Multifrequency electron paramagnetic resonance: theory and applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley
2011
|
Ausgabe: | 1. Aufl. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XXXIII, 1022 S. Ill., graph. Darst. |
ISBN: | 9783527407798 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037261769 | ||
003 | DE-604 | ||
005 | 20110819 | ||
007 | t | ||
008 | 110303s2011 gw ad|| |||| 00||| eng d | ||
015 | |a 10,N35 |2 dnb | ||
016 | 7 | |a 1006150064 |2 DE-101 | |
020 | |a 9783527407798 |9 978-3-527-40779-8 | ||
035 | |a (OCoLC)729946498 | ||
035 | |a (DE-599)DNB1006150064 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-11 |a DE-188 |a DE-703 |a DE-20 |a DE-19 | ||
082 | 0 | |a 538.364 |2 22/ger | |
084 | |a UM 3700 |0 (DE-625)145893: |2 rvk | ||
084 | |a UP 9340 |0 (DE-625)146461: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
245 | 1 | 0 | |a Multifrequency electron paramagnetic resonance |b theory and applications |c ed. by Sushil K. Misra |
250 | |a 1. Aufl. | ||
264 | 1 | |a Weinheim |b Wiley |c 2011 | |
300 | |a XXXIII, 1022 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Elektronenspinresonanz |0 (DE-588)4132116-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Elektronenspinresonanz |0 (DE-588)4132116-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Misra, Sushil K. |0 (DE-588)1011536374 |4 edt | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3527469&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021174894&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-021174894 |
Datensatz im Suchindex
_version_ | 1805095522859483136 |
---|---|
adam_text |
IMAGE 1
CONTENTS
PREFACE XXIX LIST OF CONTRIBUTORS XXXI
1 INTRODUCTION 1
SUSHIL K. MISRA
1.1 INTRODUCTION TO EPR 1 1.1.1 CONTINUOUS-WAVE EPR 1 1.1.2 PULSED EPR 2
1.1.3 EPR IMAGING 2 1.2 HISTORICAL BACKGROUND OF EPR 2 1.2.1 LITERATURE
PERTINENT TO THE EARLY HISTORY OF EPR 3 1.3 TYPICAL X-BAND, LOW-, AND
HIGH-FREQUENCY SPECTROMETERS 1.3.1 EPR SPECTROMETER DESIGN 3 1.3.2
X-BAND SPECTROMETER 4 1.3.2.1 SOURCE OF MICROWAVE RADIATION 4 1.3.2.2
TRANSMISSION OF MICROWAVES 6 1.3.2.3 THE CAVITY (RESONATOR) SYSTEM 6
1.3.2.4 MAGNETIC FIELD SYSTEM 7 1.3.2.5 MODULATION AND DETECTION SYSTEM
8 1.3.3 EPR LINE SHAPES AND DETERMINATION OF SIGNAL INTENSITY 9 1.3.4
LOW-FREQUENCY SPECTROMETERS 9 1.3.5 HIGH-FREQUENCY SPECTROMETERS 10
1.3.5.1 SOURCES OF RADIATION 10
1.3.5.2 TRANSMISSION OF SUBMILLIMETER WAVES 12 1.3.5.3 RESONATORS AND
SENSITIVITY 13 1.3.5.4 MAGNETIC FIELD 14 1.3.5.5 DETECTORS 14 1.3.6
PERTINENT LITERATURE 15 1.4 APPLICATIONS OF EPR 15 1.4.1 PERTINENT
LITERATURE 20
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1006150064
DIGITALISIERT DURCH
IMAGE 2
VI CONTENTS
1.5 SCOPE OF THIS BOOK 20
ACKNOWLEDGMENTS 21 FURTHER READING 21
2 MULTIFREQUENCY ASPECTS OF EPR 23 SUSHIL K. MISRA 2.1 FREQUENCY BANDS
23 2.2 X-BAND EPR 23
2.3 EPR AT HIGHER FREQUENCIES (HF) 24 2.3.1 ADVANTAGES 24 2.3.2
DISADVANTAGES 32
2.4 LOW-FREQUENCY EPR 34 2.4.1 ADVANTAGES 34 2.4.2 DISADVANTAGES 38
2.5 MULTIFREQUENCY EPR 39 2.5.1 ADVANTAGES OF USING MULTIFREQUENCY EPR
39 2.5.2 LIMITATIONS OF USING MULTIFREQUENCY EPR 51 2.5.3 SIZE OF
RESONANT CAVITY AT DIFFERENT FREQUENCIES 51
2.5.4 SIGNAL-TO-NOISE RATIOS AT DIFFERENT FREQUENCIES 53 2.5.5
MULTIFREQUENCY ASPECTS OF USING HOME-BUILT VERSUS COMMERCIAL
SPECTROMETERS 53
2.5.6 MULTIFREQUENCY ASPECTS OF SAMPLE-RELATED PROBLEMS 53
ACKNOWLEDGMENTS 53 PERTINENT LITERATURE 53 REFERENCES 54
3 BASIC THEORY OF ELECTRON PARAMAGNETIC RESONANCE 57 SUSHIL K. MISRA 3.1
INTRODUCTION 57
3.2 CRYSTAL-FIELD THEORY 58 3.2.1 INTRODUCTION TO CFT 58 3.2.2 FREE
ATOMS AND IONS 59
3.2.3 THE CRYSTAL-FIELD DESCRIPTION OF TRANSITION GROUP IONS IN CRYSTALS
62 3.2.3.1 JJ-ORBITALS 63 3.2.3.2 D-ORBITALS 63
3.2.4 CRYSTAL FIELD POTENTIAL 65 3.2.5 POINT CHARGE MODEL 67 3.2.5.1
POTENTIALS FOR CUBIC AND LOWER SYMMETRY 68 3.2.6 EQUIVALENT OPERATORS
AND THE WIGNER-ECKART THEOREM 69
3.2.7 PROPERTIES OF D-ELECTRONS IN CRYSTAL FIELDS 71 3.2.7.1 IONS WITH
SEVERAL D-ELECTRONS: STRONG- AND WEAK-FIELD CASES 71 3.2.7.2 ENERGIES
AND WAVE-FUNCTIONS FOR D-ELECTRONS 74 3.2.7.3 CRYSTAL-FIELD PARAMETERS
FOR D-ELECTRONS 75
3.2.7'.4 CRYSTAL-FIELD SPLITTINGS FOR 3D 1 AND 3D 9 CONFIGURATIONS 77
IMAGE 3
CONTENTS VII
3.2.7.5 THE GROUND STATE AND ITS RELATIONSHIP TO EPR: QUENCHING OF
ORBITAL
ANGULAR MOMENTUM AND CALCULATION OF G-FACTORS 78 3.2.8 THE RARE-EARTH
IONS 80 3.2.8.1 CRYSTAL FIELDS FOR RARE-EARTH IONS: DOMINANT SPIN-ORBIT
COUPLING 81 3.2.9 IRREDUCIBLE REPRESENTATIONS FOR CF ENERGY LEVELS 81
3.2.10 CRITIQUE OF CRYSTAL-FIELD THEORY 82 3.2.11 KRAMERS' THEOREM 82
3.3 SUPERPOSITION MODEL (SPM) 83 3.4 MOLECULAR ORBITAL (MO) APPROACH 85
3.4.1 LINEAR COMBINATION OF ATOMIC ORBITALS (LCAO) 85 3.4.2 EXTENDED
HUECKEL MOLECULAR ORBITAL THEORY (EHMO) 88 3.4.3 LIGAND FIELD THEORY: THE
ANGULAR OVERLAP MODEL (AOM) 88 3.5 THE JAHN-TELLER (JT) EFFECT 92
3.5.1 THEORY OF THE JT EFTECT 95 3.5.1.1 GENERAL THEORY OF THE JT EFFECT
96 3.5.2 PERTURBATION WITHIN THE VIBRONIC GROUND STATE 98 3.5.3
THREE-STATE MODEL 100
3.5.4 TRANSITION FROM DYNAMIC TO STATIC JT EFFECT 101 3.6 THE SPIN
HAMILTONIAN 102 3.6.1 THE ABRAGAM AND PRYCE SPIN HAMILTONIAN FOR THE
IRON GROUP 102
3.6.1.1 INCORPORATION OF COVALENCY 105 3.6.2 ZERO-FIELD SPLITTING (ZFS)
105 3.6.2.1 CUBIC ZERO-FIELD SPLITTING (S 3/2) 106
3.6.3 THE PHENOMENOLOGICAL SPIN HAMILTONIAN 106 3.6.3.1 TRICLINIC
SYMMETRY 107 3.6.3.2 MONOCLINIC SYMMETRY (C 2 H, C 2 , C 2S ) 108
3.6.3.3 ORTHORHOMBIC SYMMETRY (D LH , D 2 , D LR ) 108 3.6.3.4
TETRAGONAL (D 4H , D 4 , C 4 *, D U , C 4H , S T , AND C 4 ) 108 3.6.3.5
CUBIC (O H , O, T D , T H , AND T) AND SPHERICAL SYMMETRY 108
3.6.3.6 ADDITIONAL SPIN-HAMILTONIAN TERMS WITH HIGHER POWERS OF
COMPONENTS OF S 108 3.6.4 THE GENERALIZED SPIN HAMILTONIAN 110 3.6.5 THE
