the Golgi apparatus
54
4.4
Glycosphingolipids can generate distinct domains in the
plasma membrane
55
4.5
Defects in glycolipid breakdown cause disease
56
4.6
Some proteins are attached to membranes through glycolipid
anchors
57
Box
4.1
Glycotherapeutics: Enzyme replacement, molecular
chaperones, and inhibitors of glycolipid synthesis can be used
to treat storage diseases
58
4.7
Glycolipid anchors are added to proteins in the endoplasmic reticulum
60
4.8
Proteins attached to glycolipid anchors are localized to the plasma
membrane
62
Box
4.2
Glycotherapeutics: Selective inhibition of glycolipid anchor
biosynthesis may provide a way to treat African sleeping sickness
64
4.9
The disease paroxysmal nocturnal haemoglobinuria is caused
by a glycolipid anchor deficiency
66
Contents
XV
Summary
66
Key
references
66
Questions
67
5
Enzymology and cell biology of glycosylation
69
5.1
Only a few eukaryotic glycosyltransferases are sufficiently
abundant to be isolated biochemically
69
5.2
Novel molecular biology methods are needed to clone
additional glycosyltransferases
71
5.3
Structurally diverse glycosyltransferases share key common features
73
5.4
Genomics can be used to define the repertoire of glycosyltransferases
74
5.5
Special transporters are required to provide access of donor
substrates to glycosyltransferases
75
Box
5.1
Glycobiology of disease: Transporter deficiency can
result in aberrant glycosylation
76
5.6
Complex cellular machinery is required for spatial and temporal
organization of glycan biosynthesis pathways
77
5.7
Mutant cell lines serve as tools for studying glycosylation and
illustrate the importance of N-linked glycosylation
80
5.8
Knockout mice provide much of the evidence forthe roles of
glycosylation in the biology of mammals
81
Summary
83
Key references
83
Questions
84
6
Glycomics and analysis of glycan structures
86
6.1
NMR provides definitive information on oligosaccharide structures
87
6.2
Glycosidases can be used to analyse structures of glycans
87
6.3
Mass spectrometry is particularly useful for analysis of
complex mixtures containing small amounts of glycans
90
6.4
Glycomics provides a description of the glycans present in
cells and tissues and is used to study receptors that bind glycans
91
6.5
Glycomic and genomic analysis provide some indication of the
total size of the glycome in mammals
93
6.6
Systems glycobiology aims to link glycogene expression with
glycosylation phenotypes
94
6.7
Glycan arrays can be used to define target ligands for glycan-binding
proteins
94
6.8
Databases for glycobiology are being developed
95
6.9
Glycoconjugates in cells and tissues can be analysed using lectins
97
6.10
Small oligosaccharides can be synthesized using chemical methods
98
6.11
Enzymes provide an alternative method for the synthesis of
oligosaccharides
99
Box
6.1
Glycotherapeutics: Synthetic heparin oligosaccharides
are used to control blood clotting
100
6.12
Neoglycoconjugates can be created by chemically linking
sugars to proteins or lipids
102
Summary
102
xvi Contents
Key
references
103
Questions
104
Conformations of oligosaccharides
105
7.1
Three-dimensional structures of oligosaccharides are called
conformations
105
7.2
Monosaccharides assume a limited number of conformations
106
7.3
Torsion angles are used to describe conformations of glycans
107
7.4
Local steric and electronic interactions limit the possible
conformations of glycosidic linkages
108
7.5
The conformation of an oligosaccharide is influenced by
interactions between hexoses distant from each
other in the covalent structure
112
7.6
Co-operative interactions determine the overall folds of
oligosaccharides
113
7.7
Oligosaccharide conformations are dynamic
114
7.8
Short- and long-range interactions also determine the
conformations of polysaccharides
115
7.9
Conformations of polysaccharides define properties of cell walls
115
7.10
The conformations of a small number of oligosaccharides have been
analysed by X-ray crystallography and nuclear magnetic resonance
118
Summary
119
Key references
120
Questions
120
Part
2
Glycans ¡n biology
123
8
Effects of glycosylation on protein structure and function
125
8.1
Various approaches can be used to study the effects of glycosylation
125
8.2
Sugars stabilize the structure of the cell adhesion molecule CD2
127
8.3
An oligosaccharide replaces an
α
-helix in some variant surface
glycoproteinsoftrypanosomes
129
8.4
Attachment of a monosaccharide can affect protein dynamics
131
8.5
Glycosylation affects the ability of immunoglobulins to fix
complement and bind to receptors
132
8.6
Protein-protein interactions can be modulated by oligosaccharides
134
8.7
Oligosaccharides covering surfaces of proteins can protect against
proteolysis
135
Summary
137
Key references
137
Questions
138
9
Carbohydrate recognition in cell adhesion and signalling
139
9.1
Animal lectins can be classified based on their structures
139
9.2
Mannose-binding protein is a host defence molecule that
initiates the lectin pathway of complement activation
140
Contents
xvìi
9.3
Pathogen recognition by mannose-binding protein results from both
monosaccharide-binding specificity and oligomer geometry
