Fundamentals of water treatment unit processes: physical, chemical, and biological
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press [u.a.]
2011
|
Schriftenreihe: | Environmental engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XLIII, 883 S. Ill., graph. Darst. |
ISBN: | 1420061917 9781420061918 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037226794 | ||
003 | DE-604 | ||
005 | 20110822 | ||
007 | t | ||
008 | 110215s2011 ad|| |||| 00||| eng d | ||
020 | |a 1420061917 |9 1-420-06191-7 | ||
020 | |a 9781420061918 |9 978-1-420-06191-8 | ||
035 | |a (OCoLC)699602298 | ||
035 | |a (DE-599)GBV621536288 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-83 | ||
082 | 0 | |a 628.162 | |
084 | |a AR 22362 |0 (DE-625)8473: |2 rvk | ||
100 | 1 | |a Hendricks, David W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fundamentals of water treatment unit processes |b physical, chemical, and biological |c David Hendricks |
246 | 1 | 3 | |a Water treatment unit processes |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press [u.a.] |c 2011 | |
300 | |a XLIII, 883 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Environmental engineering | |
500 | |a Literaturangaben | ||
650 | 4 | |a Water |x Purification | |
650 | 4 | |a Sewage |x Purification | |
650 | 0 | 7 | |a Wasseraufbereitung |0 (DE-588)4064698-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wasserreinigung |0 (DE-588)4274580-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abwasserreinigung |0 (DE-588)4000313-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wasseraufbereitung |0 (DE-588)4064698-1 |D s |
689 | 0 | 1 | |a Wasserreinigung |0 (DE-588)4274580-9 |D s |
689 | 0 | 2 | |a Abwasserreinigung |0 (DE-588)4000313-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wasseraufbereitung |0 (DE-588)4064698-1 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021140559&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-021140559 |
Datensatz im Suchindex
_version_ | 1804143830182658048 |
---|---|
adam_text | IMAGE 1
FUNDAMENTALS OF
WATER TREATMENT UNIT PROCESSES PHYSICAL, CHEMICAL, AND BIOLOGICAL
DAVID HENDRICKS
TECHNIPCHE
INFORMATICMCL:! L ..;OTI SEK
UNIVERSITATS&SSLIOTHEK HANII-JGVEH
B PUBLISHING CRC PRESS TAYLOR FX FRANCIS GROUP
BOCA RATON LONDON NEWYORK
CRC PRESS IS AN IMPRINT OF THE TAYLOR & FRANCIS CROUP, AN INFORMS
BUSINESS
IMAGE 2
CONTENTS PREFACE XXXIII
ACKNOWLEDGMENTS XXXV
AUTHOR XXXVII
DOWNLOADABLE FILES XXXIX
CONTENTS-DOWNLOADABLE FILES XLI
PART! FOUNDATION
CHAPTER 1 WATER TREATMENT 3
1.1 WATER TREATMENT IN-A-NUTSHELL 3
1.1.1 WATER TREATMENT PLANTS 3
1.1.2 RESIDUALS 3
1.2 ORGANIZATION OF WATER TREATMENT KNOWLEDGE 3
1.3 UNIT PROCESSES 4
1.3.1 DEFINITIONS 4
1.3.2 TECHNOLOGIES 5
1.3.3 BREADTH OF UNIT PROCESSES AND TECHNOLOGIES 5
1.3.4 PROPRIETARY TECHNOLOGIES 5
1.3.5 STATUS OF UNIT PROCESSES 7
1.3.6 FUTURE OF TREATMENT 8
1.3.7 ENERGY EXPENDITURE FOR TREATMENT 8
1.4 TREATMENT TRAINS 8
1.4.1 TERTIARY TREATMENT 9
1.4.1.1 CASES 9
1.4.2 INDUSTRIAL WASTEWATER TREATMENT 10
1.4.2.1 CASES 11
1.4.3 INDUSTRIAL PROCESS WATER TREATMENT 12
1.4.4 HAZARDOUS WASTES 12
1.4.5 HAZARDOUS WASTES: IN SITU TREATMENT 13
1.5 DESIGN 13
1.5.1 FACTORS: NONTECHNICAL 13
1.5.1.1 OPERATION ISSUES 13
1.5.1.2 MANAGING A TEAM 13
1.5.1.3 EXPANSION 13
1.5.1.4 ESTHETICS 13
1.5.1.5 REGULATIONS 14
1.5.1.6 INSTITUTIONS 14
1.5.1.7 CONSULTING ENGINEERING 14
1.6 SUMMARY 17
PROBLEMS 17
ACKNOWLEDGMENTS 18
GLOSSARY 18
REFERENCES 19
CHAPTER 2 WATER CONTAMINANTS 21
2.1 WATER QUALITY: DEFINITIONS 21
2.1.1 CONTAMINANTS 21
2.1.2 STATE OF WATER 22
V
IMAGE 3
VI CONTENTS
2.1.3 CRITERIA 22
2.1.4 STANDARDS 22
2.1.4.1 KINDS OF WATER QUALITY STANDARDS 22
2.1.4.2 NORMATIVE STANDARDS 24
2.1.4.3 STANDARDS AS TARGETS FOR TREATMENT 24
2.1.5 SURROGATES 24
2.2 FEDERAL LAWS 25
2.2.1 LEGAL DEFINITIONS 26
2.2.2 REGULATIONS 26
2.2.3 PRIORITY POLLUTANTS 26
2.3 MATURATION OF WATER QUALITY KNOWLEDGE 27
2.3.1 KNOWLEDGE OF CONTAMINANTS 27
2.3.2 MEASUREMENT TECHNOLOGIES 28
2.4 CATEGORIZATIONS OF CONTAMINANT SPECIES 28
2.4.1 SYSTEMS OF CATEGORIZATION 28
2.4.2 ILLUSTRATIVE SYSTEM OF CONTAMINANT CATEGORIZATION 28
2.5 UTILITY OFWATER QUALITY DATA 31
2.5.1 CONTAMINANTS AND WATER USES 31
2.6 COMBINATIONS OF QUALITY OF SOURCE WATERS AND PRODUCT WATERS 31
PROBLEMS 34
ACKNOWLEDGMENTS 34
APPENDIX 2.A: ORGANIC CARBON AS A CONTAMINANT 34
2.A. 1 CATEGORIES OF ORGANICS IN WATER 35
2. A. 1.1 COLOR 37
2.A.1.2 ORGANIC CARBON 37
2.A. 1.3 UV254 37
2.A.1.4 SYNTHETIC ORGANIC CARBON 37
2.A.2 DISINFECTION BY-PRODUCTS 37
2.A.3 DISINFECTION BY-PRODUCTS IN SECONDARY EFFLUENTS 39
2.A.4 DISINFECTANT SELECTION 40
2.A.5 OTHER NOTES 40
GLOSSARY 40
REFERENCES 41
BIBLIOGRAPHY 42
CHAPTER 3 MODELS 45
3.1 UNIT PROCESSES 45
3.2 MODELS 45
3.2.1 CATEGORIES OF MODELS 45
3.2.2 THE BLACK BOX 45
3.2.2.1 PLOTS 46
3.2.3 PHYSICAL MODELS 46
3.2.3.1 BENCH SCALE TESTING 46
3.2.3.2 PILOT PLANTS 46
3.2.3.3 DEMONSTRATION PLANTS 47
3.2.4 MATHEMATICAL MODELS 48
3.2.5 COMPUTER MODELS 48
3.2.6 SCENARIOS 49
3.3 MODELING PROTOCOL 49
3.3.1 SPREADSHEETS 51
3.4 UNITS AND DIMENSIONS 52
3.4.1 UNITS 52
3.4.2 DIMENSIONS 52
IMAGE 4
CONTENTS VII
3.5 EXAMPLES OF MODELS 52
3.6 SUMMARY 54
PROBLEMS 54
GLOSSARY 54
REFERENCES 56
CHAPTER 4 UNIT PROCESS PRINCIPLES 57
4.1 UNIT PROCESSES 57
4.1.1 SPECTRUM OF UNIT PROCESSES AND TECHNOLOGIES 57
4.1.2 MATCHING UNIT PROCESS WITH CONTAMINANT 57
4.1.2.1 CONTEXTUAL CHANGES AND NEW TREATMENT DEMANDS 57
4.2 PRINCIPLES 57
4.2.1 SINKS 57
4.2.2 TRANSPORT 59
4.2.2.1 MACRO TRANSPORT: SEDIMENTATION 59
4.2.2.2 MACRO TRANSPORT: ADVECTION 59
4.2.2.3 MACRO TRANSPORT: TURBULENT DIFFUSION 59
4.2.2.4 MACRO TRANSPORT: POROUS MEDIA DISPERSION 59
4.2.2.5 MOLECULAR TRANSPORT: DIFFUSION 59
4.2.2.6 MATHEMATICS OF DIFFUSION, TURBULENCE, AND DISPERSION 60
4.2.3 SUMMARY 62
4.3 REACTORS 62
4.3.1 EXAMPLES OF REACTORS 62
4.3.2 TYPES OF REACTORS 62
4.3.3 MATHEMATICS OF REACTORS 62
4.3.3.1 MATERIALS BALANCE: CONCEPT 62
4.3.3.2 COMMENTS ON MATERIALS BALANCE 63
4.3.3.3 MATERIALS BALANCE: MATHEMATICS 63
4.3.4 MATERIALS BALANCE: SPECIAL CONDITIONS 66
4.3.4.1 BATCH REACTOR: COMPLETE MIXED 66
4.3.4.2 STEADY STATE REACTOR: COMPLETE MIXED 66
4.3.4.3 ZERO REACTION: COMPLETE MIXED 67
