Introduction to topological manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
[2011]
|
Ausgabe: | Second edition |
Schriftenreihe: | Graduate texts in mathematics
202 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xvii, 433 Seiten Illustrationen, Diagramme |
ISBN: | 9781441979391 9781461427902 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV037232325 | ||
003 | DE-604 | ||
005 | 20220330 | ||
007 | t | ||
008 | 110217s2011 gw a||| |||| 00||| eng d | ||
020 | |a 9781441979391 |c hardcover |9 978-1-4419-7939-1 | ||
020 | |a 9781461427902 |c softcover |9 978-1-4614-2790-2 | ||
035 | |a (OCoLC)700650008 | ||
035 | |a (DE-599)BVBBV037232325 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-634 |a DE-384 |a DE-11 |a DE-824 |a DE-20 |a DE-83 |a DE-739 | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a MAT 570f |2 stub | ||
084 | |a 57-01 |2 msc | ||
100 | 1 | |a Lee, John M. |d 1950- |e Verfasser |0 (DE-588)122260880 |4 aut | |
245 | 1 | 0 | |a Introduction to topological manifolds |c John M. Lee |
250 | |a Second edition | ||
264 | 1 | |a New York, NY |b Springer |c [2011] | |
264 | 4 | |c © 2011 | |
300 | |a xvii, 433 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate texts in mathematics |v 202 | |
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4419-7940-7 |
830 | 0 | |a Graduate texts in mathematics |v 202 |w (DE-604)BV000000067 |9 202 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021145981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-021145981 |
Datensatz im Suchindex
_version_ | 1804143838871158784 |
---|---|
adam_text | Contents
Preface
............................................................
v
1
Introduction
................................................... 1
What Are Manifolds?
............................................ 1
Why Study Manifolds?
........................................... 4
2
Topological Spaces
............................................. 19
Topologies
..................................................... 19
Convergence and Continuity
...................................... 26
Hausdorff Spaces
............................................... 31
Bases and Countability
........................................... 33
Manifolds
...................................................... 38
Problems
...................................................... 45
3
New Spaces from Old
........................................... 49
Subspaces
..................................................... 49
Product Spaces
................................................. 60
Disjoint Union Spaces
........................................... 64
Quotient Spaces
................................................ 65
Adjunction Spaces
.............................................. 73
Topological Groups and Group Actions
............................. 77
Problems
...................................................... 81
4
Connectedness and Compactness
................................ 85
Connectedness
.................................................. 86
Compactness
................................................... 94
Local Compactness
.............................................. 104
Paracompactness
................................................ 109
Proper Maps
...................................................
1 8
Problems
...................................................... 122
xvj Contents
5
Cell Complexes
................................................127
Cell Complexes and CW Complexes
...............................127
Topological Properties of CW Complexes
...........................135
Classification of
1
-Dimensional Manifolds
..........................143
Simplicial Complexes
............................................147
Problems
......................................................155
6
Compact Surfaces
..............................................159
Surfaces
.......................................................159
Connected Sums of Surfaces
......................................164
Polygonal Presentations of Surfaces
................................166
The Classification Theorem
.......................................173
The
Euler
Characteristic
..........................................178
Orientability
...................................................180
Problems
......................................................181
7
Homotopy and the Fundamental Group
..........................183
Homotopy
.....................................................184
The Fundamental Group
.........................................186
Homomorphisms Induced by Continuous Maps
......................197
Homotopy Equivalence
..........................................200
Higher Homotopy Groups
........................................208
Categories and Functors
..........................................209
Problems
......................................................214
8
The Circle
.....................................................217
Lifting Properties of the Circle
....................................218
The Fundamental Group of the Circle
..............................224
Degree Theory for the Circle
......................................227
Problems
......................................................230
9
Some Group Theory
............................................233
Free Products
...................................................233
Free Groups
....................................................239
Presentations of Groups
..........................................241
Free Abelian Groups
.............................................244
Problems
......................................................248
10
The Seifert-Van
Kampen
Theorem
...............................251
Statement of the Theorem
........................................251
Applications
...................................................255
Fundamental Groups of Compact Surfaces
..........................264
Proof of the Seifert-Van
Kampen
Theorem
..........................268
Problems
......................................................273
Contents xvii
11
Covering Maps
................................................277
Definitions and Basic Properties
...................................278
The General Lifting Problem
......................................283
The Monodromy Action
..........................................287
Covering Homomorphisms