EFFECTIVE SPIN HAMILTONIAN FOR EPR 110
3.7 CONCLUDING REMARKS 111 ACKNOWLEDGMENTS 111 PERTINENT LITERATURE 111
REFERENCES 111
PART ONE EXPERIMENTAL 115
4 SPECTROMETERS 117
4.1 ZERO-FIELD EPR 117 SUSHIL K. MISRA
IMAGE 4
VIII CONTENTS
4.1.1 INTRODUCTION 117
4.1.2 PRELIMINARY THEORY OF ZFR 118 4.1.3 THE ZFR SPECTROMETER 119
4.1.3.1 EXAMPLES OF ZFR SPECTRA 119 4.1.4 ADVANTAGES OF USING RESONANT
SYSTEMS 121 4.1.5 EXAMPLES OF ZFR 121 4.1.5.1 THE CASE OF THE MN 2+ ION
122 4.1.6 CONCLUDING REMARKS 125
PERTINENT LITERATURE 126 REFERENCES 128 4.2 LOW-FREQUENCY CW-EPR
SPECTROMETERS: 10 MHZ TO 100GHZ 128 HARVEY A. BUCKMASTER 4.2.1
INTRODUCTION 128 4.2.2 CW-EPR SPECTROMETER CONFIGURATIONS 132 4.2.3
THEORETICAL SENSITIVITY 146 4.2.4 EPR LINESHAPES AND MODULATION
BROADENING 148 4.2.5 MICROWAVE POWER SOURCES 149 4.2.6 REFLEX KLYSTRONS
151 4.2.7 SOLID-STATE DEVICES 151 4.2.8 FREQUENCY SYNTHESIZERS 153 4.2.9
MICROWAVE CW-EPR SAMPLE CAVITY DESIGNS 153
4.2.10 TRANSMISSION CAVITIES 156 4.2.11 REFLECTION CAVITIES 157 4.2.12
RE-ENTRANT CAVITIES 159 4.2.13 LOOP-GAP CAVITIES 160
4.2.14 OTHER RESONANT STRUCTURES 163 4.2.15 MICROWAVE DETECTORS OR
DEMODULATORS 164 4.2.15.1 POINT CONTACT DIODES 164 4.2.15.2 SCHOTTKY
BARRIER DIODES 165 4.2.15.3 BACKWARD DIODES 165 4.2.15.4 BOLOMETERS 165
4.2.16 ELECTROMAGNETS 166 4.2.17 ZERO-FIELD CW-EPR 167 4.2.18 SUPPORT
INSTRUMENTATION 168 4.2.19 CONCLUDING REMARKS 168 4.2.20 PERTINENT
LITERATURE 169
REFERENCES 169 APPENDIX 4.2.1 171 APPENDIX 4.2.II 173 APPENDIX 4.2.III
174 4.3 HIGH-FREQUENCY EPR SPECTROMETERS 175
EDWARD REIJERSE
4.3.1 INTRODUCTION 175 4.3.2 HIGH-FREQUENCY EPR SPECTROMETER
CONFIGURATIONS 176 4.3.3 SENSITIVITY CONSIDERATIONS 182
IMAGE 5
CONTENTS IX
4.3.3.1 CAVITY AND SAMPLE HOLDER 183
4.3.3.2 REFLECTION CAVITY WITH SQUARE-LAW DETECTOR 184 4.3.3.3
REFLECTION CAVITY WITH LINEAR DETECTOR 184 4.3.3.4 SPECTROMETER BRIDGE
AND DETECTOR 185 4.3.4 CONCLUSIONS AND FUTURE PERSPECTIVES 188
PERTINENT LITERATURE 188 REFERENCES 188 4.4 PULSED TECHNIQUES IN EPR 190
SANKARAN SUBRAMANIAN AND MURALI C. KRISHNA
4.4.1 INTRODUCTION 190 4.4.2 COMPONENTS OF A PULSED EPR SPECTROMETER 193
4.4.2.1 K A -BAND (26.5-40GHZ) PULSED EPR SPECTROMETER 194 4.4.2.2
RADIOFREQUENCY PULSED EPR SPECTROMETERS OPERATING AT 300, 500, AND
750MHZ 197
4.4.3 RESONATORS 199 4.4.4 PULSED EXCITATION AND RELAXATION 202 4.4.5
FOURIER TRANSFORM IN MAGNETIC RESONANCE 202 4.4.6 SIMPLE PULSED EPR
EXPERIMENTS 203 4.4.6.1 INVERSION RECOVERY AND HAHN ECHO PULSE
SEQUENCES, T, AND T 2 204
4.4.7 PULSED ENDOR, ESEEM, AND HYSCORE 208 4.4.7.1 NUCLEAR MODULATION
EFFECTS LEADING TO ENDOR AND ESEEM 209 4.4.7.2 MIMS AND DAVIS PULSED
ENDOR SEQUENCES 211 4.4.8 ELECTRON SPIN ECHO ENVELOPE MODULATION (ESEEM)
AND HYPERFINE
SUBLEVEL CORRELATION SPECTROSCOPY (HYSCORE) 214 4.4.9 ELECTRON-ELECTRON
DOUBLE RESONANCE (ELDOR), DOUBLE ELECTRON- ELECTRON RESONANCE (DEER), OR
PULSED ELDOR (PELDOR) 218 4.4.10 DOUBLE-QUANTUM EPR 220 4.4.11
CONCLUDING REMARKS 222
PERTINENT LITERATURE 224 REFERENCES 225
5 MULTIFREQUENCY EPR: EXPERIMENTAL CONSIDERATIONS 229 5.1 MULTIARM EPR
SPECTROSCOPY AT MULTIPLE MICROWAVE FREQUENCIES:
MULTIQUANTUM (MQ) EPR, MQ-ELDOR, SATURATION RECOVERY (SR) EPR, AND
SR-ELDOR 229 JAMES S. HYDE, ROBERT A. STRANGEWAY, AND THEODORE G.
CAMENISCH 5.1.1 INTRODUCTION 229 5.1.2 REVIEW OF FREQUENCY-TRANSLATION
TECHNIQUES 231 5.1.3 REVIEW OF MULTIARM BRIDGES 233
5.1.4 MULTIARM BRIDGES AT HIGHER MILLIMETER-WAVE FREQUENCIES 236 5.1.5
RESONATOR CONSIDERATIONS FOR MULTIARM EXPERIMENTS 238 5.1.6 REFERENCE
ARM AND RECEIVER DESIGN CONSIDERATIONS FOR MULTIARM EXPERIMENTS 239
5.1.7 DISCUSSION 241
PERTINENT LITERATURE 243
IMAGE 6
X CONTENTS
ACKNOWLEDGMENTS 243
REFERENCES 243
5.2 RESONATORS FOR MULTIFREQUENCY EPR OF SPIN LABELS 244 JAMES S. HYDE,
JASON W. SIDABRAS, RICHARD R. METT 5.2.1 INTRODUCTION 244 5.2.2 METHODS
247 5.2.2.1 COMPUTER-BASED SIMULATIONS 247
5.2.2.2 FABRICATION AND TESTING 251 5.2.3 AQUEOUS SAMPLES 252 5.2.3.1
THE COMPLEX DIELECTRIC CONSTANT AS A FUNCTION OF FREQUENCY AND
TEMPERATURE 252
5.2.3.2 DIELECTRIC LOSS TYPES AND PARALLEL AND PERPENDICULAR E-FIELD
GEOMETRIES 253 5.2.3.3 RESULTS IN COMMERCIAL RESONATORS AT X-BAND USING
EXTRUDED SAMPLE TUBES 255 5.2.3.4 MULTICHANNEL DESIGN 256 5.2.4 UNIFORM
FIELD CAVITIES AND LOOP-GAP RESONATORS 258 5.2.4.1 INTRINSIC UNIFORMITY
258 5.2.4.2 UNIFORM FIELD CAVITIES 258 5.2.4.3 UNIFORMITY IN TWO
DIMENSIONS 258 5.2.4.4 LOOP-GAP RESONATORS 259 5.2.5 COUPLING 261
5.2.5.1 COUPLING AT LOW FREQUENCIES 262 5.2.5.2 COUPLING AT HIGH
FREQUENCIES 262 5.2.6 FIELD MODULATION PENETRATION 263 5.2.7 SAMPLE
ACCESS STACKS 265 5.2.8 CONCLUSIONS 268
PERTINENT LITERATURE 269 ACKNOWLEDGMENTS 269 REFERENCES 269 5.3
MULTIFREQUENCY EPR SENSITIVITY 270
GEORGE A. RINARD, RICHARD W. QUINE, SANDRA S. EATON, AND GARETH R. EATON
5.3.1 INTRODUCTION 270 5.3.1.1 NOMENCLATURE 271 5.3.2 FREQUENCY
DEPENDENCE OF SENSITIVITY FOR AN IDEAL SPECTROMETER, AT THE
THERMAL NOISE LIMIT 272 5.3.2.1 GENERAL EXPRESSION FOR SNR 272 5.3.2.2
EXPLANATION OF TABLE 5.3.2 275 5.3.2.3 ON BEYOND THE PREDICTIONS OF
TABLE 5.3.2 276 5.3.2.4 DEPENDENCE OF SNR ON G-ANISOTROPY 277 5.3.2.5
SOURCE NOISE 277
5.3.3 EXPERIMENTAL VALIDATION OF PREDICTED DEPENDENCE OF SENSITIVITY ON
FREQUENCY 279 5.3.3.1 CW SPECTROMETERS AT FREQUENCIES 10 GHZ 279
IMAGE 7
CONTENTS XI
5.3.3.2 PULSED EPR SPECTROMETERS IN THE FREQUENCY RANGE 250 MHZ TO
9.5 GHZ 279
5.3.3.3 SUMMARY OF EXPERIMENTAL VALIDATION OF SNR OF CW AND PULSED
SPECTROMETERS AT FREQUENCIES OF 10GHZ 280 5.3.4 REFERENCE SAMPLES FOR
SNR: WEAK PITCH 281 5.3.5 PERFORMANCE OF HIGH-FREQUENCY
(AE94GHZ)/HIGH-FIELD EPR
SPECTROMETERS 282 5.3.5.1 CW SPECTROMETERS 282 5.3.5.2 PULSED EPR
SPECTROMETERS 282 5.3.6 REPORTED SENSITIVITIES OF CW AND PULSED
SPECTROMETERS AT VARIOUS