4.3.4.4 NONSTEADY STATE REACTOR 67
4.3.4.5 SPREADSHEET METHOD TO SOLVE FINITE DIFFERENCE FORM OF MASS
BALANCE EQUATION 68 4.3.4.6 UTILITY OF FINITE DIFFERENCE EQUATION AND
TRACER TESTS 71
4.4 KINETIC MODELS 71
4.4.1 FIRST-ORDER KINETICS 71
4.4.2 SECOND-ORDER KINETICS 72
4.4.3 EXAMPLES OF KINETIC EQUATIONS 72
4.4.3.1 EXAMPLE: GAS TRANSFER 72
4.4.3.2 EXAMPLE: BIOLOGICAL DEGRADATION OF SUBSTRATE 72
4.4.3.3 EXAMPLE: TRICKLING FILTER 72
PROBLEMS 73
GLOSSARY 74
REFERENCES 76
PART II PARTICULATE SEPARATIONS
CHAPTER 5 SCREENING 79
5.1 THEORY OF SCREENING 79
5.2 TYPES OF SCREENS 79
5.2.1 BAR SCREENS 79
5.2.1.1 CLEANING 80
5.2.1.2 MANUALLY CLEANED BAR SCREENS 80
IMAGE 5
X CONTENTS
7.3 AERATED GRIT CHAMBERS 148
7.3.1 PRINCIPLES OF AERATED GRIT CHAMBER OPERATION 150
7.3.2 THEORY OF AERATED GRIT CHAMBERS 150
7.3.2.1 CALCULATION OF GRIT REMOVAL 150
7.3.2.2 CALCULATION OF SPIRAL LENGTH, DL 151
7.3.2.3 EMPIRICAL GUIDELINES 151
7.3.2.4 N DETERMINATION 151
7.3.2.5 ALGORITHM FOR CALCULATIONS 152
7.3.3 PRACTICE: AERATED GRIT CHAMBERS 154
7.3.3.1 GUIDELINES FROM FIVE DESIGNS 154
7.3.3.2 SUMMARY OF GUIDELINES 155
7.3.3.3 PRESSURE IN HEADER PIPE 156
7.3.3.4 BLOWER POWER 156
PROBLEMS 157
ACKNOWLEDGMENTS 159
GLOSSARY 159
REFERENCES 160
CHAPTER 8 FLOTATION 163
8.1 DEVELOPMENT OF FLOTATION 163
8.1.1 BEGINNING DESIGN PRACTICE 163
8.1.2 WATER AND WASTEWATER APPLICATIONS 163
8.2 DAF SYSTEM DESCRIPTION 163
8.2.1 SYNOPSIS OF DAF PROCESS 163
8.2.1.1 COAGULATION 163
8.2.1.2 FLOCCULATION 163
8.2.1.3 CONTACT ZONE 163
8.2.1.4 SATURATOR 163
8.2.1.5 GAS PRECIPITATION 164
8.2.1.6 BUBBLE-FLOC AGGLOMERATE 164
8.2.1.7 FLOAT LAYER 164
8.2.1.8 CLARIFIED WATER 164
8.2.1.9 FURTHER PROCESSING 164
8.3 PRINCIPLES OF DAF FLOTATION 164
8.3.1 GAS TRANSFER 164
8.3.1.1 HENRY S LAW 164
8.3.1.2 APPLICATION OF HENRY S LAW TO SATURATOR 166
8.3.1.3 SATURATOR 166
8.3.1.4 GAS CONCENTRATION AT NOZZLE DEPTH 167
8.3.1.5 SATURATOR MASS BALANCE 167
8.3.1.6 SATURATOR PACKING 167
8.3.1.7 HYDRAULIC GRADE LINE 167
8.3.2 GAS PRECIPITATION 168
8.3.2.1 BUBBLES 168
8.3.2.2 BUBBLE SIZE 170
8.3.2.3 BUBBLE SIZE DISTRIBUTION 170
8.3.2.4 BUBBLE NUMBERS 170
8.3.2.5 NOZZLE DESIGN 170
8.3.3 CONTACT ZONE 171
8.3.3.1 FLOC-BUBBLE TRANSPORT AND ATTACHMENT 171
8.3.3.2 BUBBLE-PARTICLE CONTACT 172
8.3.3.3 PARAMETER VALUES 172
8.3.4 SEPARATION ZONE 172
8.3.4.1 RISE VELOCITY OF BUBBLES 172
IMAGE 6
CONTENTS XI
8.3.4.2 RISE VELOCITY OF PARTICLE-BUBBLE 172
8.3.4.3 BUBBLE-PARTICLE RATIO 174
8.3.4.4 CONCENTRATION EXPRESSIONS 174
8.3.5 MATERIALS BALANCE FOR DISSOLVED GAS IN FLOTATION BASIN 178
8.3.5.1 MASS BALANCE FOR FLOTATION BASIN 178
8.3.5.2 MASS BALANCE CALCULATIONS BY SPREADSHEET 179
8.4 PRACTICE 180
8.4.1 DESIGN CRITERIA 180
8.4.1.1 FLOTATION IN WATER TREATMENT 180
8.4.1.2 FLOTATION FOR SLUDGE THICKENING 181
8.4.1.3 AIR-TO-SOLIDS RATIO 181
8.4.2 PILOT PLANTS 181
8.4.2.1 PILOT PLANT STUDY 181
8.4.3 CASE: BIRMINGHAM 182
8.4.4 EQUIPMENT 183
PROBLEMS 184
ACKNOWLEDGMENTS 186
GLOSSARY 186
REFERENCES 187
PART III MICROSCOPIC PARTICLES
CHAPTER 9 COAGULATION * 191
9.1 COAGULATION IN-A-NUTSHELL 191
9.1.1 DENNING COAGULATION 191
9.1.1.1 PARTICLES TO BE REMOVED 191
9.1.1.2 COAGULATION 191
9.1.1.3 MICROFLOCS 191
9.1.1.4 RAPID-MIX 191
9.1.1.5 FLOCCULATION 191
9.1.1.6 THEMES OF COAGULATION THEORY 191
9.1.2 COAGULATION PRACTICE 191
9.1.2.1 DOSAGE 191
9.1.2.2 COAGULATION EFFECTIVENESS 192
9.2 PARTICLES IN AMBIENT WATERS 192
9.2.1 PARTICLE VARIETY 192
9.2.2 PARTICLE CHARACTERISTICS 192
9.2.2.1 COLLOIDS 192
9.2.2.2 MICROSCOPIC PARTICLES 192
9.2.2.3 NATURAL ORGANIC MATTER AND COLOR 194
9.2.2.4 TOTAL ORGANIC CARBON 194
9.2.2.5 TURBIDITY 194
9.2.2.6 PARTICLE COUNTS 194
9.2.3 TURBIDITY AND PARTICLE COUNTS IN AMBIENT WATERS AND FINISHED
WATERS 194
9.2.3.1 SPATIAL VARIATION IN SOURCE WATERS COMPARED WITH PLANT EFFLUENTS
194 9.2.3.2 SEASONAL VARIATION 194
9.3 CHEMISTRY 194
9.3.1 CHEMISTRY OF COAGULATION: EVOLUTION OF THEORY AND PRACTICE 194
9.3.1.1 KEY INNOVATIONS 195
9.3.1.2 COLOR 196
9.3.1.3 MODERN THEORY 196
9.3.2 COAGULATION REACTIONS 197
9.3.2.1 METAL ION REACTIONS WITH WATER 197
9.3.2.2 TWO COAGULATION MECHANISMS 197
IMAGE 7
XJJ CONTENTS
9.3.2.3 NOM REMOVAL BY METAL COAGULATANTS 197
9.3.2.4 ORGANICS IN WASTEWATERS 199
9.3.2.5 COAGULATION OF SYNTHETIC ORGANICS 199
9.4 DOUBLE LAYER THEORY 200
9.4.1 DOUBLE LAYER DESCRIPTION 200
9.4.1.1 BEGINNING 200
9.4.1.2 SURFACE CHARGE 200
9.4.1.3 GOUY-CHAPMAN MODEL 200
9.4.1.4 FIXED LAYER 200
9.4.1.5 EFFECT OF IONIC STRENGTH OF SOLUTION 200
9.4.1.6 ELECTROSTATIC POTENTIALS 201
9.4.1.7 DLVO THEORY 201
9.5 TRIVALENT METAL IONS: REACTIONS WITH WATER 202
9.5.1 ALUMINUM AND FERRIC IONS 203
9.5.1.1 WATERS OF HYDRATION 203
9.5.1.2 EXPRESSING CONCENTRATIONS 203
9.5.1.3 LIQUID ALUM 204
9.5.2 ALKALINITY 204
9.5.2.1 ROLE OF ALKALINITY AS A BUFFER 204
9.5.2.2 EFFECT OF ALKALINITY ON DEMAND FOR ALUM 204
9.5.2.3 EFFECT OF ALUM ON PH 204
9.5.3 REACTIONS BETWEEN ALUM/FERRIC IRON AND WATER 205
9.5.3.1 BEGINNING 205
9.5.3.2 SEQUENTIAL HYDROLYSIS REACTIONS 205
9.5.3.3 SPECIES EQUILIBRIUM 206
9.5.3.4 COAGULATION ZONES 209
9.5.3.5 SPREADSHEET CONSTRUCTION OF COAGULATION DIAGRAMS 209
9.5.3.6 POLYNUCLEAR SPECIES 210
9.5.3.7 SUMMARY OF ALUM SPECIATION 210
9.6 SYNTHETIC ALUMINUM POLYMERS 210
9.6.1 CHARACTERISTICS OF PAC1 210
9.6.1.1 DESCRIPTION OF PAC1 210
9.6.1.2 ELECTROPHORETIC MOBILITY: COMPARING ALUM AND PAC1 210
9.7 ZETA POTENTIAL, CHARGE DENSITY, AND STREAMING CURRENT POTENTIAL 211
9.7.1 BASIC NOTIONS OF ELECTROPHORETIC MOBILITY 211
9.7.2 MATHEMATICAL RELATIONS FOR ELECTROPHORESIS 211
9.7.2.1 ELECTROPHORESIS 211
9.7.2.2 ZETA POTENTIAL 212
9.7.3 MEASURED ZETA POTENTIALS 214
9.7.3.1 TYPICAL ZETA POTENTIALS 214
9.7.4 COLLOID TITRATION 215
9.7.5 STREAMING CURRENT MONITOR 215
9.8 PHYSICAL MODELS 216
9.8.1 JAR TESTS 216
9.8.2 BENCH SCALE FILTERS 217
9.8.3 PILOT PLANTS 218
9.8.3.1 INDEPENDENT VARIABLES 218
9.8.3.2 DEPENDENT VARIABLES 218
9.8.3.3 PILOT PLANT DESIGN 218
9.9 POLYMERS 218
9.9.1 DEFINITIONS 218
9.9.2 CHARACTERISTICS OF POLYMERS 219
9.9.2.1 CHARGE CONCENTRATION 219
9.9.2.2 SPECIFIC GRAVITY 219
9.9.3 POLYMERS IN WASTEWATER TREATMENT 219
9.9.3.1 SLUDGE CONDITIONING 219
IMAGE 8
CONTENTS XL
9.9.4 STRUCTURE OF POLYMERS 220