142
9.4
The mannose receptor helps
macrophages
to internalize
pathogens
146
9.5
The selectins are cell adhesion molecules for white blood cells
147
9.6
Specific carbohydrate ligands for the selectins interact through
extended binding sites on the
С
-type
CRDs
150
9.7
С
-type
lectins participate in the process of antigen presentation
153
9.8
DC-SIGN enhances
HIV
infection of
Τ
cells
155
9.9
l-type lectins are composed of immunoglobulin-like domains
156
Box
9.1
Glycotherapeutics: Drugs and antibodies that prevent
HIV
infection mimic recognition by DC-SIGN
157
9.10
Siglecs are adhesion and signalling receptors on cells in the
immune system
159
9.11
Extracellular galectins have roles in cell adhesion and cell signalling
162
9.12
Galectins modulate activation of
Τ
cells and control cell survival by
triggering or inhibiting apoptosis
164
Summary
167
Key references
167
Questions
169
10
Glycoprotein trafficking in cells and organisms
171
10.1
Lectins have important functions in the secretory pathway
171
10.2
Calnexin and calreticulin help glycoproteins fold in the endoplasmic
reticulum
172
10.3
Lectins are involved in degradation of misfolded glycoproteins
174
10.4
L-type lectins transport glycoproteins from the endoplasmic
reticulum to the Golgi
176
10.5
Mannose 6-phosphate residues target lysosomal enzymes to
lysosomes
177
10.6
Two types of mannose 6-phosphate receptor take part in
lysosomal enzyme targeting
179
10.7
The asialoglycoprotein receptor clears altered serum
glycoproteins into the liver
181
Box
10.1
Glycobiology of disease: The Asialoglycoprotein
receptor may help to prevent sepsis
185
10.8
The mannose receptor removes naturally occurring
glycoproteins from circulation
186
10.9
The mannose receptor also regulates activity of sulphated
hormones
187
Box
10.2
Glycotherapeutics: Glycosylation of
recombinant
glycoproteins must be carefully controlled
189
10.10 Some intracellular lectins have roles in the nucleus
191
Summary
191
Key references
192
Questions
193
Contents
11 Glycobiology
of plants, bacteria, and viruses
195
li.i Plant and microbial sugars have some functions not seen in
mammals
195
11.2.
Some bacteria have protein glycosylation pathways that are
related to the mammalian glycosylation machinery
196
11.3
Plants use oligosaccharides as signalling molecules
197
11.4
Common plant lectins are useful tools for biologists
199
11.5
Some plant lectins are toxins
201
11.6
Many bacterial toxins are lectins
202
11.7
Bacteria use lectins to bind to host cell surfaces
205
Box
11.1
Glycobiology of disease: Bacteria that cause stomach ulcers
use blood group glycans as receptors
206
11.8
Viruses use lectins to target cell surfaces
208
Box
11.2
Glycotherapeutics: Anti-influenza drugs are
neuraminidase inhibitors
210
11.9
Lectins appeared early in evolution but have diverse functions in
higher organisms
212
Summary
214
Key references
215
Questions
216
12
Glycobiology and development
218
12.1
Biochemical analysis has demonstrated how cell surface
proteoglycans serve as co-receptors for growth factors
218
12.2
Mutant mice provide evidence for the roles of proteoglycans in
mammalian development
221
12.3
Study of
Drosophila
and other model organisms reveals multiple
roles for heparan sulphate proteoglycans
223
Box
12.1
Glycobiology of disease: Human diseases result from
aberrant proteoglycan biosynthesis
225
12.4
О
-linked fucose-based glycans are important for extracellular
signalling during development in vertebrates and invertebrates
227
12.5
Cell surface glycolipids are important for the development of
the nervous system
228
12.6
Myelin-associated glycoprotein has roles in development of the
central and peripheral nervous systems
231
Box
12.2
Glycotherapeutics: Chondroitinase and sialidase
treatments facilitate regeneration in the central nervous system
233
12.7
Polysialylation of neural cell adhesion molecule prevents cell
adhesion during development
235
12.8
Changes in glycosylation occur during cell differentiation in the
immune system
235
Summary
237
Key references
237
Questions
239
Contents
13 Glycosylatron
and disease
240
13.1
Mutations in enzymes for synthesis of N-linked glycans cause
congenital disorders of glycosylation
240
13.2
Abnormal expression of a glycosyltransferase causes a blood
clotting defect
242
13.3
Chemical glycation of proteins occurs in diabetes
243
13.4
Antibodies to carbohydrates can cause disease
244
13.5
Producing glycoproteins to treat many diseases is a challenge for
biotechnology
246
13.6
Genetic changes that modify unusual
О
-linked glycans can cause
muscular dystrophy
247
13.7
Changes in glycosylation are associated with cancer
250
Box
13.1
Glycotherapeutics: Drugs that modify glycans on tumour
cells may be useful in treating cancer
253
13.8
Changes in glycosylation may be useful
biomarkers
for cancer
detection and treatment
254
Summary
257
Key references
257
Questions
259
14
The future of glycobiology
260
14.1
Biochemistry, cell biology, and genetics must be combined in
order to define the roles of glycans
260
14.2
Glycomics and systems glycobiology underpin our understanding of
glycobiology
261
14.3