FREQUENCIES 285 5.3.6.1 FURTHER DETAILS ON CW EPR SENSITIVITY 286 5.3.7
SENSITIVITY ASPECTS BEYOND THE MINIMUM DETECTABLE NUMBER OF SPINS:
FREQUENCY DEPENDENCE OF PULSE AND CW MEASUREMENTS RELATED TO
DISTANCES BETWEEN SPINS 288 5.3.7.1 ELECTRON-ELECTRON COUPLING 288
5.3.7.2 ELECTRON-NUCLEAR COUPLING 289 5.3.7.3 SUMMARY 289 5.3.8
LIMITATIONS OF SENSITIVITY CONSIDERATIONS 289
5.3.8.1 CW SPECTROMETERS 289 5.3.8.2 RESONATORS 290 5.3.8.3 SAMPLES 190
5.3.8.4 PULSE SPECTROMETERS 290 5.3.9 CONCLUSIONS 290
ACKNOWLEDGMENTS 291 PERTINENT LITERATURE 291 REFERENCES 292
PART TWO THEORETICAL 295
6 FIRST PRINCIPLES APPROACH TO SPIN-HAMILTONIAN PARAMETERS 297 FRANK
NEESE 6.1 INTRODUCTION 297 6.2 THE SPIN HAMILTONIAN 298 6.3 ELECTRONIC
STRUCTURE THEORY OF SPIN-HAMILTONIAN PARAMETERS 300
6.3.1 ELECTRONIC STRUCTURE METHODS 300 6.3.2 ADDITIONAL TERMS IN THE
HAMILTONIAN 305 6.3.3 SUM-OVER STATES THEORY OF SPIN HAMILTONIAN
PARAMETERS 307 6.3.4 LINEAR RESPONSE THEORY 310 6.3.5 EXPRESSION FOR
SPIN-HAMILTONIAN PARAMETERS FOR SELF-CONSISTENT FIELD
METHODS 314
6.3.6 PRACTICAL ASPECTS 320 6.3.6.1 CHOICE OF MOLECULAR MODEL 320
6.3.6.2 CHOICE OF GEOMETRY 320
IMAGE 8
XII CONTENTS
6.3.6.3 CHOICE OF THEORETICAL METHOD 321
6.3.6.4 CHOICE OF BASIS SET 322 6.3.6.5 SUMMARY AND RECOMMENDATIONS 323
6.4 CONCLUDING REMARKS 323 ACKNOWLEDGMENTS 324
PERTINENT LITERATURE 325 REFERENCES 325
7 SPIN HAMILTONIANS AND SITE SYMMETRIES FOR TRANSITION IONS 327 SUSHIL
K. MISRA 7.1 INTRODUCTION 327
7.2 SPIN HAMILTONIANS 328 7.3 SPIN-HAMILTONIAN TERMS FOR VARIOUS SITE
SYMMETRIES 332 7.4 TRANSITION IONS 333 7 '.4.1 INTRODUCTION TO
TRANSITION-METAL IONS 333
7.4.2 FIRST-TRANSITION SERIES IONS (3D N , IRON-GROUP IONS) 333 7.4.3
SECOND AND THIRD TRANSITION SERIES (THE 4D, PALLADIUM AND 5D, PLATINUM
GROUPS) 345 7.4.4 RARE-EARTH IONS 347 1'A .4.1 ODD NUMBER OF 4F
ELECTRONS 350 7.4.4.2 EVEN NUMBER OF 4F ELECTRONS 350 7.4.5 ACTINIDE
IONS (5F) 354
7.4.5.1 5F CONFIGURATION 354 7.4.5.2 5F 2 CONFIGURATION 356 7.4.5.3 5F 3
CONFIGURATION ( 4 I 9/2 ; U 3+ , NP 4 *) 357 7.4.6 S-STATE IONS 358
7.4.6.1 INTRODUCTION 358 7.4.6.2 SPIN HAMILTONIAN 358 7.4.6.3
THEORETICAL CONSIDERATIONS 359 7.5 CONCLUDING REMARKS 363
ACKNOWLEDGMENTS 363 PERTINENT LITERATURE 363 REFERENCES 363 APPENDIX 7.1
SPIN OPERATORS AND THEIR MATRIX ELEMENTS 365 APPENDIX 7.II DESCENT OF
SYMMETRY 381 APPENDIX 7.III SITE SYMMETRIES OF HOST CRYSTALS 382
8 EVALUATION OF SPIN-HAMILTONIAN PARAMETERS FROM MULTIFREQUENCY EPR DATA
385 SUSHIL K. MISRA 8.1 INTRODUCTION 385
8.2 PERTURBATION APPROACH 386 8.2.1 SPIN HAMILTONIAN 387 8.2.1.1 S = 7/2
390 8.2.1.2 S = 5/2 (FE 3+ ) 391
IMAGE 9
CONTENTS XIII
8.3 BRUTE-FORCE METHODS TO EVALUATE SHP 394
8.3.1 VARIATION OF ONE PARAMETER AT A TIME 394 8.3.2 VARIATION OF
PARAMETERS IN SUBGROUPS 395 8.4 LEAST-SQUARES FITTING (LSF) METHOD 395
8.4.1 INTRODUCTION 395 8.4.2 DETAILS OF THE LSF METHOD AS APPLIED TO EPR
397 8.4.3 DETERMINATION OF PARAMETER ERRORS 399 8.4.4 GENERAL STRATEGIES
FOR ACHIEVING CONVERGENCE 400 8.4.4.1 USE OF INTERPOLATED FIELDS:
CALCULATION OF RESONANT FIELD VALUES 400 8.4.4.2 USE OF INTERPOLATED
FREQUENCIES 401 8.4.4.3 USE OF BINARY CHOP (MISRA, 1976) 401 8.5 OTHER
APPLICATIONS OF THE LSF METHOD 401 8.5.1 ELECTRON-NUCLEAR SPIN-COUPLED
SYSTEMS (MISRA, 1983) 402 8.5.1.1 ESTIMATION OF INITIAL VALUES OF FS
SHPS 402 8.5.1.2 ESTIMATION OF HFS PARAMETERS 403
8.5.1.3 IDENTIFICATION OF ENERGY LEVELS PARTICIPATING IN RESONANCE 403
8.5.1.4 CONSTRUCTION OF THE SH MATRIX FOR ENSC SYSTEMS 403 8.5.1.5
ABSOLUTE SIGNS OF SH PARAMETERS 404
8.5.2 FITTING OF ENDOR DATA 404 8.5.3 CALCULATION AND FITTING OF LINE
INTENSITIES TO SHP 404 8.5.3.1 THE INTENSITY OPERATOR 405 8.5.3.2
FITTING OF LINE INTENSITIES AND LINE POSITIONS TO SHP 405 8.5.3.3
NORMALIZED INTENSITY AND ITS DERIVATIVES 406 8.5.3.4 LIMITS OF
APPLICABILITY OF THE METHOD 408 8.6 CONCLUDING REMARKS 408
ACKNOWLEDGMENTS 410 PERTINENT LITERATURE 410 REFERENCES 410 APPENDIX 8.1
HISTORICAL REVIEW 411
9 SIMULATION OF EPR SPECTRA 417
SUSHIL K. MISRA
9.1 INTRODUCTION 417 9.2 SIMULATION OF SINGLE-CRYSTAL SPECTRUM 417 9.2.1
TRANSITION PROBABILITY 418 9.2.2 SINGLE-CRYSTAL LINESHAPE FUNCTION F(B
RI B K ) 420
9.3 SIMULATION OF A POLYCRYSTALLINE SPECTRUM 421 9.3.1 ANGULAR VARIATION
OF EPR SPECTRA: HOMOTOPY TECHNIQUE 421 9.3.1.1 COMPUTATION OF THE
INITIAL RESONANT FIELDS B R (0, J ) 422 9.3.1.2 COMPUTATION OF THE
FIRST AND SECOND DERIVATIVES OF % 2 WITH
RESPECT TO B 422 9.3.1.3 PROBLEMS ENCOUNTERED IN THE APPLICATION OF
HOMOTOPY METHOD, AND THEIR SOLUTIONS 423 9.3.2 IINESHAPES 424 9.3.3
TRANSITION PROBABILITIES 424
IMAGE 10
XIV CONTENTS
9.3.4 RESONANCE EIGENPAIRS 424
9.3.5 INTEGRALS 425 9.3.6 (OJ.CPJ) GRID 426
9.3.7 STEPS REQUIRED IN SIMULATION OF POWDER SPECTRUM 426 9.3.7.1
CALCULATION OF FIRST-DERIVATIVE EPR SPECTRUM 428 9.3.8 ILLUSTRATIVE
EXAMPLE 429 9.3.9 ADDITIONAL REMARKS 429 9.4 EVALUATION OF
SPIN-HAMILTONIAN (SH) PARAMETERS AND THE LINEWIDTH
FROM A POLYCRYSTALLINE EPR SPECTRUM 429 9 A.I ESTIMATION OF
SPIN-HAMILTONIAN PARAMETERS FROM A POLYCRYSTALLINE SPECTRUM 430 9.4.1.1
ESTIMATION OF D AND E PARAMETERS FOR THE MN 2 + ION FROM FORBIDDEN
HYPERFINE DOUBLET SEPARATIONS IN POLYCRYSTALLINE SAMPLES IN THE CENTRAL
SEXTET 430 9.4.1.2 RIGOROUS EVALUATION OF SH PARAMETERS FROM A
POLYCRYSTALLINE SPECTRUM BY USING MATRIX DIAGONALIZATION AND
LEAST-SQUARES FITTING 432 9.4.1.3 EVALUATION OF SH PARAMETERS AND
LINEWIDTHS FOR THE CASE OF TWO
MAGNETICALLY INEQUIVALENT SPECIES 436 9 A.I A ILLUSTRATIVE EXAMPLE 436
9.4.1.5 GENERAL REMARKS 437 9.5 SIMULATION OF EPR SPECTRA IN DISORDERED
MATERIALS: APPLICATION TO
GLASSY MATERIALS 437 9.5.1 INTRODUCTION 437 9.5.2 COMPUTER SIMULATION OF
EPR SPECTRA IN GLASSES 437 9.5.3 COMPUTER-SIMULATED SPECTRA AND
COMPARISON WITH EXPERIMENT 440 9.5.4 SHAPE OF EPR SPECTRA IN GLASSES:
EFFECT OF SH PARAMETERS 442 9.5.4.1 DISTRIBUTION OF THE FINE-STRUCTURE