9.9.4.1 FUNCTIONAL GROUPS 220
9.9.4.2 MONOMERS 220
9.9.4.3 POLYMERS 221
9.9.5 SELECTION OF POLYMERS 221
9.9.5.1 POLYMER SCREENING 221
9.9.5.2 POLYMER PACKAGING 223
9.9.5.3 SPECIFICATION SHEETS 224
9.9.5.4 PREPARED BATCHES 224
9.9.5.5 FEED OF POLYMER 224
9.9.5.6 CONCENTRATION: CONVENTION (ADAPTED FROM AWWA B453-96) 224
PROBLEMS 226
ACKNOWLEDGMENTS 228
GLOSSARY 228
REFERENCES 235
CHAPTER 10 MIXING 239
10.1 DEFINITIONS AND APPLICATIONS 239
10.1.1 DEFINITIONS 239
10.1.1.1 MIXING 239
10.1.1.2 NEAR-SYNONYMS 239
10.1.2 APPLICATION CATEGORIES 239
10.1.2.1 LIQUID-SOLID 239
10.1.2.2 LIQUID-GAS 239
10.1.2.3 IMMISCIBLE LIQUIDS 239
10.1.2.4 MISCIBLE LIQUIDS 240
10.1.2.5 FLUID MOTION 240
10.1.2.6 PUMPING AND SHEAR 240
10.1.2.7 EXAMPLES 240
10.1.3 MIXING AS RATE LIMITING 240
10.2 HISTORY OF MIXING 240
10.2.1 DRINKING WATER TREATMENT 240
10.2.1.1 INITIAL MIXING 240
10.2.1.2 GAS DISSOLUTION 241
10.2.2 WASTEWATER TREATMENT 241
10.2.3 EVOLUTION OF MIXING THEORY 242
10.2.3.1 DEVELOPMENT OF COLLISION FREQUENCY MATHEMATICS 242
10.2.3.2 DERIVATION OF G 243
10.2.3.3 MODIFYING CAMP AND STEIN S G 243
10.2.3.4 EMPIRICAL PARAMETERS 243
10.2.3.5 GANDG 243
10.2.4 TECHNOLOGIES OF MIXING 244
10.3 THEORY OF MIXING 244
10.3.1 TRANSPORT MECHANISMS 244
10.3.1.1 ADVECTION 245
10.3.1.2 TURBULENCE 246
10.3.1.3 TRANSPORT REGIME 252
10.3.2 NAVIER-STOKES EQUATION 253
10.3.2.1 MATHEMATICS OF NAVIER-STOKES EQUATION 253
10.3.2.2 COMPUTATIONAL FLUID DYNAMICS 254
10.3.3 SIMILITUDE 254
10.3.3.1 DIMENSIONLESS NUMBERS 255
10.3.3.2 VARIABLES OF IMPELLER-BASIN MIXING 256
10.3.3.3 EXPERIMENTAL PLOTS 256
10.3.3.4 SCALE-UP BY FLUID SIMILITUDE 256
10.3.3.5 SCALE-UP DILEMMA 258
IMAGE 9
XIV CONTENTS
10.3.4 INJECTION OF COAGULANTCHEMICALS 260
10.3.4.1 DISPARITY OF FLOWS 260
10.3.4.2 ADVECTION OF NEAT ALUM 260
10.4 MIXING TECHNOLOGIES 261
10.4.1 IMPELLER MIXING 261
10.4.1.1 REACTORS-BACK-MIX AND IN-LINE 261
10.4.1.2 CIRCULATION CRITERION FOR 0.99 BLENDING IN A BACK-MIX REACTOR
262
10.4.1.3 TIME RATIO, ;/ 2(REACTOR), TO ATTAIN 0.99 BLENDING-EXPERIMENTAL
PROCEDURE (A) 264 10.4.1.4 IMPELLER SPEED, W(IMPELLER), TO ATTAIN 0.99
BLENDING-EXPERIMENTAL PROCEDURE (B) 264
10.4.1.5 COMPLETE-MIX REACTORS 264
10.4.2 IMPELLERS AND TANKS 266
10.4.2.1 IMPELLER VARIETY 266
10.4.2.2 IMPELLER CHARACTERISTICS 266
10.4.2.3 IMPELLER PUMPING 267
10.4.2.4 TANKS 269
10.4.2.5 RUSHTON SYSTEM 270
10.4.2.6 IN-LINE MIXERS 270
10.4.3 JET MIXERS 271
10.4.3.1 FLASH MIXING BY SUBMERGED JETS 271
10.4.4 STATIC MIXERS 276
10.4.4.1 GENERAL PRINCIPLES 276
10.4.4.2 BAFFLES 276
10.4.4.3 STATIC MIXERS 277
10.5 SUMMARY 280
PROBLEMS 280
ACKNOWLEDGMENTS 283
GLOSSARY 284
REFERENCES 288
BIBLIOGRAPHY 290
CHAPTER 11 FLOCCULATION 291
11.1 DEFINITIONS 291
11.1.1 FLOE 291
11.1.1.1 BIOLOGICAL FLOE 291
11.1.1.2 CHEMICAL FLOE 291
11.1.1.3 PRIMARY PARTICLES 291
11.1.2 FLOCCULATION 291
11.1.2.1 ORTHOKINETIC FLOCCULATION 291
11.1.2.2 PERIKINETIC FLOCCULATION 291
11.1.2.3 FLOCCULENT 291
11.2 APPLICATIONS 292
11.2.1 CONVENTIONAL FILTRATION 292
11.2.2 DIRECT FILTRATION 292
11.2.3 FLOTATION 292
11.2.4 ACTIVATED SLUDGE FLOE SETTLING 292
11.2.5 SOFTENING 292
11.2.6 TERTIARY TREATMENT 292
11.3 HISTORY 292
11.3.1 PRACTICE 292
11.3.1.1 QUIESCENT BASINS 292
11.3.1.2 LANGELIER S PADDLE WHEELS 292
11.3.1.3 DESIGN GUIDELINES 293
11.3.1.4 FLOCCULATION PRACTICE, C. 1940 294
11.3.2 EVOLUTION OF THEORY 294
11.3.2.1 LANGELIER 294
IMAGE 10
CONTENTS XV
11.3.2.2 SMOLUCHOWSKI S COLLISION EQUATIONS 294
11.3.2.3 CAMP S G 296
11.4 THEORY OF FLOCCULATION 296
11.4.1 KINETICS 296
11.4.1.1 FREQUENCY OF PARTICLE COLLISIONS 296
11.4.1.2 RATE OF FORMATION OF NEW PARTICLES, K 299
11.4.2 NATURE OF FLOES AND FLOCCULATION 299
11.4.2.1 CHARACTERISTICS OF FLOES 299
11.4.2.2 FLOE BREAKUP 304
11.4.2.3 BIOFLOCCULATION 304
11.4.3 FLOCCULENTS 305
11.4.4 DESIGN PRINCIPLES FOR PADDLE-WHEEL FLOCCULATORS 306
11.4.4.1 DERIVATION OF CAMP S EQUATION FOR PADDLE-WHEEL FLOCCULATION 306
11.4.4.2 P(PADDLE-WHEEL) WITH UNITS 308
11.5 DESIGN 308
11.5.1 DESIGN PROCEDURE FROM CAMP 308
11.5.1.1 CAMP S CRITERIA 308
11.5.1.2 CAMP S GUIDELINES 308
11.5.1.3 SPREADSHEET ALGORITHM 310
11.5.2 MODEL FLOCCULATION BASIN 310
11.5.2.1 CALCULATIONS 310
11.5.2.2 PLOTS 310
11.5.2.3 SLIP FACTOR 313
11.5.3 PLANT DESIGN 313
11.5.4 OTHER TECHNOLOGIES 315
11.5.4.1 TURBINES ; 315
11.5.4.2 BAFFLES 315
11.6 PROPRIETARY TECHNOLOGIES 319
11.6.1 TURBINE FLOCCULATORS 320
11.6.2 SOLIDS CONTACT UNITS 320
11.6.2.1 PRINCIPLES 320
11.6.2.2 DESIGN PRACTICE, EQUIPMENT, OPERATION 321
11.6.3 SUPER-PULSATORS 321
11.6.4 CULLIGAN MULTI-TECH 321
11.7 SUMMARY 321
PROBLEMS 321
ACKNOWLEDGMENTS 323
APPENDIX 1 LA: DERIVATION OF CAMP AND STEIN G FOR THREE-DIMENSIONAL CUBE
323
GLOSSARY 324
REFERENCES 326
CHAPTER 12 RAPID FILTRATION 329
12.1 DESCRIPTION OF RAPID FILTRATION 329
12.1.1 FILTRATION TECHNOLOGY 329
12.1.1.1 IN-A-NUTSHELL 329
12.1.1.2 SUPPORT COMPONENTS 330
12.1.1.3 FILTRATION MODE 330
12.1.2 APPLICATIONS 331
12.1.3 VARIATIONS.... 331
12.2 DEVELOPMENT OF RAPID FILTRATION 331
12.2.1 DEVELOPMENT OF RAPID FILTRATION 331
12.2.1.1 HYATT FILTER 331
12.2.1.2 WARREN FILTER 331
12.2.1.3 OTHER PROPRIETARY FILTERS 331
12.2.1.4 FULLER S EXPERIMENTS 332
IMAGE 11
XVI CONTENTS
12.2.2 EMERGENCE OF FILTRATION PRACTICE 333
12.2.2.1 STATE OF THE ART, 1890 AND 1990 334
12.2.2.2 GROWTH OF WATERWORKS INDUSTRY 334
12.2.3 PROGRESS IN FILTRATION PRACTICE 334
12.2.3.1 DUAL MEDIA 335
12.2.3.2 BREAKING THE HLR BARRIER 335
12.2.3.3 ALTERNATIVE MODES OF FILTRATION 335
12.2.4 MODERN FILTRATION PRACTICE 335
12.2.4.1 THE FEDERAL ROLE 335
12.2.4.2 MODERN PRACTICE 335
12.3 THEORY 336
12.3.1 QUEST OF THEORY 336
12.3.1.1 DEPENDENT FUNCTIONS IN FILTRATION 336
12.3.1.2 DEFINITIONS 336
12.3.2 PROCESS DESCRIPTION 336
12.3.2.1 EXPERIMENTAL C(Z), RESULTS OF ELIASSEN 336
12.3.2.2 EXPERIMENTAL C(Z), RESULTS OF IVES 337
12.3.2.3 C(Z, T) IN THREE DIMENSIONS 337
12.3.2.4 MASS TRANSFER SIMILARITIES BETWEEN ADSORPTION AND FILTRATION
337
12.3.2.5 RELATION BETWEEN THE C(Z), WAVE FRONT AND THE C{T)Z=ZO
BREAKTHROUGH CURVE 337 12.3.2.6 SPECIFIC SOLIDS DEPOSIT, CT(Z, /) 339
12.3.2.7 CLOGGING FRONT 339
12.3.2.8 LOCAL HYDRAULIC GRADIENT, I(Z,T) 340
12.3.2.9 RATIONAL DESIGN 341