The cell- and protein-specific nature of glycosylation presents
enormous technical challenges
262
14.4
Genomics provides critical insights into glycobiology
262
14.5
Traditional genetics will be combined with new approaches to human
genetics to understand glycans and their receptors
263
14.6
Molecular understanding of how glycans function will require further
elucidation of structure-function relationships
264
14.7
Our increasing knowledge about glycobiology is being applied to
practical issues
265
Summary
265
Glossary
267
Index
277
|
any_adam_object | 1 |
author | Taylor, Maureen E. Drickamer, Kurt |
author_GND | (DE-588)1028028660 |
author_facet | Taylor, Maureen E. Drickamer, Kurt |
author_role | aut aut |
author_sort | Taylor, Maureen E. |
author_variant | m e t me met k d kd |
building | Verbundindex |
bvnumber | BV037270112 |
classification_rvk | WD 5650 |
ctrlnum | (OCoLC)707165504 (DE-599)BVBBV037270112 |
dewey-full | 572.565 572/.567 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572.565 572/.567 |
dewey-search | 572.565 572/.567 |
dewey-sort | 3572.565 |
dewey-tens | 570 - Biology |
discipline | Biologie |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01703nam a2200445 c 4500</leader><controlfield tag="001">BV037270112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110512 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110309s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199569113</subfield><subfield code="9">978-0-19-956911-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)707165504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037270112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572.565</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572/.567</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 5650</subfield><subfield code="0">(DE-625)148212:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taylor, Maureen E.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1028028660</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to glycobiology</subfield><subfield code="c">Maureen E. Taylor ; Kurt Drickamer</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Glycobiology</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 283 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben S. [267] - 283</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glykoproteine</subfield><subfield code="0">(DE-588)4071905-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Glykolipide</subfield><subfield code="0">(DE-588)4157740-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Glykolipide</subfield><subfield code="0">(DE-588)4157740-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Glykoproteine</subfield><subfield code="0">(DE-588)4071905-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Glykoproteine</subfield><subfield code="0">(DE-588)4071905-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Drickamer, Kurt</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021183090&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021183090</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV037270112 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:54:54Z |
institution | BVB |
isbn | 9780199569113 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021183090 |
oclc_num | 707165504 |
open_access_boolean | |
owner | DE-11 DE-20 DE-355 DE-BY-UBR DE-188 |
owner_facet | DE-11 DE-20 DE-355 DE-BY-UBR DE-188 |
physical | XIX, 283 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Taylor, Maureen E. Verfasser (DE-588)1028028660 aut Introduction to glycobiology Maureen E. Taylor ; Kurt Drickamer Glycobiology 3. ed. Oxford [u.a.] Oxford Univ. Press 2011 XIX, 283 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben S. [267] - 283 Glykoproteine (DE-588)4071905-4 gnd rswk-swf Glykolipide (DE-588)4157740-1 gnd rswk-swf Glykolipide (DE-588)4157740-1 s Glykoproteine (DE-588)4071905-4 s 1\p DE-604 DE-604 Drickamer, Kurt Verfasser aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021183090&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Taylor, Maureen E. Drickamer, Kurt Introduction to glycobiology Glykoproteine (DE-588)4071905-4 gnd Glykolipide (DE-588)4157740-1 gnd |
subject_GND | (DE-588)4071905-4 (DE-588)4157740-1 |
title | Introduction to glycobiology |
title_alt | Glycobiology |
title_auth | Introduction to glycobiology |
title_exact_search | Introduction to glycobiology |
title_full | Introduction to glycobiology Maureen E. Taylor ; Kurt Drickamer |
title_fullStr | Introduction to glycobiology Maureen E. Taylor ; Kurt Drickamer |
title_full_unstemmed | Introduction to glycobiology Maureen E. Taylor ; Kurt Drickamer |
title_short | Introduction to glycobiology |
title_sort | introduction to glycobiology |
topic | Glykoproteine (DE-588)4071905-4 gnd Glykolipide (DE-588)4157740-1 gnd |
topic_facet | Glykoproteine Glykolipide |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021183090&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT taylormaureene introductiontoglycobiology AT drickamerkurt introductiontoglycobiology AT taylormaureene glycobiology AT drickamerkurt glycobiology |