PARAMETERS D AND E 442 9.5.4.2 SHARP FEATURES IN SPECTRA 447 9.5.4.3
BROAD RESONANCES IN SPECTRA 448
9.6 SIMULATION OF EPR SPECTRA IN DISORDERED RANDOM NETWORK MATERIALS 448
9.6.1 INTRODUCTION 448 9.6.2 CW-EPR SPECTRUM FOR RANDOM DISTRIBUTION OF
SH PARAMETERS AT
VARIOUS SITES IN GLASSES 449 9.6.2.1 CALCULATION OF EIGENVECTORS |I'
AND |I" REQUIRED IN EQUATION 9.57 450 9.6.3 LIMITATIONS OF THE ORIGINAL
IMPLEMENTATION AND ITS ASSUMPTIONS 450
ACKNOWLEDGMENTS 451 PERTINENT LITERATURE 451 REFERENCES 451 APPENDIX 9.1
THE EIGENFIELD EQUATION 453
10 RELAXATION OF PARAMAGNETIC SPINS 455 SUSHIL K. MISRA
10.1 INTRODUCTION 455
IMAGE 11
CONTENTS XV
10.2 EQUILIBRIUM MAGNETIZATION OF A PARAMAGNETIC SPIN SYSTEM 457
10.3 RELAXATION PHENOMENA: SPIN-LATTICE AND SPIN-SPIN RELAXATION TIMES
458 10.3.1 BLOCH'S EQUATIONS 459 10.4 ROTATING FRAME 459 10.5
EXPERIMENTAL TECHNIQUES TO MEASURE RELAXATION TIMES 460 10.5.1 CW-EPR
TECHNIQUES (BERTINI, MARTINI, AND LUCHINAT, 1994) 461 10.5.1.1 CW
SATURATION 461 10.5.2 LONGITUDINALLY DETECTED PARAMAGNETIC RESONANCE
(LODEPR) TO
MEASURE SHORT RELAXATION TIMES (10~ 8 S) (GIORDANO ET AL., 1981) 463
10.5.3 AMPLITUDE MODULATION TECHNIQUE TO MEASURE VERY SHORT RELAXATION
TIMES (10" 6 - 10" 9 S) (MISRA, 2005) 463 10.5.4 PULSED EPR TECHNIQUES
TO MEASURE RELAXATION TIMES 463 10.5.5 LONG PULSE SATURATION RECOVERY
USING CW DETECTION (HUISJEN AND
HYDE, 1974; PERCIVAL AND HYDE, 1975; EATON AND EATON, 2000) 464 10.5.6
INVERSION RECOVERY (EATON AND EATON, 2000) 464 10.5.7 ELECTRON SPIN ECHO
(ESE) TECHNIQUE (SCHWEIGER AND JESCHKE,
2001) 464
10.5.8 LONG-PULSE SATURATION WITH SPIN-ECHO DETECTION 465 10.5.9
PICKET-FENCE EXCITATION (EATON AND EATON, 2000) 465 10.5.10 ECHO
REPETITION RATE (EATON AND EATON, 2000) 465 10.5.11
THREE-PULSE-STIMULATED ECHO (EATON AND EATON, 2000) 466 10.5.12
LONGITUDINALLY DETECTED PULSED EPR (LODPEPR) (SCHWEIGER, 1991;
SCHWEIGER AND ERNST, 1988) 466 10.5.13 OTHER PULSE TECHNIQUES 466
10.5.14 MEASUREMENTS OF RELAXATION TIME BY LINE-SHAPE ANALYSIS:
LINEWIDTH AND SPIN-SPIN RELAXATION TIME 466 10.5.15
TEMPERATURE-DEPENDENT CONTRIBUTION TO EPR LINEWIDTH (POOLE AND
FARACH, 1971) 467 10.5.16 NON-EPR TECHNIQUES TO MEASURE RELAXATION TIMES
467 10.6 RELAXATION MECHANISMS 468 10.6.1 SPIN-LATTICE RELAXATION IN
DILUTED IONIC SOLIDS IN THE CRYSTALLINE
STATE 468
10.6.1.1 GENERAL BACKGROUND 468 10.6.1.2 THE DIRECT PROCESS 469 10.6.1.3
THE ORBACH PROCESS (ORBACH AND STAPLETON, 1972; ORBACH, 1961A, 1961C)
471 10.6.1.4 TWO-PHONON RAMAN PROCESS 471 10.6.1.5 SLR DUE TO EXCHANGE
INTERACTION 473 10.6.2 RELAXATION IN AMORPHOUS SYSTEMS 474 10.6.2.1
RELAXATION VIA TLS CENTERS 475 10.6.2.2 SLR EFFECTED BY ELECTRON-NUCLEAR
DIPOLAR COUPLING TO A TLS
CENTER 477
10.6.2.3 SLR DUE TO FERMI-CONTACT HYPERFINE INTERACTION WITH A TLS
CENTER 478
IMAGE 12
XVI CONTENTS
10.6.2.4 TEMPERATURE DEPENDENCE OF RELAXATION RATE IN AMORPHOUS
MATERIALS
DUE TO EXCHANGE INTERACTION 478 10.6.2.5 RELAXATION FOR THE CASE OF
STRONG CROSS-RELAXATION AND WEAK SPIN-LATTICE RELAXATION OF SINGLE IONS
IN AMORPHOUS MATERIALS (AL'TSHULER, 1956) 478
10.6.3 RELAXATION IN DILUTED LIQUID SOLUTIONS 479 10.6.4 EFFECT OF
INTRAMOLECULAR DYNAMICS OF MOLECULAR SPECIES ON RELAXATION 483
10.6.4.1 DEPHASING BY METHYL GROUPS IN SOLVENT OR SURROUNDINGS 483
10.6.4.2 SHAPE OF THE ECHO-DECAY CURVE 484 10.6.4.3 AVERAGING OF
ELECTRON-NUCLEAR COUPLINGS DUE TO ROTATION OF METHYL GROUPS 484
10.6.4.4 EFFECT OF A RAPIDLY RELAXING PARTNER ON ELECTRON-ELECTRON
SPIN-SPIN COUPLING 484 10.6.4.5 LIBRATIONAL MOTION 484 10.6.4.6
MOLECULAR TUMBLING 484
10.6.4.7 BIOMOLECULES 485 10.6.4.8 MACROMOLECULES 485 10.6.5 RELAXATION
AMONG DIFFERENT PARAMAGNETIC CENTERS IN CONCENTRATED SOLUTION 485
10.6.6 SPIN-FRACTON RELAXATION 485 10.6.6.1 ONE-FRACTON EMISSION 486
10.6.6.2 TWO-FRACTON INELASTIC SCATTERING (LOCALIZED ELECTRONIC STATE)
(ALEXANDER, ENTIN-WOHLMAN, AND ORBACH, 1985A) 487
10.6.7 FREQUENCY/FIELD DEPENDENCE OF PARAMAGNETIC RELAXATION 489
PERTINENT LITERATURE 490 ACKNOWLEDGMENTS 491 REFERENCES 491
APPENDIX 10.1 EARLY HISTORY OF PARAMAGNETIC SPIN-LATTICE RELAXATION 494
11 MOLECULAR MOTIONS 497 SUSHIL K. MISRA AND JACK H. FREED 11.1
INTRODUCTION 497
11.2 HISTORICAL BACKGROUND 498 11.3 HIGH-FIELD MULTIFREQUENCY CW-EPR
EXPERIMENTS TO UNRAVEL MOLECULAR MOTION 500 11.3.1 DETERMINATION OF THE
AXES OF MOTION FROM HIGH-FIELD, HIGH-FREQUENCY
(HFHF) EPR SPECTRA: ORIENTATIONAL RESOLUTION 503 11.3.2 OBSERVATION OF
MOTION AS A FUNCTION OF FREQUENCY 504 11.3.3 VIRTUES OF MULTIFREQUENCY
EPR IN STUDYING MOLECULAR MOTION 504 11.3.4 STOCHASTIC LIOUVILLE
EQUATION (SLE) TO DESCRIBE SLOW-MOTIONAL EPR
SPECTRA 505
11.3.4.1 CALCULATION OF SLOW-MOTION SPECTRUM 506 11.3.4.2 MOMD AND SRLS
MODELS 511
IMAGE 13
CONTENTS XVII
11.4 PULSED EPR STUDY OF MOLECULAR MOTION 514
11.4.1 TVTYPE FIELD-SWEPT 2D ESE 515 11.4.2 MAGNETIZATION TRANSFER BY
FIELD-SWEPT 2-D-ESE 515 11.4.3 STEPPED-FIELD SPIN-ECHO ELDOR 517 11.4.4
2-D FOURIER TRANSFORM EPR 517 11.4.4.1 LINESHAPES OF THE AUTO AND
CROSS-PEAKS: HOMOGENEOUS (HB) AND
INHOMOGENEOUS BROADENING (IB) 518 11.4.5 MOMD AND SRLS MODELS AND
2-D-ELDOR 520 11.4.6 EXTENSION OF 2-D-ELDOR TO HIGHER FREQUENCIES 522
11.5 SIMULATION OF MULTIFREQUENCY EPR SPECTRA USING MORE ATOMISTIC
DETAIL INCLUDING MOLECULAR DYNAMICS AND STOCHASTIC TRAJECTORIES 522
11.5.1 AUGMENTED SLE 522 11.5.2 MD SIMULATIONS USING TRAJECTORIES 524
11.5.3 USE OF DYNAMIC TRAJECTORIES TO SIMULATE MULTIFREQUENCY EPR
SPECTRA 525
11.5.4 NUMERICAL INTEGRATORS 526 11.5.4.1 INTEGRATION OF THE QUANTAL
SPIN DYNAMICS 526 11.5.4.2 GENERATION OF STOCHASTIC TRAJECTORIES FOR
ROTATIONAL DIFFUSION 531 11.5.4.3 TESTING THE INTEGRATORS: GENERATION OF
TRAJECTORIES FOR TYPICAL
STOCHASTIC MODELS OF SPIN-LABEL DYNAMICS 535 11.6 CONCLUDING REMARKS 541