12.3.2.10TOTAL HEADLOSS AND COMPONENTS OF HEADLOSS 342
12.3.2.11 CHARACTERISTICS OF C(0Z FOR A FILTER CYCLE 342
12.3.3 MATHEMATICAL MODELING 344
12.3.3.1 IWASAKI S EQUATIONS 344
12.3.3.2 FILTER COEFFICIENT 346
12.3.3.3 TRANSPORT COEFFICIENT 346
12.3.3.4 ATTACHMENT COEFFICIENT 349
12.3.3.5 EFFECT OF ATTACHMENT EFFICIENCY ON FILTER RIPENING 349
12.3.3.6 DERIVATION OF MATERIALS BALANCE EXPRESSION 350
12.3.4 SYNTHESIS OF A MODEL 351
12.3.4.1 SOLIDS UPTAKE RATE 351
12.3.4.2 CONDITIONS AT EQUILIBRIUM 352
12.3.4.3 ZONES OF WAVE FRONT 353
12.3.5 SUMMARY 353
12.4 DESIGN 353
12.4.1 EXTERNAL PARAMETERS 354
12.4.1.1 DESIGN DECISIONS 354
12.4.1.2 COST 354
12.4.2 COMPONENTS OF FILTER DESIGN 354
12.4.2.1 LAYOUT OF FILTERS 354
12.4.2.2 HYDRAULIC MODES OF FILTRATION 355
12.4.2.3 WATER DISTRIBUTION 355
12.4.2.4 MEDIA 356
12.4.2.5 PIPE GALLERY 356
12.4.2.6 CLEAR-WELL 358
12.4.2.7 CONTROL SYSTEMS 359
12.4.3 FILTER BOX 359
12.4.3.1 FILTRATION RATE 359
12.4.3.2 AREA OF FILTERS 359
12.4.3.3 NET WATER PRODUCTION 359
12.4.3.4 DEPTH OF FILTER BOX 359
IMAGE 12
CONTENTS XVII
12.4.4 BACKWASH 360
12.4.4.1 MANIFOLD PRINCIPLES 360
12.4.4.2 TYPES OF BACKWASH SYSTEMS 361
12.4.4.3 BACKWASH VOLUME 362
12.4.4.4 BACKWASH WATER TROUGHS 363
12.4.4.5 UNDER-DRAIN SYSTEMS 363
12.4.4.6 BED FLUIDIZATION 365
12.4.4.7 SURFACE-WASH 368
12.4.4.8 AIR-WASH 369
12.4.4.9 AIR-WATER CONCURRENT BACKWASH 369
12.4.4.10 COLLAPSE PULSING 370
12.5 OPERATION 371
12.5.1 FILTER OPERATING CYCLE 372
12.5.2 FILTRATION HYDRAULICS 372
12.5.2.1 CLEAN-BED HEADLESS 372
12.5.2.2 PROGRESSION OF HEADLOSS WITH FILTER RUN 373
12.5.2.3 NEGATIVE PRESSURE 374
12.5.2.4 AIR BINDING 374
12.5.3 BACKWASH 374
12.5.3.1 MUDBALLS AND SURFACE CRACKS 375
12.5.3.2 FLOC-TO-GRAIN BONDING 375
12.5.3.3 PRACTICE 375
12.5.3.4 OPERATING PROTOCOL 375
12.6 PILOT PLANTS 375
12.6.1 EQUIPMENT 376
12.6.1.1 CONTAMINANT INJECTION 376
12.6.1.2 FILTER COLUMN 377
12.6.1.3 PILOT PLANT SYSTEM 378
12.6.1.4 DATA HANDLING 378
12.7 WASTEWATER FILTRATION 378
12.7.1 BACKGROUND 378
12.7.2 FORMS OF PRACTICE 378
12.7.2.1 AS A UNIT PROCESS WITHIN A WATER TREATMENT TRAIN 378
12.7.2.2 AS A STAND-ALONE PROCESS FOLLOWING BIOLOGICAL TREATMENT 378
12.8 PROPRIETARY EQUIPMENT 379
12.8.1 ANCILLARY EQUIPMENT 379
12.8.2 PACKAGE FILTRATION SYSTEMS 379
12.8.2.1 DEEP BED FILTRATION-PARKSON DYNASAND 379
12.8.2.2 DEEP BED FILTRATION-CULLIGAN MULTI-TECH 380
12.8.2.3 SHALLOW BED FILTRATION-ABW 380
12.8.2.4 PACKAGE FILTRATION-EPD WEARNES USA 380
12.8.3 EVALUATION OF PRODUCTS 380
PROBLEMS 381
ACKNOWLEDGMENTS 382
APPENDIX 12.A: FILTRATION IN NEW YORK 382
GLOSSARY 385
REFERENCES 391
CHAPTER 13 SLOW SAND FILTRATION 395
13.1 DESCRIPTION 395
13.1.1 SLOW SAND TECHNOLOGY 395
13.1.1.1 FILTER B OX AND APPURTENANCES 395
13.1.1.2 SAND BED 395
13.1.1.3 SCHMUTZDECKE 395
13.1.1.4 DESIGN APPROACH 395
IMAGE 13
XVIII
CONTENTS
13.1.2 ATTRIBUTES 395
13.1.2.1 SELECTION CRITERIA 395
13.1.2.2 EFFECTIVENESS 395
13.1.2.3 ECONOMY 396
13.1.2.4 LABOR 396
13.1.2.5 MATERIALS 397
13.1.2.6 CONTEXTUAL FACTORS 397
13.1.3 HISTORY 397
13.1.3.1 JAMES SIMPSON AND THE START OF SLOW SAND 398
13.1.3.2 EVOLUTION OF PRACTICE 398
13.2 SLOW SAND AS A PROCESS 399
13.2.1 REMOVAL MECHANISMS 399
13.2.1.1 SCHMUTZDECKE AND ITS ROLE IN STRAINING 399
13.2.1.2 DEPTH FILTRATION 400
13.2.2 HYDRAULICS 401
13.2.2.1 DARCY SLAW 401
13.2.2.2 INSTRINSIC HYDRAULIC CONDUCTIVITY 401
13.2.2.3 HYDRAULIC PROFILE AND HEADLOSS 403
13.3 DESIGN 403
13.3.1 FILTER BOX 404
13.3.1.1 HYDRAULIC LOADING RATE AND AREA 404
13.3.1.2 NUMBER OF CELLS 405
13.3.1.3 LAYOUT 405
13.3.1.4 DEPTH OF BOX 405
13.3.1.5 STRUCTURAL DESIGN 406
13.3.2 HYDRAULICS 406
13.3.2.1 BACKFILLING AFTER SCRAPING 407
13.3.2.2 AIR BINDING 408
13.3.2.3 DISTRIBUTION OF RAW WATER INFLOW KINETIC ENERGY 408
13.3.2.4 DRAINAGE SYSTEM 408
13.3.2.5 UNDERDRAIN MANIFOLD DESIGN 408
13.3.2.6 DEPTH OF SAND 408
13.3.2.7 SAND SIZE 409
13.3.2.8 GRAVEL SUPPORT 410
13.3.3 SUPPORT SYSTEMS 411
13.3.3.1 FLOW MEASUREMENTS 411
13.3.3.2 PIEZOMETERS 411
13.3.3.3 TURBIDIMETERS 411
13.3.3.4 FLOW CONTROL 411
13.3.3.5 TAILWATER CONTROL 411
13.3.3.6 PIPE GALLERY 412
13.3.3.7 ACCESS TO FILTERS 412
13.3.3.8 PLUMBING FUNCTIONS 412
13.3.3.9 HYDRAULIC PROFILE 412
13.3.3.L0HEADROOM 412
13.3.3.11 DESIGNING TO AVOID FREEZING 412
13.3.3.12SAND RECOVERY SYSTEM 413
13.4 PILOT PLANT STUDIES 413
13.4.1 PILOT PLANT CONSTRUCTION 414
13.4.2 CASE STUDY 414
13.4.2.1 CONTEXT 414
13.4.2.2 PILOT PLANT SETUP 414
13.4.2.3 RESULTS 415
13.4.2.4 DISCUSSION 415
IMAGE 14
CONTENTS X X
13.5 OPERATION 415
13.5.1 PLANT START-UP 415
13.5.2 OPERATING TASKS 415
13.5.2.1 SCRAPING 415
13.5.2.2 REBUILDING THE SAND BED 416
13.5.3 MONITORING AND REPORTING 416
PROBLEMS 416
ACKNOWLEDGMENTS 418
GLOSSARY 418
REFERENCES 420
CHAPTER 14 CAKE FILTRATION 423
14.1 DESCRIPTION 423
14.1.1 CAKE FILTRATION IN-A-NUTSHELL 423
14.1.1.1 APPLICATIONS 423
14.1.1.2 DEFINITIONS 423
14.1.1.3 PHASES OF OPERATION 424
14.1.1.4 PROCESS DESCRIPTION 424
14.1.1.5 DE SELECTION 424
14.1.2 MEDIA 425
14.1.2.1 KINDS OF MEDIA 425
14.1.2.2 SOURCES OF MEDIA 425
14.1.2.3 MANUFACTURING OFMEDIA 426
14.1.2.4 CHARACTERISTICS OF MEDIA 427
14.1.3 ATTRIBUTES 427
14.1.4 HISTORY 428
14.1.4.1 1940S MILITARY USE OF DE FILTRATION 428
14.1.4.2 1950S ADAPTATION OF DE FOR MUNICIPAL USE 429
14.1.4.3 RESEARCH 430
14.2 CAKE FILTRATION PROCESS 431
14.2.1 PARTICLE REMOVAL EFFECTIVENESS 431
14.2.1.1 TURBIDITY AND BACTERIA 431
14.2.1.2 PARTICLE COUNTS 432
14.2.1.3 IRON AND MANGANESE 432
14.2.1.4 ASBESTIFORM FIBERS 432
14.2.1.5 BIOLOGICAL PARTICLES 432
14.2.2 REMOVAL MECHANISMS 433
14.2.2.1 STRAINING AND EMBEDDING 433
14.2.2.2 THE ROLE OF BODY FEED 433
14.2.2.3 ADSORPTION 433
14.2.2.4 COMPARISONS BETWEEN FILTRATION PROCESSES 433
14.2.3 HYDRAULICS 433
14.2.3.1 HYDRAULICS OF CAKE FILTRATION 434
14.3 DESIGN 437
14.3.1 DIATOMITE TECHNOLOGIES 437
14.3.1.1 EQUIPMENT 438
14.3.1.2 SYSTEM COMPONENTS 439
14.3.1.3 LAYOUT 440
14.3.2 DESIGN PARAMETERS 441
14.3.2.1 VARIABLES 441
14.3.2.2 GUIDELINES AND CRITERIA 441
14.3.3 DESIGN EXAMPLES 442
14.3.3.1 DATA FROM 12 PLANTS 442
14.3.3.2 PLANT DESCRIPTIONS 442
14.4 OPERATION 445
14.4.1 OPERATING PROTOCOL 445
IMAGE 15
XX CONTENTS
14.4.1.1 PRE-COAT DEPOSIT 445
14.4.1.2 BODY FEED 446
14.4.1.3 VALVE AND PUMP OPERATION 446
