Modular invariant theory:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2011
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
139 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBM01 UBT01 UBW01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XIII, 233 S.) |
ISBN: | 9783642174049 |
DOI: | 10.1007/978-3-642-17404-9 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV037263031 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 110304s2011 |||| o||u| ||||||eng d | ||
020 | |a 9783642174049 |c Online |9 978-3-642-17404-9 | ||
024 | 7 | |a 10.1007/978-3-642-17404-9 |2 doi | |
035 | |a (OCoLC)707187890 | ||
035 | |a (DE-599)DNB1009510274 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-20 |a DE-703 |a DE-19 |a DE-91 |a DE-29 |a DE-739 |a DE-384 |a DE-83 | ||
082 | 0 | |a 512.23 |2 22/ger | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 130f |2 stub | ||
084 | |a MAT 147f |2 stub | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Campbell, Harold E. A. Eddy |d 1954- |e Verfasser |0 (DE-588)14347877X |4 aut | |
245 | 1 | 0 | |a Modular invariant theory |c H. E. A. Eddy Campbell ; David L. Wehlau |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2011 | |
300 | |a 1 Online-Ressource (XIII, 233 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v 139 | |
490 | 1 | |a Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups |v 8 | |
650 | 0 | 7 | |a Endliche Gruppe |0 (DE-588)4014651-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invariantentheorie |0 (DE-588)4162209-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulare Darstellung |0 (DE-588)4311996-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Endliche Gruppe |0 (DE-588)4014651-0 |D s |
689 | 0 | 1 | |a Modulare Darstellung |0 (DE-588)4311996-7 |D s |
689 | 0 | 2 | |a Invariantentheorie |0 (DE-588)4162209-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wehlau, David L. |d 1960- |e Verfasser |0 (DE-588)143479423 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 3-642-17403-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-3-642-17403-2 |
810 | 2 | |a Invariant theory and algebraic transformation groups |t Encyclopaedia of mathematical sciences |v 8 |w (DE-604)BV036597991 |9 8 | |
830 | 0 | |a Encyclopaedia of mathematical sciences |v 139 |w (DE-604)BV035421342 |9 139 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-17404-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-021176127 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l UBM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l UBW01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-17404-9 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804143883068637184 |
---|---|
any_adam_object | |
author | Campbell, Harold E. A. Eddy 1954- Wehlau, David L. 1960- |
author_GND | (DE-588)14347877X (DE-588)143479423 |
author_facet | Campbell, Harold E. A. Eddy 1954- Wehlau, David L. 1960- |
author_role | aut aut |
author_sort | Campbell, Harold E. A. Eddy 1954- |
author_variant | h e a e c heae heaec d l w dl dlw |
building | Verbundindex |
bvnumber | BV037263031 |
classification_rvk | SK 260 |
classification_tum | MAT 130f MAT 147f MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)707187890 (DE-599)DNB1009510274 |
dewey-full | 512.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.23 |
dewey-search | 512.23 |
dewey-sort | 3512.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-17404-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02939nmm a2200613 cb4500</leader><controlfield tag="001">BV037263031</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">110304s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642174049</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-17404-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-17404-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)707187890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1009510274</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.23</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 130f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 147f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campbell, Harold E. A. Eddy</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14347877X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modular invariant theory</subfield><subfield code="c">H. E. A. Eddy Campbell ; David L. Wehlau</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 233 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">139</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups</subfield><subfield code="v">8</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulare Darstellung</subfield><subfield code="0">(DE-588)4311996-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Endliche Gruppe</subfield><subfield code="0">(DE-588)4014651-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modulare Darstellung</subfield><subfield code="0">(DE-588)4311996-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wehlau, David L.</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143479423</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">3-642-17403-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-3-642-17403-2</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Invariant theory and algebraic transformation groups</subfield><subfield code="t">Encyclopaedia of mathematical sciences</subfield><subfield code="v">8</subfield><subfield code="w">(DE-604)BV036597991</subfield><subfield code="9">8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">139</subfield><subfield code="w">(DE-604)BV035421342</subfield><subfield code="9">139</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021176127</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-17404-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV037263031 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:54:44Z |
institution | BVB |
isbn | 9783642174049 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021176127 |
oclc_num | 707187890 |
open_access_boolean | |
owner | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
owner_facet | DE-634 DE-20 DE-703 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-29 DE-739 DE-384 DE-83 |
physical | 1 Online-Ressource (XIII, 233 S.) |
psigel | ZDB-2-SMA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups |
spelling | Campbell, Harold E. A. Eddy 1954- Verfasser (DE-588)14347877X aut Modular invariant theory H. E. A. Eddy Campbell ; David L. Wehlau Berlin [u.a.] Springer 2011 1 Online-Ressource (XIII, 233 S.) txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of mathematical sciences 139 Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups 8 Endliche Gruppe (DE-588)4014651-0 gnd rswk-swf Invariantentheorie (DE-588)4162209-1 gnd rswk-swf Modulare Darstellung (DE-588)4311996-7 gnd rswk-swf Endliche Gruppe (DE-588)4014651-0 s Modulare Darstellung (DE-588)4311996-7 s Invariantentheorie (DE-588)4162209-1 s DE-604 Wehlau, David L. 1960- Verfasser (DE-588)143479423 aut Erscheint auch als Druck-Ausgabe, Hardcover 3-642-17403-5 Erscheint auch als Druck-Ausgabe, Hardcover 978-3-642-17403-2 Invariant theory and algebraic transformation groups Encyclopaedia of mathematical sciences 8 (DE-604)BV036597991 8 Encyclopaedia of mathematical sciences 139 (DE-604)BV035421342 139 https://doi.org/10.1007/978-3-642-17404-9 Verlag Volltext |
spellingShingle | Campbell, Harold E. A. Eddy 1954- Wehlau, David L. 1960- Modular invariant theory Encyclopaedia of mathematical sciences Endliche Gruppe (DE-588)4014651-0 gnd Invariantentheorie (DE-588)4162209-1 gnd Modulare Darstellung (DE-588)4311996-7 gnd |
subject_GND | (DE-588)4014651-0 (DE-588)4162209-1 (DE-588)4311996-7 |
title | Modular invariant theory |
title_auth | Modular invariant theory |
title_exact_search | Modular invariant theory |
title_full | Modular invariant theory H. E. A. Eddy Campbell ; David L. Wehlau |
title_fullStr | Modular invariant theory H. E. A. Eddy Campbell ; David L. Wehlau |
title_full_unstemmed | Modular invariant theory H. E. A. Eddy Campbell ; David L. Wehlau |
title_short | Modular invariant theory |
title_sort | modular invariant theory |
topic | Endliche Gruppe (DE-588)4014651-0 gnd Invariantentheorie (DE-588)4162209-1 gnd Modulare Darstellung (DE-588)4311996-7 gnd |
topic_facet | Endliche Gruppe Invariantentheorie Modulare Darstellung |
url | https://doi.org/10.1007/978-3-642-17404-9 |
volume_link | (DE-604)BV036597991 (DE-604)BV035421342 |
work_keys_str_mv | AT campbellharoldeaeddy modularinvarianttheory AT wehlaudavidl modularinvarianttheory |