ACKNOWLEDGMENTS 541 PERTINENT LITERATURE 541
REFERENCES 542
12 DISTANCE MEASUREMENTS: CONTINUOUS-WAVE (CW)- AND PULSED DIPOLAR EPR
545 SUSHIL K. MISRA AND JACK H. FREED 12.1 INTRODUCTION 545 12.2 THE
DIPOLAR INTERACTION AND DISTANCE MEASUREMENTS 547
12.2.1 UNLIKE SPINS 547 12.2.2 LIKE SPINS 548 12.2.3 INTERMEDIATE CASE
548 12.3 CW EPR METHOD TO MEASURE DISTANCES 548 12.4 PULSED DIPOLAR EPR
SPECTROSCOPY (PDS) 549
12.5 DOUBLE ELECTRON-ELECTRON RESONANCE (DEER) 550 12.5.1
ORIENTATION-SELECTION CONSIDERATIONS IN DEER 552 12.5.2 THREE-PULSE DEER
553
12.5.3 FOUR-PULSE DEER 555 12.5.4 MERITS AND LIMITATIONS OF DEER AS
COMPARED TO CW-EPR AND FRET 557
12.6 SIX-PULSE DQC 559 12.6.1 THEORETICAL BACKGROUND AND COMPUTATION OF
SIX-PULSE DQC SIGNAL 562 12.6.2 ILLUSTRATIVE EXAMPLES 566
IMAGE 14
XVIII CONTENTS
12.6.3 CONCLUSIONS AND FUTURE PROSPECTS OF SIX-PULSE DQC ECHO
SIGNAL SIMULATION 566 12.7 SENSITIVITY CONSIDERATIONS: MULTIFREQUENCY
ASPECTS 570 12.7.1 FREQUENCY DEPENDENCE OF SENSITIVITY OF PDS 572 12.8
DISTANCE DISTRIBUTIONS: TIKHONOV REGULARIZATION 573
12.9 ADDITIONAL TECHNICAL ASPECTS OF DEER AND DQC 574 12.10 CONCLUDING
REMARKS 576 ACKNOWLEDGMENTS 576 PERTINENT LITERATURE 576
REFERENCES 576 APPENDIX 12.1 DENSITY-MATRIX DERIVATION OF ECHO SIGNAL
FOR THREE-PULSE DEER 578 APPENDIX 12.11 DENSITY-MATRIX DERIVATION OF THE
ECHO SIGNAL FOR
FOUR-PULSE DEER 582 APPENDIX 12.111 SPIN HAMILTONIAN FOR COUPLED
NITROXIDES USED IN SIX-PULSE DQC CALCULATION 584 APPENDIX 12.IV
ALGORITHM TO CALCULATE SIX-PULSE DQC SIGNAL 586 APPENDIX 12.V
APPROXIMATE ANALYTIC EXPRESSIONS FOR 1-D DQC
SIGNAL 587
PART THREE APPLICATIONS 589
13 DETERMINATION OF LARGE ZERO-FIELD SPLITTING 591 SUSHIL K. MISRA 13.1
INTRODUCTION 591
13.2 ZFS OF KRAMERS AND NON-KRAMERS IONS IN DIFFERENT ENVIRONMENTS 592
13.3 CONCLUDING REMARKS 596 ACKNOWLEDGMENTS 597 PERTINENT LITERATURE 597
REFERENCES 597
14 DETERMINATION OF NON-COINCIDENT ANISOTROPIE G 2 , AE 2 , D, AND P
TENSORS: LOW-SYMMETRY CONSIDERATIONS 599 SUSHIL K. MISRA 14.1
INTRODUCTION 599 14.2 SPIN HAMILTONIAN 599
14.3 EIGENVALUES 601 14.3.1 PERTURBATION APPROACH 601 14.3.1.1
COMPLEXITIES ASSOCIATED WITH THE USE OF SECOND-ORDER-PERTURBED
EIGENVALUES IN THE APPLICATION OF LEAST-SQUARES FITTING (LSF)
PROCEDURE 604
14.3.2 EXACT MATRIX DIAGONALIZATION 605 14.4 EVALUATION OF SHPS BY THE
LSF TECHNIQUE 606 14.4.1 FIRST-ORDER PERTURBATION 606
IMAGE 15
CONTENTS XIX
14.4.2 SECOND-ORDER PERTURBATION 607
14.4.3 USE OF SPECIAL COORDINATE AXES 609 14.4.3.1 "ALLOWED" LINE
POSITIONS 609 14.4.3.2 "FORBIDDEN" LINE POSITIONS 611 14.4.4 USE OF
ARBITRARY COORDINATE AXES 612 14.4.5 SIMULTANEOUS LSF FITTING OF BOTH
THE "ALLOWED" AND "FORBIDDEN" LINE
POSITIONS 613
14.5 NUMERICAL EVALUATION OF THE DERIVATIVES REQUIRED IN THE LSF
PROCEDURE 614 14.6 GENERAL REMARKS 616 ACKNOWLEDGMENTS 618
PERTINENT LITERATURE 618 REFERENCES 618
15 BIOLOGICAL SYSTEMS 619 BORIS DZIKOVSKI 15.1 INTRODUCTION 619 15.2 VHF
EPR AS THE G-RESOLVED EPR SPECTROSCOPY 620 15.2.1 SPECTRAL RESOLUTION OF
G-FACTOR DIFFERENCES 620 15.2.2 PRECISE DETERMINATION OF THE G-TENSOR
PRINCIPAL VALUES 621 15.2.3 RESOLUTION OF G-FACTORS OF DIFFERENT
PARAMAGNETIC CENTERS 622 15.3 EFFECT OF POLARITY OF THE ENVIRONMENT ON
THE G-FACTOR 623 15.3.1 EXAMPLES 623
15.3.1.1 DERIVATIVES OF 2,2,6,6-TETRAMETHYLPIPERIDINE-L-OXYL (TEMPO) 623
15.3.1.2 SPIN-LABELED PHOSPHOLIPID MEMBRANES:
L,2-DIPALMITOYL-SN-GLYCERO-3- PHOSPHOCHOLINE (DPPC) AND
L-PALMITOYL-2-OLEOYL-SN-GLYCERO-3- PHOSPHOCHOLINE (POPC) 625
15.3.1.3 BACTERIORHODOPSIN (BR) 625 15.3.1.4 AZURIN 626 15.3.1.5 TYROSYL
AND TRYPTOPHAN RADICALS 626 15.3.1.6 FLAVIN 626 15.3.1.7 BILIVERDIN
RADICAL 627 15.3.2 POLARITY MEASUREMENTS OUTSIDE OF RIGID LIMIT
CONDITIONS 627 15 A IMPROVEMENT IN ORIENTATIONAL RESOLUTION FOR SPIN
LABELS 628 15.5 SIMULATION OF EPR SPECTRA AT VARIOUS FREQUENCIES: SIMPLE
LIMITING
CASES 630
15.6 MACROSCOPICALLY ALIGNED PHOSPHOLIPID MEMBRANES 631 15.6.1 A "SHUNT"
FABRY-PEROT RESONATOR. THE STUDY OF DMPC AND DMPS
(L,2-DIMYRISTOYL-SN-GLYCERO-3-PHOSPHO-L-SERINE) MEMBRANES WITH
3-DOXYL-5(-CHOLESTANE) (CSL) SPIN LABEL 632
15.6.2 MICROTOME TECHNIQUE ON ISOPOTENTIAL SPIN-DRY ULTRACENTRIFUGATION
(ISDU)-ALIGNED MEMBRANES 633 15.6.3 OTHER MEMBRANE-ALIGNMENT TECHNIQUES
635 15.7 METALLOPROTEINS 636 15.7.1 FE 3+ SYSTEMS 638
IMAGE 16
XX CONTENTS
15.7.2 MN 2+ SYSTEMS 638
15.7.3 CU 2+ SYSTEMS 639 15.8 CONCLUDING REMARKS 641 ACKNOWLEDGMENTS 642
PERTINENT LITERATURE 642
REFERENCES 643
16 COPPER COORDINATION ENVIRONMENTS 647 WILLIAM E. ANTHOLINE, BRIAN
BENNETT, AND GRAEME R. HANSON
16.1 INTRODUCTION 647
16.2 MULTIFREQUENCY EPR TOOLKIT 649 16.2.1 G-VALUE RESOLUTION AND
ORIENTATION SELECTION 649 16.2.2 MAGNITUDE OF THE MICROWAVE FREQUENCY
650 16.2.3 STATE MIXING 650
16.2.4 ANGULAR ANOMALIES 652 16.2.5 DISTRIBUTION OF SPIN HAMILTONIAN
PARAMETERS 653 16.2.6 NUMERICAL DIFFERENTIATION AND FOURIER FILTERING
655 16.2.7 HIGH-RESOLUTION EPR TECHNIQUES 655 16.2.8 COMPUTER SIMULATION
656 16.2.9 COMPUTATIONAL CHEMISTRY 658
16.3 MULTIFREQUENCY EPR SIMULATION OF SQUARE-PLANAR-BASED CU(II) 660
16.3.1 EPR OF SQUARE-PLANAR-BASED CU(II) 660 16.3.2 MULTIFREQUENCY EPR
OF SQUARE-PLANAR-BASED CU(II): S- AND L-BAND EPR 660
16.3.3 MULTIFREQUENCY EPR OF SQUARE-PLANAR-BASED CU(II): VERY
LOW-FREQUENCY EPR 661 16.3.4 MULTIFREQUENCY EPR OF SQUARE-PLANAR-BASED
CU(II): EXPERIMENTAL CONSIDERATIONS FOR LOW-FREQUENCY EPR 663 16.3.5
INTRODUCTION TO MULTIFREQUENCY EPR SIMULATIONS OF SQUARE-PLANAR
CU(II) 664
16.3.6 OPTIMUM FREQUENCY SELECTION 665 16.3.7 SENSITIVITY ANALYSIS 668
16.3.8 GLOBAL FITTING 669 16.3.8.1 MO(V) COMPLEXES 671 16.3.8.2 LOW-SPIN
CO(II) CROSSOVER COMPLEXES 673
16.3.8.3 FUTURE DEVELOPMENTS 675 16.3.9 HETEROGENEITY 675 16.4
COPPER-COORDINATION ENVIRONMENTS: MULTIFREQUENCY EPR OF THREE-
COORDINATE COPPER AND MIXED-VALENCE DINUDEAR COPPER [CU(1.5 + ) .