14.4.2 MONITORING 446
14.4.2.1 FLOW VERSUS TIME 447
14.4.2.2 HEADLOSS VERSUS TIME 447
14.4.2.3 TURBIDITY VERSUS TIME 447
14.4.2.4 CRITERIA FOR RUN TERMINATION 447
14.4.3 CLEANING AND START-UP 447
14.4.3.1 PROTOCOL 447
14.4.3.2 START-UP 447
14.4.4 DISPOSAL OF WASTE DIATOMITE 447
14.4.4.1 WASTE STORAGE 447
14.4.4.2 WASTE DISPOSAL 447
14.5 PILOT PLANT STUDIES 447
14.5.1 QUESTIONS FOR A PILOT PLANT STUDY 447
14.5.1.1 FUNCTIONAL RELATIONSHIPS 448
14.5.2 CASES 448
14.5.2.1 SR RANCH, COLORADO 448
14.5.2.2 100 MILE HOUSE, BRITISH COLUMBIA 449
PROBLEMS 450
ACKNOWLEDGMENTS 450
GLOSSARY 451
REFERENCES 453
PART IV MOLECULES AND IONS CHAPTER 15 ADSORPTION 457
15.1 DESCRIPTION 457
15.1.1 ADSORPTION IN-A-NUTSHELL 457
15.1.1.1 DEFINITIONS 457
15.1.1.2 PROCESS DESCRIPTION 458
15.1.1.3 OPERATION 458
15.1.1.4 PERFORMANCE MEASURES 458
15.1.2 ADSORBENTS 458
15.1.2.1 KINDS OF ADSORBENTS 458
15.1.2.2 SOURCES OF ACTIVATED CARBON 459
15.1.2.3 MANUFACTURING OF ACTIVATED CARBON 459
15.1.2.4 CHARACTERISTICS OF GAC 459
15.1.2.5 SHIPPING DATA 463
15.1.3 ADSORBATES 463
15.1.3.1 ORGANIC COMPOUNDS 463
15.1.3.2 NATURAL ORGANIC MATTER 464
15.1.4 APPLICATIONS 464
15.1.5 HISTORY 464
15.1.5.1 LORE 465
15.1.5.2 SCIENCE 465
15.1.5.3 PRACTICE 465
15.2 ADSORPTION PROCESS THEORY 466
15.2.1 EQUILIBRIUM 466
15.2.1.1 REACTION 466
15.2.1.2 LANGMUIR ISOTHERM 466
15.2.1.3 FREUNDLICH ISOTHERM 469
15.2.1.4 GENERAL ISOTHERM 470
15.2.1.5 MULTICOMPONENT EQUILIBRIA 470
IMAGE 16
CONTENTS XXI
15.2.2 KINETICS 471
15.2.2.1 GRAPHICAL DEPICTION 471
15.2.2.2 RATE OF UPTAKE: THEORETICAL 473
15.2.2.3 EMPIRICAL RATE EQUATION 473
15.2.3 REACTOR THEORY FOR PACKED BEDS 473
15.2.3.1 MATHEMATICS 473
15.2.3.2 ADVECTION KINETICS 474
15.2.3.3 SIMULATION MODELING 476
15.2.3.4 CHARACTERISTICS OF OUTPUT CURVES 477
15.2.4 RATIONAL DESIGN 479
15.2.4.1 QUICK-AND-DIRTY MASS BALANCE 480
15.2.4.2 EMPIRICAL DATA FOR LWF AND VWF 481
15.2.4.3 THEORETICAL RESULTS FOR LWF AND VWF 481
15.2.5 PROBLEMS 481
15.2.5.1 COMPETITION BETWEEN ADSORBENTS 481
15.2.5.2 CHROMATOGRAPHIC EFFECT 482
15.2.5.3 BACTERIAL COLONIZATION 482
15.3 LABORATORY AND PILOT PLANT STUDIES 483
15.3.1 QUESTIONS FOR A LABORATORY/PILOT PLANT STUDY 483
15.3.1.1 ISOTHERM DETERMINATION 483
15.3.1.2 DETERMINE V(WAVE FRONT) 483
15.3.1.3 L(WAVE FRONT) 484
15.3.1.4 BREAKTHROUGH CURVE 484
15.3.1.5 RATE OF HEADLOSS INCREASE 484
15.3.1.6 BACKWASH VELOCITY 484
15.3.1.7 ASSESS COMPETITIVE EFFECTS OF DIFFERENT ADSORBATES 484
15.3.1.8 DISCOVER EFFECTS OF UNANTICIPATED PROBLEMS 484
15.3.1.9 FABRICATION 484
15.3.2 DEMONSTRATION-SCALE PLANTS 484
15.3.2.1 POMONA : 484
15.3.2.2 DENVER REUSE PLANT 485
15.4 DESIGN 486
15.4.1 DESIGN VARIABLES 486
15.4.1.1 INDEPENDENT PROCESS VARIABLES 486
15.4.1.2 GUIDELINES AND CRITERIA 488
15.4.2 DESIGN PROTOCOL 489
15.4.2.1 SPREADSHEET LAYOUT 489
15.4.2.2 SPREADSHEET SCENARIOS 490
15.4.3 DESIGNEXAMPLES 490
15.4.3.1 EXAMPLES OF SITES 490
15.4.3.2 GAC FOR TASTE-AND-ODOR CONTROL 490
15.4.3.3 CHEMICALS IN DRINKING WATER SOURCES 490
15.4.3.4 PUMP AND TREAT 492
15.4.3.5 TERTIARY TREATMENT 494
15.5 OPERATION AND COSTS 496
15.5.1 OPERATION CHARACTERISTICS 496
15.5.2 COSTS 496
15.5.2.1 SOUTH LAKE TAHOE 496
15.5.2.2 VIRGIN GAC 496
15.5.2.3 REGENERATION 496
PROBLEMS 497
ACKNOWLEDGMENTS 499
APPENDIX 15.A: FREUNDLICH ISOTHERM COEFFICIENTS 499
GLOSSARY 499
REFERENCES 507
FURTHER READINGS 510
IMAGE 17
XXII CONTENTS
CHAPTER 16 ION-EXCHANGE
511
16.1 DESCRIPTION 511
16.1.1 ION-EXCHANGE IN-A-NUTSHELL 511
16.1.1.1 DEFINITIONS 511
16.1.1.2 PROCESS DESCRIPTION 511
16.1.1.3 PHASES OF OPERATION 511
16.1.2 HISTORY 512
16.1.2.1 SCIENCE 512
16.1.3 APPLICATIONS
512
16.1.3.1 MUNICIPAL USE 512
16.1.3.2 REMOVALS OF SPECIFIC IONS 513
16.1.3.3 DEIONIZATION 513
16.1.4 MEDIA 513
16.1.4.1 MINERAL ION-EXCHANGERS 513
16.1.4.2 CLAYS 513
16.1.4.3 ZEOLITES 513
16.1.4.4 SYNTHETIC RESINS 516
16.1.4.5 ALUMINAS 519
16.2 ION-EXCHANGE THEORY 520
16.2.1 CAPACITY OF MEDIA 520
16.2.1.1 EXPRESSIONS OF CAPACITY 520
16.2.1.2 UPPER LIMIT OF CAPACITY 520
16.2.2 EQUILIBRIA 521
16.2.2.1 GENERAL REACTION AND EQUILIBRIUM EQUATIONS 521
16.2.2.2 ISOTHERM EXPRESSION OF EQUILIBRIUM 521
16.2.2.3 SELECTIVITY OF COUNTERIONS 521
16.2.3 KINETICS 522
16.2.3.1 RATE-DETERMINING STEP 522
16.2.3.2 FICK S FIRST LAW 522
16.3 DESIGN 523
16.3.1 SELECTION OF ION-EXCHANGERS 523
16.3.1.1 RESINS 523
16.3.1.2 ZEOLITES 523
16.3.1.3 RANGE OF ION-EXCHANGERS AND PROPERTIES 523
16.3.2 SYSTEM DESIGN 524
16.3.2.1 PRETREATMENT 524
16.3.2.2 REACTOR CYCLE 524
16.3.2.3 REGENERATION 525
16.3.3 REACTOR DESIGN 525
16.3.3.1 SUMMARY OF DESIGN DATA 525
16.3.3.2 PILOT PLANT STUDIES 526
16.4 OPERATION 526
16.4.1 OPERATING CYCLE 527
16.4.1.1 PRODUCTION 527
16.4.1.2 REGENERATION 527
16.4.1.3 DISPOSAL 527
16.5 CASE STUDIES 527
16.5,1 NITRATE REMOVAL AT GLENDALE, ARIZONA 527
PROBLEMS 528
ACKNOWLEDGMENTS 529
APPENDIX 16.A: ION-EXCHANGE CONVERSIONS 529
GLOSSARY 532
REFERENCES 537
BIBLIOGRAPHY 538
IMAGE 18
CONTENTS XXIII
CHAPTER 17 MEMBRANE PROCESSES 539
17.1 DESCRIPTION 539
17.1.1 MEMBRANES IN-A-NUTSHELL 539
17.1.1.1 ANALYSIS: FLOW BALANCE PRINCIPLE 539
17.1.1.2 DEFINITIONS 539
17.1.1.3 ACRONYMS FOR MEMBRANE MATERIALS AND MEMBRANES 539
17.1.1.4 PROCESS DESCRIPTION 539
17.1.1.5 MEMBRANE TECHNOLOGY 540
17.1.1.6 RACKS 541
17.1.1.7 TREATMENT TRAIN 541
17.1.1.8 OPERATION 541
17.1.2 GLOBAL CAPACITY 542
17.1.3 MEMBRANE TYPES 542
17.1.4 MEMBRANE MATERIALS
,
543
17.1.5 MEMBRANE STRUCTURE 543
17.1.5.1 MICROPOROUS MEMBRANES 543
17.1.5.2 ASYMMETRIC MEMBRANES 543
17.1.6 MANUFACTURING 544
17.1.6.1 FLAT SHEETS 544
17.1.6.2 TUBES 544
17.1.7 PACKAGING 545
17.1.7.1 PLATE-AND-FRAME MODULES 545
17.1.7.2 SPIRAL-WOUND MEMBRANE MODULES 545
17.1.7.3 HOLLOW-FIBER MODULES 545
17.1.7.4 FLOW WITHIN MEMBRANE ELEMENT 547
17.1.7.5 RATINGS 547
17.1.7.6 VARIATIONS IN MANUFACTURER S PRODUCTS 548
17.1.8 APPLICATIONS 548
17.1.8.1 PARTICLE REMOVALS 549
17.1.8.2 REMOVAL OF ORGANICS 549
17.1.8.3 REMOVAL OF CATIONS AND ANIONS 549
17.1.9 PROS AND CONS 549
17.1.9.1 ADVANTAGES 549
17.1.9.2 DISADVANTAGES 549
17.2 HISTORY 549
17.2.1 MEMBRANES IN SCIENCE 549
17.2.1.1 BEGINNINGS 550
17.2.1.2 THE DEVELOPMENT PERIOD 550
17.2.1.3 MODERN PERIOD 550
17.2.2 MEMBRANES IN WATER TREATMENT PRACTICE 550