.......................................294
The Universal Covering Space
....................................297
Problems
......................................................302
12
Group Actions and Covering Maps
...............................307
The Automorphism Group of a Covering
............................308
Quotients by Group Actions
......................................311
The Classification Theorem
.......................................315
Proper Group Actions
............................................318
Problems
......................................................334
13
Homology
.....................................................339
Singular Homology Groups
.......................................340
Homotopy
Invariance
............................................347
Homology and the Fundamental Group
.............................351
The Mayer-Vietoris Theorem
.....................................355
Homology of Spheres
............................................364
Homology of CW Complexes
.....................................369
Cohomology
...................................................374
Problems
......................................................379
Appendix A: Review of Set Theory
...................................381
Basic Concepts
.................................................381
Cartesian Products, Relations, and Functions
........................384
Number Systems and Cardinality
..................................390
Indexed Families
................................................391
Appendix B: Review of Metric Spaces
................................395
Euclidean Spaces
...............................................395
Metrics
........................................................396
Continuity and Convergence
......................................398
Appendix C: Review of Group Theory
................................401
Basic Definitions
................................................401
Cosets and Quotient Groups
......................................403
Cyclic Groups
..................................................405
References
.........................................................407
Notation Index
.....................................................409
Subject Index
......................................................413
|
any_adam_object | 1 |
author | Lee, John M. 1950- |
author_GND | (DE-588)122260880 |
author_facet | Lee, John M. 1950- |
author_role | aut |
author_sort | Lee, John M. 1950- |
author_variant | j m l jm jml |
building | Verbundindex |
bvnumber | BV037232325 |
classification_rvk | SK 350 |
classification_tum | MAT 570f |
ctrlnum | (OCoLC)700650008 (DE-599)BVBBV037232325 |
discipline | Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01681nam a2200421 cb4500</leader><controlfield tag="001">BV037232325</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220330 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110217s2011 gw a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441979391</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-1-4419-7939-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461427902</subfield><subfield code="c">softcover</subfield><subfield code="9">978-1-4614-2790-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)700650008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037232325</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 570f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lee, John M.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122260880</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to topological manifolds</subfield><subfield code="c">John M. Lee</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">[2011]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 433 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">202</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4419-7940-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate texts in mathematics</subfield><subfield code="v">202</subfield><subfield code="w">(DE-604)BV000000067</subfield><subfield code="9">202</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021145981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021145981</subfield></datafield></record></collection> |
id | DE-604.BV037232325 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:54:02Z |
institution | BVB |
isbn | 9781441979391 9781461427902 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021145981 |
oclc_num | 700650008 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-634 DE-384 DE-11 DE-824 DE-20 DE-83 DE-739 |
owner_facet | DE-355 DE-BY-UBR DE-634 DE-384 DE-11 DE-824 DE-20 DE-83 DE-739 |
physical | xvii, 433 Seiten Illustrationen, Diagramme |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series | Graduate texts in mathematics |
series2 | Graduate texts in mathematics |
spelling | Lee, John M. 1950- Verfasser (DE-588)122260880 aut Introduction to topological manifolds John M. Lee Second edition New York, NY Springer [2011] © 2011 xvii, 433 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Graduate texts in mathematics 202 Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd rswk-swf Topologische Mannigfaltigkeit (DE-588)4185712-4 s DE-604 Erscheint auch als Online-Ausgabe 978-1-4419-7940-7 Graduate texts in mathematics 202 (DE-604)BV000000067 202 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021145981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lee, John M. 1950- Introduction to topological manifolds Graduate texts in mathematics Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd |
subject_GND | (DE-588)4185712-4 |
title | Introduction to topological manifolds |
title_auth | Introduction to topological manifolds |
title_exact_search | Introduction to topological manifolds |
title_full | Introduction to topological manifolds John M. Lee |
title_fullStr | Introduction to topological manifolds John M. Lee |
title_full_unstemmed | Introduction to topological manifolds John M. Lee |
title_short | Introduction to topological manifolds |
title_sort | introduction to topological manifolds |
topic | Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd |
topic_facet | Topologische Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021145981&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000067 |
work_keys_str_mv | AT leejohnm introductiontotopologicalmanifolds |