CU(1.5 + )] 677
16.4.1 INTRODUCTION: SPECTRUM AND STRUCTURE 677 16.4.1.1 X-BAND EPR
SPECTRUM FOR MONONUCLEAR, LIGHT BLUE CU 2+ 677 16.4.1.2
PEISACH-BLUMBERG-LIKE TABLE (EPR PARAMETERS ASSEMBLED BY THE AUTHOR) 677
16.4.1.3 TYPE 1 (BLUE) COPPER CENTERS, THREE-COORDINATE CU 678
IMAGE 17
CONTENTS XXI
16.4.2 EPR FOR NEW THREE-COORDINATE COPPER COMPLEXES 681
16.4.2.1 THREE-COORDINATE CUL(SCPH 3 ) AND COPPER(II)PHENOLATE COMPLEXES
681 16.4.2.2 CUPPN, THREE-COORDINATE COPPER AMIDO AND AMINYL COMPLEXES
(MORE LIKE A FREE RADICAL) 681 16.4.2.3 SIMULATION OF SPECTRA FOR CUPPN
(QUENCHED EPR PARAMETERS EXPECTED
FOR A RADICAL) 682 16.4.2.4 EPR PARAMETERS FOR CUPPN (UNPAIRED ELECTRON
DENSITY DELOCALIZED AS EXPECTED FOR A RADICAL) 685 16.4.3 SPECTRA FOR
MIXED-VALENCE DINUCLEAR COPPER COMPLEXES 686 16.4.3.1 NITROUS OXIDE
REDUCTASE, N 2 OR ( 15 N EXAMPLE) 686 16.4.3.2 PERTURBATION OF THE EPR
SPECTRUM OF CU A , H120X 689 16.4.3.3 CYTOCHROME C OXIDASE (CCO): BEST
DEMONSTRATION OF THE USE OF
LOW-FREQUENCY FOR MIXED-VALENCE SITES 691 16.4.3.4 MODEL DIAMOND CORE
COMPLEXES, {CU(LXL)} 2 695 16.4.3.5 X-BAND EPR SPECTRA OF {CU(PPP)}^,
{CU(PNP)};, AND {CU(SNS)} + 2 695 16.4.3.6 Q-BAND EPR SPECTRA OF
{CU(PPP)}$, {CU(PNP)}J, AND
{CU(SNS)}; 695
16.4.3.7 S-BAND SPECTRA OF {CU(PPP)}^, {CU(PNP)};, AND {CU(SNS)}^ 697
16.4.3.8 EPR PARAMETERS AND SIMULATIONS FOR {CU(SNS)} 2 697 16.4.3.9
FIRST-HARMONIC S-BAND SPECTRUM FOR {CU(PPP)} 2 697 16.5 STRUCTURAL
CHARACTERIZATION OF COPPER(II) CYCLIC PEPTIDE COMPLEXES
EMPLOYING MULTIFREQUENCY EPR AND COMPUTATIONAL CHEMISTRY 699 16.5.1
COPPER(II) COMPLEXES WITH MARINE CYCLIC PEPTIDES 701 16.5.2 COPPER(II)
COMPLEXES WITH WESTIELLAMIDE AND SYNTHETIC ANALOGS 707 16.6 SUMMARY 711
ACKNOWLEDGMENTS 711 PERTINENT LITERATURE 712 SECTION 16.3 712 SECTION
16.4 713 REFERENCES 714
17 MULTIFREQUENCY ELECTRON SPIN-RELAXATION TIMES 719 GARETH R. EATON AND
SANDRA S. EATON 17.1 INTRODUCTION AND SCOPE OF THE CHAPTER 719 17.2
SPIN-SPIN RELAXATION, T 2 AND T M 720 17.2.1 T M FOR FREMY'S SALT IN
GLASSY SOLVENTS 723 17.2.2 EXCHANGE-NARROWED SPECIES AND THE 10/3 EFFECT
724
17.2.3 CONDUCTING SYSTEMS 725 17.2.4 METAL IONS IN SOLUTION 726 17.2.5
PB 3+ IN CALCITE 726 17.3 SPIN-LATTICE RELAXATION, T X 726 17.3.1 PHONON
DENSITIES 727 17.3.2 PRACTICAL INTERPRETATION OF RELAXATION TIME DATA AS
A FUNCTION OF
TEMPERATURE 729
IMAGE 18
XXII CONTENTS
17.3.3 GLASSES VERSUS CRYSTALS 729
17.3.4 SPECTRAL DIFFUSION AND CROSS-RELAXATION 731 17.3.5 EFFECT OF
PAIRS AND CLUSTERS 732 17.3.6 MAGNETIC FIELD DEPENDENCE OF RELAXATION
732 17.3.6.1 THE DIRECT PROCESS 732
17.3.6.2 THE RAMAN PROCESS 734 17.3.6.3 THE ORBACH PROCESS 734 17.3.6.4
THE THERMALLY ACTIVATED PROCESS 735 17.3.6.5 LOCAL MODES 735
17.3.7 DEPENDENCE OF RELAXATION ON MAGNETIC FIELD POSITION IN A CW-EPR
SPECTRUM 736 17.3.8 CASE STUDIES OF EXPERIMENTAL DATA 737 17.3.8.1
NITROXYL SPIN LABELS 737 17.3.8.2 SEMIQUINONES 741
17.3.8.3 TRIARYLMETHYL (TRITYL) RADICALS 742 17.3.8.4 DPPH 742 17.3.8.5
CONDUCTING SPIN SYSTEMS 742 17.3.8.6 METAL IONS IN FLUID SOLUTION 743
17.3.8.7 RELAXATION AT 2MM WAVELENGTH (150GHZ) 746 17.3.9 FULLERENES 747
17.3.10 SUMMARY 747 ACKNOWLEDGMENTS 748
PERTINENT LITERATURE 748 REFERENCES 748
18 EPR IMAGING: THEORY AND INSTRUMENTATION 755 RIZWAN AHMAD AND
PERIANNAN KUPPUSAMY 18.1 INTRODUCTION 755
18.2 EPR PRINCIPLE: ZEEMAN EFFECT 756 18.2.1 HYPERFINE SPLITTING 757
18.2.2 SPIN RELAXATION 759 18.2.3 COMPARISON TO NMR 759 18.2.4 EPR
PROBES 759
18.3 CW-EPR IMAGER 760 18.3.1 MAGNETS AND MAGNETIC FIELD CONTROL 761
18.3.2 GRADIENT COIL ASSEMBLY 762
18.3.3 RF BRIDGE 764 18.3.4 EPR RESONATOR 765 18.3.5 SIGNAL CHANNEL 768
18.4 DATA ACQUISITION FOR CW-EPR AND EPRI 769
18.4.1 SPECTROSCOPY 769 18.4.2 SPATIAL EPRI 770 18.4.3 SPECTRAL-SPATIAL
EPRI 772 18.5 IMPORTANT IMAGING PARAMETERS 774
IMAGE 19