17.3 THEORY 550
17.3.1 PERFORMANCE VARIABLES 550
17.3.2 SOLUTE/PARTICLE REJECTION 550
17.3.3 MODELS DESCRIBING WATER AND SOLUTE FLUX THROUGH MEMBRANES 551
17.3.4 BASIC NOTIONS FOR A CROSS-FLOW MEMBRANE ELEMENT 551
17.3.4.1 HOW BALANCE 551
17.3.4.2 MASS BALANCE AND PRESSURES 552 17.3.4.3 WATER FLUX DENSITY
552
17.3.4.4 SOLUTE MASS FLUX 552
17.3.4.5 TRANSMEMBRANE PRESSURE 552
17.3.5 POISEUILLE LAW 552
17.3.6 OSMOSIS 554
17.3.6.1 OSMOTIC PRESSURE 554
17.3.6.2 REVERSE OSMOSIS 554
17.3.6.3 EFFECT OF MEMBRANE PRESSURE ON WATER FLUX DENSITY 555
IMAGE 19
XXIV CONTENTS
17.3.7 ELECTRODIALYSIS 556
17.3.7.1 APPLICATIONS 556
17.3.8 FOULING 556
17.3.8.1 REVERSIBLE AND IRREVERSIBLE FOULING 557
17.3.8.2 NATURAL ORGANIC MATTER 557
17.3.8.3 PARTICLE FOULING 557
17.3.8.4 INORGANICS 557
17.3.8.5 CONCENTRATION POLARIZATION 557
17.4 DESIGN 559
17.4.1 PRETREATMENT 559
17.4.1.1 CARTRIDGE FILTERS 559
17.4.1.2 MICROFILTER 559
17.4.1.3 CONVENTIONAL TREATMENT 559
17.4.1.4 OTHER PRETREATMENT 559
17.4.2 MEMBRANE LAYOUTS 559
17.4.2.1 FIRST STAGE 560
17.4.2.2 SECOND STAGE 560
17.4.2.3 THIRD STAGE 560
17.4.2.4 CONCENTRATE 560
17.4.2.5 RECOVERIES 560
17.5 OPERATION 560
17.5.1 INTEGRITY TESTING 561
17.5.1.1 BREACHES 561
17.5.1.2 TESTING 561
17.5.2 CLEANING 561
17.6 PILOT PLANTS 561
17.6.1 UTILITY OF PILOT PLANTS 561
17.6.1.1 PILOT PLANT DESIGN...... 561
17.6.1.2 PILOT PLANT OPERATION 562
17.7 CASE 562
17.7.1 CITY OF BRIGHTON REVERSE OSMOSIS WATER TREATMENT PLANT 562
17.7.1.1 BACKGROUND 562
17.7.1.2 BRIGHTON PILOT PLANT 562
17.7.1.3 DESIGN PARAMETERS 562
17.7.1.4 PLANT LAYOUT 563
PROBLEMS 564
ACKNOWLEDGMENTS 565
GLOSSARY 565
REFERENCES 569
CHAPTER 18 GAS TRANSFER 571
18.1 DESCRIPTION 571
18.1.1 GAS TRANSFER IN-A-NUTSHELL 571
18.1.1.1 COMPARISON WITH OTHER MASS-TRANSFER PROCESSES 571
18.1.1.2 PROCESS DESCRIPTION 571
18.1.2 APPLICATIONS 571
18.1.3 HISTORY 571
18.1.3.1 THEORY 572
18.1.3.2 STREAM AERATION 572
18.1.3.3 OXYGEN TRANSFER IN ACTIVATED SLUDGE 572
18.1.3.4 SPIRAL FLOW DIFFUSERS 572
18.1.3.5 TURBINE AERATION 572
18.1.3.6 GRID DIFFUSERS 573
18.1.3.7 AIR STRIPPING 573
IMAGE 20
CONTENTS XXV
18.2 GAS TRANSFER THEORY 573
18.2.1 EQUILIBRIA 573
18.2.1.1 HENRY S LAW 573
18.2.2 KINETICS 573
18.2.2.1 DIFFUSION 573
18.2.2.2 ADAPTATION OF FICK S LAW TO TWO-FILM THEORY 575
18.2.2.3 SURFACE RENEWAL MODELS 579
18.2.2.4 KXJX AS A DESIGN PARAMETER 580
18.2.2.5 DERIVATION OF WORKING EQUATION 580
18.2.3 REACTOR MODELING 583
18.2.3.1 CONTINUOUS-FLOW COMPLETE-MIX REACTOR MODELING FOR GAS TRANSFER
583 18.2.3.2 BATCH REACTOR AERATION MODELING 584
18.2.3.3 COLUMN REACTORMODELING 585
18.2.3.4 COLUMN REACTOR MODELING: PACKED BEDS 588
18.2.3.5 EFFECT OF GAS ON KLA AND UPTAKE/STRIPPING EFFECTS 588
18.3 DESIGN 589
18.3.1 AERATOR DESIGN 589
18.3.1.1 ALGORITHM FOR AERATOR SIZING 589
18.3.1.2 OXYGEN TRANSFERRED PER UNIT OF ENERGY EXPENDITURE 591
18.3.2 EQUIPMENT 591
18.3.2.1 REACTOR TYPES 592
18.3.2.2 TURBINE AERATORS 592
18.3.2.3 DIFFUSED AERATION 594
18.3.3 OPERATION 597
18.4 CASE STUDIES 597
18.4.1 FINE-BUBBLE DIFFUSERS 597
18.4.2 AIR STRIPPING 597
18.4.2.1 SYDNEY MINE AT VALRICO, FLORIDA 597
18.4.2.2 WELL 12A: CITY OF TACOMA, WASHINGTON 597
18.4.2.3 WURTSMITH AFB: OSCODA, MIAMI 599
18.4.2.4 HYDE PARK SUPERFUND SITE, NEW YORK 599
PROBLEMS 599
ACKNOWLEDGMENTS 601
APPENDIX 18.A: ONDA COEFFICIENTS 602
18.A.1 ONDA CORRELATIONS 602
18.A.2 ONDA EQUATIONS 602
GLOSSARY 603
REFERENCES 604
CHAPTER 19 DISINFECTION 607
19.1 FUNDAMENTALS 607
19.1.1 MICROORGANISMS AND DISEASES 607
19.1.2 DISINFECTANTS 607
19.2 HISTORY 607
19.2.1 CHLORINE 607
19.2.1.1 STORY OF CHLORINE 607
19.2.1.2 DISINFECTION BYPRODUCTS ISSUE 610
19.2.2 OZONE 610
19.2.3 CHLORINE DIOXIDE 611
19.2.4 ULTRAVIOLET RADIATION 611
19.2.5 OTHER DISINFECTANTS 612
19.2.5.1 IODINE 612
19.2.5.2 BROMINE 612
19.2.5.3 SILVER 612
IMAGE 21
XXVI CONTENTS
19.3 THEORY 612
19.3.1 INACTIVATION 613
19.3.1.1 FACTORS 613
19.3.1.2 MATHEMATICS 613
19.3.1.3 CT S COMPILED 614
19.3.1.4 CY(CHLORINE) FOR GIARDIA LAMBLIA CYSTS 614
19.3.1.5 INACTIVATION BY OZONE 614
19.3.2 APPLICATION OF CHICK-WATSON RELATION 614
19.3.2.1 EXAMPLES OF C -T RELATION 617
19.3.3 CHLORINE CHEMISTRY 617
19.3.3.1 CHLORINE PROPERTIES 617
19.3.3.2 CHLORINE DEMAND 618
19.3.4 CHLORAMINES 622
19.3.4.1 CHLORINE-AMMONIA REACTIONS 622
19.3.4.2 CHLORAMINE DISINFECTION 622
19.3.5 OZONE CHEMISTRY 622
19.3.6 CHLORINE DIOXIDE 622
19.3.6.1 EFFECTIVENESS OF CHLORINE DIOXIDE AS A DISINFECTANT 622
19.3.6.2 CHARACTERISTICS OF C102 623
19.3.6.3 REACTION ALTERNATIVES 623
19.3.7 ULTRAVIOLET RADIATION 624
19.3.7.1 DISINFECTION RATE BY UV 624
19.3.7.2 LOG R S BY UV 625
19.3.7.3 RADIATION FUNDAMENTALS 625
19.3.7.4 REACTOR DESIGN 628
19.4 DESIGN 629
19.4.1 CHLORINE 629
19.4.1.1 CHLORINE FEED 629
19.4.1.2 REACTOR DESIGN 630
19.4.2 HYPOCHLORITE 630
19.4.3 OZONE 630
19.4.4 CHLORINE DIOXIDES 631
19.4.5 UV REACTORS 631
19.4.5.1 HYDRAULICS 631
19.4.5.2 UV REACTORS VOLUME 631
19.4.5.3 UV LAMPS 632
19.4.5.4 LAMP COMPONENTS 632
19.4.5.5 UV DESIGN GUIDELINES 633
19.4.6 COSTS 633
19.4.7 CASE 633
19.4.8 SUMMARY 633
19.5 OPERATION 633
19.5.1 CHLORINE OPERATION 633
19.5.2 OZONE OPERATION 633
19.5.3 ULTRAVIOLET LAMPS 634
PROBLEMS 634
ACKNOWLEDGMENTS 635
GLOSSARY 635
REFERENCES 640
CHAPTER 20 OXIDATION 643
20.1 DESCRIPTION 643
20.1.1 APPLICATIONS OF OXIDATION TECHNOLOGY 643
20.1.2 HISTORY OF OXIDATION TECHNOLOGY 643
20.1.2.1 OXIDATION BASED ON ELECTROMOTIVE POTENTIAL 643
IMAGE 22
CONTENTS XXVII
20.1.2.2 WET-OXIDATION 644
20.1.2.3 SUPERCRITICAL WATER OXIDATION 644
20.2 OXIDATION THEORY 644
20.2.1 FUNDAMENTALS 644
20.2.1.1 DEFINITIONS 645
20.2.1.2 ENUMERATION OF REACTION 645
20.2.1.3 HALF REACTIONS 645
20.2.1.4 OXIDATION NUMBERS 646
20.2.1.5 THERMODYNAMIC RELATIONS 646
20.2.2 OXIDANTS 647
20.2.2.1 CHLORINE 647
20.2.2.2 OZONE 647
20.2.2.3 HYDROXYL RADICAL 649
20.2.2.4 PERMANGANATE 649
20.2.2.5 CHLORINE DIOXIDE 649
20.2.2.6 TITANIUM DIOXIDE 650
20.2.3 SUPERCRITICAL WATER OXIDATION 650
20.2.3.1 CRITICAL POINT 650
20.2.3.2 SCWO IN-A-NUTSHELL 650
20.2.3.3 CHARACTERISTICS OF SUPERCRITICAL WATER RELEVANT TO ENGINEERING
651
20.2.3.4 SUPERCRITICAL REACTORS 652
20.2.3.5 RESEARCH IN THE 1990S 653
20.2.3.6 DESIGN FACTORS 653
20.2.3.7 CASE STUDY: SCWO OF PULP AND PAPER MILL SLUDGE 653
20.3 PRACTICE 655
PROBLEMS 655
ACKNOWLEDGMENTS 656
GLOSSARY 656
REFERENCES 658
FURTHER READING 659
CHAPTER 21 PRECIPITATION 661
21.1 DESCRIPTION 661
21.1.1 PRECIPITATION IN-A-NUTSHELL 661
21.1.1.1 DEFINITIONS 661
21.1.1.2 COMPARISON WITH OTHER PROCESSES 661
21.1.1.3 PROCESS DESCRIPTION 661
21.1.2 APPLICATIONS 661
21.1.2.1 SOFTENING 661
21.1.2.2 TOXIC METALS REMOVAL 662
21.1.3 HISTORY 662
21.1.3.1 SOFTENING 662
21.1.3.2 SEWAGE TREATMENT 662
21.1.3.3 HEAVY METALS 662
21.2 PRECIPITATION THEORY 663
21.2.1 EQUILIBRIA 663
21.2.1.1 SOLUBILITY LAW 663
21.2.1.2 APPLICATION OF SOLUBILITY LAW 663
21.2.1.3 LISTING OF SOLUBILITY PRODUCTS 665
21.2.1.4 SOLUBILITY PC-PH DIAGRAMS 665
21.2.1.5 PE-PH DIAGRAMS 666
21.2.1.6 GENERAL RULES OF SOLUBILITY 667
21.2.2 HARDNESS 667
21.2.2.1 OCCURRENCE OF HARDNESS 667
21.2.2.2 EXPRESSING OF HARDNESS AS CAC03 667
21.2.2.3 OTHER DEFINITIONS OF HARDNESS 668
IMAGE 23
XXVIII CONTENTS
21.2.2.4 SOFTENING REACTIONS 668
21.2.2.5 LIME-SODA PROCESS 669
21.2.3 CHEMISTRY OF METALS 669
21.3 PRACTICE 670
21.3.1 LIME SOFTENING 670
21.3.2 PRECIPITATION OF HEAVY METALS 670
21.3.2.1 COMMON CHEMICAL REACTIONS 670
21.3.2.2 CASE: MINE DRAINAGE 671
21.3.3 PRECIPITATION OF ANIONS 671
21.3.3.1 PHOSPHATE PRECIPITATION 671
21.3.3.2 CYANIDE PRECIPITATION 672
PROBLEMS 672
ACKNOWLEDGMENT 672
GLOSSARY 672
REFERENCES 675
PART V BIOLOGICAL TREATMENT
CHAPTER 22 BIOLOGICAL PROCESSES AND KINETICS 679
22.1 BACKGROUND 679
22.1.1 1880-1980 679
22.1.2 PRACTICE 679
22.1.3 THEORY 679
22.1.4 DEFINITIONS 680
22.1.4.1 REACTION CLASSIFICATIONS 680
22.1.4.2 BOD NOMENCLATURE 681
22.1.4.3 SURROGATES FOR ACTIVE BIOMASS CONCENTRATION, X 681
22.1.5 WASTEWATERS 681
22.1.5.1 MUNICIPAL WASTEWATERS 681
22.1.5.2 INDUSTRIAL WASTES 681
22.1.5.3 CONTAMINANTS 683
22.2 CELL METABOLISM 683
22.2.1 METABOLIC REACTIONS 684
22.2.1.1 CATABOLISM 684
22.2.1.2 ANABOLISM 685
22.2.1.3 CELL DIVISION 686
22.2.1.4 PHOTOSYNTHESIS 686
22.2.1.5 ENERGY PRINCIPLES 686
22.3 BIOLOGICAL TREATMENT OVERVIEW 687
22.3.1 COMPOSITION OF SUBSTRATES 687
22.3.1.1 DOMESTIC WASTEWATER AND ORGANIC COMPOUNDS 687
22.3.1.2 INDUSTRIAL WASTEWATERS 688
22.3.2 COMPOSITION OF CELLS 688
22.3.2.1 EMPIRICAL FORMULAE FOR CELLS 688
22.3.3 BIOLOGICAL REACTIONS 688
22.3.3.1 SUBSTRATE TO CELLS 688
22.3.3.2 HETEROTROPHIC 689
22.3.3.3 AUTOTROPHIC INVOLVING NITROGEN 689
22.3.3.4 ANAEROBIC 690
22.3.3.5 BALANCING EQUATIONS BY HALF-REACTIONS 691
22.4 CELL YIELD 692
22.4.1 CELL-YIELD CALCULATION 692
22.4.2 CELL MAINTENANCE AND ENDOGENOUS RESPIRATION 693
IMAGE 24
CONTENTS XXIX
22.4.2.1 CELL MAINTENANCE 693
22.4.2.2 ENDOGENOUS RESPIRATION 693
22.4.2.3 MICROBIAL GROWTH CURVE AND DEBRIS ACCUMULATION 694
22.4.3 NET CELL YIELD, Y(NET) 694
22.4.3.1 CELL MASS RELATIONS 694
22.4.3.2 CELL MASS RATE RELATIONS 694
22.4.4 DECLINE IN DEGRADABLE VSS 695
22.4.5 CELL-YIELD DATA 695
22.5 KINETICS OF BIOLOGICAL REACTIONS 695
22.5.1 MONOD DESCRIPTION OF BIOLOGICAL REACTIONS 695
22.5.2 KS AS THE HALF-SATURATION CONSTANT 695
22.5.3 NET SPECIFIC GROWTH RATE, U.(NET) 696
22.5.4 TEMPERATURE EFFECT 697
22.5.5 EVALUATION OF KINETIC CONSTANTS 697
22.5.5.1 DATA ON KINETIC CONSTANTS 697
22.5.6 ANDREWS/HALDANE MODEL OF SUBSTRATE INHIBITION 697
22.5.7 KINETIC PARAMETERS 698
22.5.7.1 SPECIFIC SUBSTRATE UTILIZATION RATE, U 698
22.5.7.2 F/M RATIO 700
22.5.7.3 CONVERSION F/M TO U 700
22.5.7.4 RELATING MONOD KINETICS TO U 701
22.5.7.5 SLUDGE AGE, 9C 701
22.5.7.6 MINIMUM CELL REGENERATION TIME, 0 701
22.5.7.7 RELATIONSHIP BETWEEN U AND 0C 701
22.5.8 NITRIFICATION/DENITRIFICATION 701
22.5.8.1 NITRIFICATION: NH4+ TO N03~ 701
22.5.8.2 DENITRIFICATION: N03~ TO N2 GAS 702
22.5.9 PHOSPHOROUS UPTAKE 702
22.5.9.1 OCCURRENCE IN WASTEWATERS 702
22.5.9.2 UPTAKE TO CELLS 702
22.5.9.3 THEORY 702
22.5.9.4 TECHNOLOGIES 703
22.6 SUMMARY 703
PROBLEMS 703
ACKNOWLEDGMENTS * 704
APPENDIX 22.A: PROTEINS 704
22.A.1 PROTEIN MOLECULES 704
22.A.2 UREA 705
22.A.3 ATP 705
APPENDIX 22.B: MICHAELIS-MENTEN EQUATION 705
22.B.1 ENZYME KINETICS 705
GLOSSARY 707
REFERENCES 718
CHAPTER 23 BIOLOGICAL REACTORS 721
23.1 BIOLOGICAL REACTOR SPECTRUM 721
23.2 ACTIVATED SLUDGE 721
23.2.1 HISTORY 721
23.2.1.1 BEGINNINGS 721
23.2.1.2 FROM EMPIRICISM TO SCIENCE 724
23.2.1.3 MILESTONES 724
23.2.1.4 MODERN HISTORY 725
23.2.2 ACTIVATED-SLUDGE REACTOR ANALYSIS 725
23.2.2.1 MATERIALS BALANCE 726
23.2.2.2 CONVENTIONAL ACTIVATED SLUDGE 727
23.2.2.3 EXTENDED AERATION 729
IMAGE 25
XXX CONTENTS
23.2.2.4 AERATED LAGOON 729
23.2.2.5 PLUG-FLOW REACTOR 730
23.2.3 NUMERICAL MODELING 732
23.2.3.1 NUMERICAL MODEL CONCEPT 733
23.2.3.2 IWA ACTIVATED-SLUDGE MODEL 733
23.2.4 PRACTICE 733
23.2.4.1 EMPIRICAL GUIDELINES 734
23.2.4.2 EXPERIENCE WITH PLANTS 737
23.2.5 OPERATION 737
23.2.5.1 BULKING SLUDGE 738
23.3 BIOFILM REACTORS 739
23.3.1 BIOFILMS 739
23.3.1.1 STRUCTURE 739
23.3.1.2 TRANSPORT OF NUTRIENTS 739
23.3.2 BIOFILM REACTORS MODEL 739
23.3.2.1 EMPIRICAL EQUATION 739
23.3.2.2 TRICKLING-FILTER SPREADSHEET MODEL..... 741
23.4 ANAEROBIC REACTORS 741
23.4.1 EVOLUTION OF SEPARATE SLUDGE DIGESTION 741
23.4.2 DESIGN CRITERIA 742
23.4.2.1 HIGH-RATE DIGESTION 742
23.4.3 PROCESS DESIGN PRINCIPLES 742
23.4.3.1 REACTIONS 743
23.4.3.2 KINETICS 744
23.4.3.3 INFLUENCES ON REACTION VELOCITY 744
23.4.3.4 EFFECT OF TEMPERATURE 745
23.4.3.5 MIXING 745
23.4.3.6 ENVIRONMENTAL CONDITIONS 746
23.4.3.7 MATERIALS BALANCE: KINETIC MODEL 746
23.4.3.8 PRACTICE 746
23.4.4 OPERATION AND MONITORING 747
23.4.4.1 PROCESS UPSETS 747
23.4.4.2 INDICATORS AND TESTS 747
23.4.4.3 PERCENT REDUCTION OF VOLATILE SUSPENDED SOLIDS 747
23.5 SUMMARY 748
23.5.1 STATE OF THE ART 748
23.5.2 PARAMETERS 748
PROBLEMS 749
ACTIVATED SLUDGE 749
BIO-FILTERS 750
ANAEROBIC 750
ACKNOWLEDGMENTS 751
APPENDIX 23.A: BIOFILM REACTOR MODEL 751
23.A. 1 BIOFILM REACTORS MODEL 751
23.A.1.1 MATHEMATICS 752
23.A.1.2 APPROXIMATION MODEL BY LUMPING COEFFICIENTS 753
GLOSSARY 754
REFERENCES 754
PRE-APPENDIX TABLES 757
APPENDIX A INTERNATIONAL SYSTEM OF UNITS 765
APPENDIX B PHYSICAL CONSTANTS AND PHYSICAL DATA 773
IMAGE 26
CONTENTS XXXI
APPENDIX C MISCELLANEOUS RELATIONS 783
APPENDIX D FLUID MECHANICS-REVIEWS OF SELECTED TOPICS 791