CONTENTS XXIII
18.5.1 TIME CONSTANT OF LOCK-IN AMPLIFIER 774
18.5.2 MODULATION AMPLITUDE 775 18.5.3 GRADIENT STRENGTH 775 18.6 IMAGE
RECONSTRUCTION 776 18.6.1 DIRECT METHODS 777 18.6.1.1 FILTERED
BACKPROJECTION (FBP) METHOD 777
18.6.1.2 FOURIER-BASED RECONSTRUCTION 778 18.6.2 ITERATIVE METHODS 779
18.6.3 SPECTRAL-SPATIAL RECONSTRUCTIONS 781 18.6.4 IMAGE QUALITY AND
RESOLUTION 782 18.7 OTHER DATA COLLECTION MODALITIES 783 18.7.1
PULSED-EPR 783 18.7.2 SINGLE POINT IMAGING 784 18.7.3 RAPID SCAN 784
18.7.4 SPINNING GRADIENT 784 18.8 CONSTRAINTS FOR BIOLOGICAL
APPLICATIONS 785 18.9 SPECIAL IMAGING APPLICATIONS 786 18.9.1 EPR
OXIMETRY MAPPING 786 18.9.2 IMAGING REDOX METABOLISM IN TISSUES 788
18.9.2.1 DIFFERENTIAL DISTRIBUTION OF NITROXIDE PROBES IN NORMAL VERSUS
TUMOR TISSUE 788 18.9.2.2 DIFFERENTIAL METABOLISM OF NITROXIDE PROBES IN
NORMAL VERSUS TUMOR TISSUE 789 18.10 SCOPE AND LIMITATIONS 790
ACKNOWLEDGMENTS 791 PERTINENT LITERATURE 791 REFERENCES 791
19 MULTIFREQUENCY EPR MICROSCOPY: EXPERIMENTAL AND THEORETICAL ASPECTS
795 AHARON BLANK 19.1 GENERAL 795 19.2 INTRODUCTION 795 19.2.1
DEFINITION 795 19.2.2 HISTORICAL OVERVIEW 796
19.2.3 "INDUCTION DETECTION" VERSUS OTHER DETECTION METHODS 797 19.3
GENERAL EXPERIMENTAL ASPECTS OF EPR MICROSCOPY 798 19.3.1 CW-EPR
MICROSCOPY 798
19.3.1.1 SYSTEM CONFIGURATION 798 19.3.1.2 SIGNAL-TO-NOISE RATIO 803
19.3.1.3 RESOLUTION 805
19.3.2 PULSED-EPR MICROSCOPY 805 19.3.2.1 SYSTEM CONFIGURATION 805
19.3.2.2 SNR 808
IMAGE 20
XXIV CONTENTS
19.3.2.3 RESOLUTION 810
19.4 SPECIFIC ASPECTS OF MULTIFREQUENCY EPR MICROSCOPY AT VARIOUS
TEMPERATURES 811 19.4.1 SNR IN A MULTIFREQUENCY CONTEXT 812 19.4.2
RESOLUTION IN A MULTIFREQUENCY CONTEXT 814
19.5 ILLUSTRATIVE EXAMPLES 815 19.5.1 PULSED-EPR MICROSCOPY OF SOLID
SAMPLES AT ROOM TEMPERATURE 816 19.5.2 PULSED-EPR MICROSCOPY OF LIQUID
SAMPLES AT ROOM TEMPERATURE 816
19.5.3 CW-EPR MICROSCOPY OF SOLID AND LIQUID SAMPLES AT ROOM TEMPERATURE
819 19.6 CONCLUSIONS AND FUTURE PROSPECTS 821 ACKNOWLEDGMENTS 821
PERTINENT LITERATURE 821 REFERENCES 822
20 EPR STUDIES OF NANOMATERIALS 825 ALEX SMIRNOV 20.1 INTRODUCTION 825
20.2 EPR STUDIES OF MAGNETIC NANOSTRUCTURES 827 20.3 CHARACTERIZATION OF
NANOSTRUCTURED OXIDE SEMICONDUCTORS FOR
PHOTOACTIVATED CATALYSIS AND SOLAR ENERGY CONVERSION 832 20.4 SURFACE
RADICALS, CATALYTIC ACTIVITY, CYTOTOXICITY, AND RADICAL- SCAVENGING
PROPERTIES OF NANOMATERIALS 833 20.4.1 CAYALYTIC ACTIVITY 833
20.4.2 CYTOTOXICITY 834 20.4.3 RADICAL-SCAVENGING PROPERTIES 835 20.5
SPIN-LABELING EPR STUDIES OF LIGAND-PROTECTED NANOPARTICLES AND HYBRID
NANOSTRUCTURES 835
20.6 SUMMARY AND FUTURE PERSPECTIVES 841 ACKNOWLEDGMENTS 842 PERTINENT
LITERATURE 842 REFERENCES 842
21 SINGLE-MOLECULE MAGNETS AND MAGNETIC QUANTUM TUNNELING 845 SUSHIL K.
MISRA 21.1 INTRODUCTION 845
21.1.1 INTRAMOLECULAR COUPLING 846 21.1.2 EXAMPLES OF SMMS REPORTED IN
THE LITERATURE 847 21.1.3 APPLICATIONS 851 21.2 MULTIFREQUENCY EPR OF
SMMS: MAGNETIC HYSTERESIS AND MQT 852
21.2.1 THE EFFECTIVE SPIN HAMILTONIAN 853 21.2.2 MAGNETIC
QUANTUM-MECHANICAL TUNNELING (MQT) AND MF-EPR 854 21.2.3 ZERO-FIELD EPR
WITH VARIABLE FREQUENCY 854
IMAGE 21
CONTENTS XXV
21.2.4 LOW-FIELD (X-BAND) EPR 854
21.2.5 MF HIGH-FREQUENCY EPR 855 21.2.5.1 EPR SPECTROMETERS WITH MF
CAVITY (40-350 AND EXTENDED RANGE 18-350 GHZ), AND UP TO 650 GHZ WITHOUT
A CAVITY 855 21.2.5.2 POLYCRYSTALLINE POWDER EPR SPECTRUM 855 21.2.5.3
THE VIRTUES OF SINGLE-CRYSTAL MEASUREMENTS 855 21.2.5.4 A TYPICAL SMM
SPECTRUM 857 21.2.5.5 EPR LINEWIDTH MEASUREMENTS: EFFECT OF D-STRAIN,
G-STRAIN, DIPOLAR AND
EXCHANGE INTERACTIONS 857 21.2.5.6 STUDY OF INTERMOLECULAR EXCHANGE
INTERACTIONS AND DIPOLAR INTERACTIONS 860 21.2.5.7 EPR SPECTRA FOR MN 4
FAMILY 861 21.2.6 EFFECT OF MOLECULAR SITE SYMMETRY ON TUNNELING
PHENOMENON (MQT)