APPENDIX E POROUS MEDIA HYDRAULICS 819
APPENDIX F ALUM DATA AND CONVERSIONS 833
APPENDIX G DIMENSIONLESS NUMBERS 847
APPENDIX H DISSOLVED GASES 851
INDEX 871
|
any_adam_object | 1 |
author | Hendricks, David W. |
author_facet | Hendricks, David W. |
author_role | aut |
author_sort | Hendricks, David W. |
author_variant | d w h dw dwh |
building | Verbundindex |
bvnumber | BV037226794 |
classification_rvk | AR 22362 |
ctrlnum | (OCoLC)699602298 (DE-599)GBV621536288 |
dewey-full | 628.162 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 628 - Sanitary engineering |
dewey-raw | 628.162 |
dewey-search | 628.162 |
dewey-sort | 3628.162 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Allgemeines Bauingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01813nam a2200469 c 4500</leader><controlfield tag="001">BV037226794</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110822 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110215s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420061917</subfield><subfield code="9">1-420-06191-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420061918</subfield><subfield code="9">978-1-420-06191-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)699602298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV621536288</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">628.162</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AR 22362</subfield><subfield code="0">(DE-625)8473:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hendricks, David W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fundamentals of water treatment unit processes</subfield><subfield code="b">physical, chemical, and biological</subfield><subfield code="c">David Hendricks</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Water treatment unit processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press [u.a.]</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XLIII, 883 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Environmental engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water</subfield><subfield code="x">Purification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sewage</subfield><subfield code="x">Purification</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasseraufbereitung</subfield><subfield code="0">(DE-588)4064698-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wasserreinigung</subfield><subfield code="0">(DE-588)4274580-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abwasserreinigung</subfield><subfield code="0">(DE-588)4000313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wasseraufbereitung</subfield><subfield code="0">(DE-588)4064698-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wasserreinigung</subfield><subfield code="0">(DE-588)4274580-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Abwasserreinigung</subfield><subfield code="0">(DE-588)4000313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wasseraufbereitung</subfield><subfield code="0">(DE-588)4064698-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021140559&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021140559</subfield></datafield></record></collection> |
id | DE-604.BV037226794 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:53:53Z |
institution | BVB |
isbn | 1420061917 9781420061918 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021140559 |
oclc_num | 699602298 |
open_access_boolean | |
owner | DE-634 DE-83 |
owner_facet | DE-634 DE-83 |
physical | XLIII, 883 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | CRC Press [u.a.] |
record_format | marc |
series2 | Environmental engineering |
spelling | Hendricks, David W. Verfasser aut Fundamentals of water treatment unit processes physical, chemical, and biological David Hendricks Water treatment unit processes Boca Raton, Fla. [u.a.] CRC Press [u.a.] 2011 XLIII, 883 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Environmental engineering Literaturangaben Water Purification Sewage Purification Wasseraufbereitung (DE-588)4064698-1 gnd rswk-swf Wasserreinigung (DE-588)4274580-9 gnd rswk-swf Abwasserreinigung (DE-588)4000313-9 gnd rswk-swf Wasseraufbereitung (DE-588)4064698-1 s Wasserreinigung (DE-588)4274580-9 s Abwasserreinigung (DE-588)4000313-9 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021140559&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hendricks, David W. Fundamentals of water treatment unit processes physical, chemical, and biological Water Purification Sewage Purification Wasseraufbereitung (DE-588)4064698-1 gnd Wasserreinigung (DE-588)4274580-9 gnd Abwasserreinigung (DE-588)4000313-9 gnd |
subject_GND | (DE-588)4064698-1 (DE-588)4274580-9 (DE-588)4000313-9 |
title | Fundamentals of water treatment unit processes physical, chemical, and biological |
title_alt | Water treatment unit processes |
title_auth | Fundamentals of water treatment unit processes physical, chemical, and biological |
title_exact_search | Fundamentals of water treatment unit processes physical, chemical, and biological |
title_full | Fundamentals of water treatment unit processes physical, chemical, and biological David Hendricks |
title_fullStr | Fundamentals of water treatment unit processes physical, chemical, and biological David Hendricks |
title_full_unstemmed | Fundamentals of water treatment unit processes physical, chemical, and biological David Hendricks |
title_short | Fundamentals of water treatment unit processes |
title_sort | fundamentals of water treatment unit processes physical chemical and biological |
title_sub | physical, chemical, and biological |
topic | Water Purification Sewage Purification Wasseraufbereitung (DE-588)4064698-1 gnd Wasserreinigung (DE-588)4274580-9 gnd Abwasserreinigung (DE-588)4000313-9 gnd |
topic_facet | Water Purification Sewage Purification Wasseraufbereitung Wasserreinigung Abwasserreinigung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021140559&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hendricksdavidw fundamentalsofwatertreatmentunitprocessesphysicalchemicalandbiological AT hendricksdavidw watertreatmentunitprocesses |