AS REVEALED BY EPR 863 21.3 MAGNETIC QUANTUM TUNNELING (MQT): PURE AND
THERMALLY ASSISTED TUNNELING 867 21.3.1 RELAXATION OF MAGNETIZATION FOR
SMMS 867 21.3.2 MAGNETIC HYSTERESIS, RESONANT MAGNETIZATION TUNNELING IN
HIGH-SPIN
MOLECULES AND THERMALLY ASSISTED RESONANT TUNNELING BETWEEN QUANTUM
STATES 868 21.4 CONCLUDING REMARKS 872 ACKNOWLEDGMENTS 872
PERTINENT LITERATURE 872 REFERENCES 872
22 MULTIFREQUENCY EPR ON PHOTOSYNTHETIC SYSTEMS 875 SUSHIL K. MISRA,
KLAUS MOEBIUS, AND ANTON SAVITSKY 22.1 INTRODUCTION 875 22.2 NONOXYGENIC
PHOTOSYNTHESIS 880 22.3 MULTIFREQUENCY EPR ON BACTERIAL PHOTOSYNTHETIC
REACTION CENTERS
(RCS) 882
22.3.1 X-BAND EPR EXPERIMENTS 882 22.3.2 95-GHZ EPR ON PRIMARY DONOR
CATIONS P" + IN SINGLE-CRYSTAL RCS 883 22.3.3 360-GHZ EPR ON PRIMARY
DONOR CATIONS P" + IN MUTANT RCS 884
22.3.4 RESULTS OF G-TENSOR COMPUTATIONS OF P' + 885 22.3.5 95-GHZ EPR
AND ENDOR ON THE ACCEPTORS QX AND QJT 885 22.3.6 95-GHZ ESE-DETECTED EPR
ON THE SPIN-CORRELATED RADICAL PAIR P-+QI 892
22.3.7 95-GHZ RIDME AND PELDOR ON THE SPIN-CORRELATED RADICAL PAIR F +QA
893
22.3.8 MULTIFREQUENCY EPR ON PRIMARY DONOR TRIPLET STATES IN RCS 895
22.4 OXYGENIC PHOTOSYNTHESIS 897 22.4.1 MULTIFREQUENCY EPR ON DOUBLET
STATES IN PHOTOSYSTEM I (PS I) 897
22.4.2 MULTIFREQUENCY EPR ON DOUBLET STATES IN PHOTOSYSTEM II (PS II)
900
IMAGE 22
XXVI CONTENTS
22.5 CONCLUDING REMARKS 902
ACKNOWLEDGMENTS 904 PERTINENT LITERATURE 904 REFERENCES 905
23 MEASUREMENT OF SUPERCONDUCTING GAPS 913 SUSHIL K. MISRA
23.1 INTRODUCTION 913
23.2 THE SUPERCONDUCTING GAP 913 23.3 MEASUREMENT OF SCG 914 23 A
CONCLUDING REMARKS 917 ACKNOWLEDGMENTS 918
REFERENCES 919
24 DYNAMIC NUCLEAR POLARIZATION (DNP) AT HIGH MAGNETIC FIELDS 921 THOMAS
PRISNER AND MARKJ. PRANDOLINI
24.1 INTRODUCTION 921 24.2 HISTORICAL ASPECTS (METALS, SOLIDS AND
LIQUIDS) AT LOWER MAGNETIC FIELDS 922 24.3 THEORY 924
24.3.1 THE OVERHAUSER EFFECT (OE) 924 24.3.2 TWO-SPIN
CROSS-POLARIZATION: SOLID EFFECT (SE) 930 24.3.3 MANY-SPIN
CROSS-POLARIZATION: THERMAL MIXING (TM) 931 24.3.4 THREE-SPIN
CROSS-POLARIZATION: CROSS EFFECT (CE) 933
24.3.5 BEYOND CLASSICAL DNP METHODS: COHERENT POLARIZATION TRANSFER 935
24.4 HARDWARE (HIGH-FREQUENCY MICROWAVE EQUIPMENT, SS-MAS DNP, HF-LIQUID
DNP, DISSOLUTION DNP, SHURTLE-DNP) 936 24.4.1 HIGH-FREQUENCY MICROWAVE
SOURCES 936 24.4.2 TRANSMISSION LINES 937 24.4.3 SPECTROMETER TYPES 938
24.4.3.1 SOLID-STATE MAGIC ANGLE SPINNING (MAS) DNP 938 24.4.3.2
LOW-TEMPERATURE DISSOLUTION POLARIZER 939 24.4.3.3 IN-SITU
TEMPERATURE-JUMP DNP (LASER MELTING) 940
24.4.3.4 HIGH-FIELD (HF) LIQUID-DNP SPECTROMETERS 940 24.4.3.5 SHUTTLE
DNP 941 24.5 FIRST APPLICATIONS AND OUTLOOK 942 24.5.1 APPLICATION AREAS
OF HIGH-FIELD DNP 942
24.5.2 OUTLOOK 943 ACKNOWLEDGMENTS 943 PERTINENT LITERATURE 943
REFERENCES 944
25 CHEMICALLY INDUCED ELECTRON AND NUCLEAR POLARIZATION 947 LAWRENCE J.
BERLINER AND ELENA BAGRYANSKAYA 25.1 INTRODUCTION 947
IMAGE 23
CONTENTS XXVII
25.2 HISTORY OF THE CIDNP PHENOMENON 948
25.3 THE RADICAL PAIR MECHANISM 948 25.3.1 THE MECHANISM OF
SINGLET-TRIPLET CONVERSION IN RPS 949 25.4 CHEMICALLY INDUCED DYNAMIC
NUCLEAR POLARIZATION 952 25.4.1 THE CIDNP EXPERIMENT 955
25.4.2 TIME-RESOLVED CIDNP 956 25.4.3 LOW MAGNETIC FIELD CIDNP 958
25.4.4 THE APPLICATION OF CIDNP TO BIOLOGICAL SYSTEMS 960 25.4.5
PHOTO-CIDNP IN THE STUDY OF PROTEIN FOLDING 961 25.4.6 CIDNP APPLICATION
TO STUDY PRIMARY PROCESSES IN THE BACTERIAL
PHOTOSYNTHETIC CENTER 963 25.4.7 CIDNP APPLICATIONS TO ELECTRON TRANSFER
IN PEPTIDE AND AMINO ACIDS 966 25.5 CHEMICALLY INDUCED DYNAMIC ELECTRON
POLARIZATION 967 25.5.1 TRIPLET MECHANISM OF CIDEP 967 25.5.2
RADICAL-PAIR MECHANISM OF CIDEP 969 25.5.2.1 CIDEP DUE TO S-T O
TRANSITIONS 969 25.5.3 CIDEP DUE TO S-T AND S-T + TRANSITIONS 970
25.5.4 CIDEP DUE TO THE RADICAL-TRIPLET PAIR MECHANISM 971 25.5.5 CIDEP
DUE TO THE SCRP MECHANISM 972 25.5.6 CIDEP KINETICS 974 25.5.6.1
MODIFIED BLOCH EQUATIONS 974 25.5.7 TIME-RESOLVED EPR SPECTROSCOPY 974
25.5.8 CIDEP APPLICATIONS 976 25.5.9 APPLICATIONS OF CIDEP TO BIOLOGICAL
SYSTEMS 980
25.5.10 APPLICATIONS OF CIDEP TO STUDY PHOTOCHEMICAL REACTION CENTERS
981 25.5.11 RTPM CIDEP IN SPIN-LABELED PEPTIDES 981 25.5.12 APPLICATIONS
OF CIDEP TO STUDIES OF BIOLOGICAL FUNCTION: PROTEIN
DYNAMICS AND PROTEIN-SURFACE INTERACTIONS 982 25.5.13 CIDEP STUDY OF
AMINO ACID PHOTOOXIDATION 983 25.6 CONCLUSION 984
PERTINENT LITERATURE 986 REFERENCES 988
PART FOUR FUTURE PERSPECTIVES 993
26 FUTURE PERSPECTIVES 995 SUSHIL K. MISRA
26.1 SPECTROSCOPIC TECHNIQUES CURRENTLY AVAILABLE IN EPR 995 26.1.1
FUTURE PERSPECTIVES IN EPR INSTRUMENTATION 997 26.1.2 DESIRABLE
ADVANCEMENTS IN EPR INSTRUMENTATION 998 26.2 CUTTING-EDGE TOPICS 999
26.2.1 TOPICS RELATED TO THE THEORETICAL INTERPRETATION OF EPR DATA 1002
IMAGE 24
XXVIII CONTENTS
26.3 DESIRABLE APPLICATIONS OF EPR 1003
26A FUTURE OF EPR 1003 ACKNOWLEDGMENTS 1004
APPENDIX AL FUNDAMENTAL CONSTANTS AND CONVERSION FACTORS USED IN EPR
1005 INDEX 1009 |
any_adam_object | 1 |
author2 | Misra, Sushil K. |
author2_role | edt |
author2_variant | s k m sk skm |
author_GND | (DE-588)1011536374 |
author_facet | Misra, Sushil K. |
building | Verbundindex |
bvnumber | BV037261769 |
classification_rvk | UM 3700 UP 9340 |
ctrlnum | (OCoLC)729946498 (DE-599)DNB1006150064 |
dewey-full | 538.364 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 538 - Magnetism |
dewey-raw | 538.364 |
dewey-search | 538.364 |
dewey-sort | 3538.364 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. Aufl. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV037261769</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110819</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110303s2011 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N35</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1006150064</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527407798</subfield><subfield code="9">978-3-527-40779-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)729946498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1006150064</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">538.364</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UM 3700</subfield><subfield code="0">(DE-625)145893:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 9340</subfield><subfield code="0">(DE-625)146461:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multifrequency electron paramagnetic resonance</subfield><subfield code="b">theory and applications</subfield><subfield code="c">ed. by Sushil K. Misra</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. Aufl.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIII, 1022 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronenspinresonanz</subfield><subfield code="0">(DE-588)4132116-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektronenspinresonanz</subfield><subfield code="0">(DE-588)4132116-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Misra, Sushil K.</subfield><subfield code="0">(DE-588)1011536374</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3527469&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021174894&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021174894</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV037261769 |
illustrated | Illustrated |
indexdate | 2024-07-20T11:00:37Z |
institution | BVB |
isbn | 9783527407798 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021174894 |
oclc_num | 729946498 |
open_access_boolean | |
owner | DE-11 DE-188 DE-703 DE-20 DE-19 DE-BY-UBM |
owner_facet | DE-11 DE-188 DE-703 DE-20 DE-19 DE-BY-UBM |
physical | XXXIII, 1022 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley |
record_format | marc |
spelling | Multifrequency electron paramagnetic resonance theory and applications ed. by Sushil K. Misra 1. Aufl. Weinheim Wiley 2011 XXXIII, 1022 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Elektronenspinresonanz (DE-588)4132116-9 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Elektronenspinresonanz (DE-588)4132116-9 s DE-604 Misra, Sushil K. (DE-588)1011536374 edt X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3527469&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021174894&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Multifrequency electron paramagnetic resonance theory and applications Elektronenspinresonanz (DE-588)4132116-9 gnd |
subject_GND | (DE-588)4132116-9 (DE-588)4143413-4 |
title | Multifrequency electron paramagnetic resonance theory and applications |
title_auth | Multifrequency electron paramagnetic resonance theory and applications |
title_exact_search | Multifrequency electron paramagnetic resonance theory and applications |
title_full | Multifrequency electron paramagnetic resonance theory and applications ed. by Sushil K. Misra |
title_fullStr | Multifrequency electron paramagnetic resonance theory and applications ed. by Sushil K. Misra |
title_full_unstemmed | Multifrequency electron paramagnetic resonance theory and applications ed. by Sushil K. Misra |
title_short | Multifrequency electron paramagnetic resonance |
title_sort | multifrequency electron paramagnetic resonance theory and applications |
title_sub | theory and applications |
topic | Elektronenspinresonanz (DE-588)4132116-9 gnd |
topic_facet | Elektronenspinresonanz Aufsatzsammlung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3527469&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021174894&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT misrasushilk multifrequencyelectronparamagneticresonancetheoryandapplications |