Physical electrochemistry: fundamentals, techniques and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2011
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XX, 373 S. graph. Darst. |
ISBN: | 9783527319701 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037182777 | ||
003 | DE-604 | ||
005 | 20130605 | ||
007 | t | ||
008 | 110125s2011 gw d||| |||| 00||| eng d | ||
015 | |a 08,N24,1568 |2 dnb | ||
016 | 7 | |a 98881210X |2 DE-101 | |
020 | |a 9783527319701 |9 978-3-527-31970-1 | ||
035 | |a (OCoLC)706986784 | ||
035 | |a (DE-599)DNB98881210X | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-29T |a DE-11 |a DE-526 |a DE-20 |a DE-634 |a DE-92 |a DE-1043 |a DE-188 |a DE-703 |a DE-91G |a DE-19 |a DE-355 |a DE-91 |a DE-B768 |a DE-83 | ||
082 | 0 | |a 541.37 |2 22/ger | |
084 | |a VE 6300 |0 (DE-625)147132:253 |2 rvk | ||
084 | |a 660 |2 sdnb | ||
084 | |a CHE 140f |2 stub | ||
100 | 1 | |a Gileadi, Eliʿezer |d 1932- |e Verfasser |0 (DE-588)124010180 |4 aut | |
245 | 1 | 0 | |a Physical electrochemistry |b fundamentals, techniques and applications |c Eliezer Gileadi |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2011 | |
300 | |a XX, 373 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Elektrochemie |0 (DE-588)4014241-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physikalische Chemie |0 (DE-588)4045959-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrochemie |0 (DE-588)4014241-3 |D s |
689 | 0 | 1 | |a Physikalische Chemie |0 (DE-588)4045959-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3112939&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021097354&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-021097354 |
Datensatz im Suchindex
_version_ | 1805095274629038080 |
---|---|
adam_text |
IMAGE 1
CONTENTS
PREFACE XIII ABBREVIATIONS XV SYMBOLS XVII
1 INTRODUCTION L
1.1 GENERAL CONSIDERATIONS L
1.1.1 THE CURRENT-POTENTIAL RELATIONSHIP 1 1.1.2 THE RESISTANCE OFTHE
INTERFACE CAN BE INFINITE 2 1.1.3 THE TRANSITION FROM ELECTRONIC TO
IONIC CONDUCTION 3 1.1.4 MASS-TRANSPORT LIMITATION 3
1.1.5 THE CAPACITANCE AT THE METAL/SOLUTION INTERFACE 5 1.2 POLARIZABLE
AND NONPOLARIZABLE INTERFACES 5 1.2.1 PHENOMENOLOGY 5
1.2.2 THE EQUIVALENT CIRCUIT REPRESENTATION 6
2 THE POTENTIALS OF PHASES 9
2.1 THE DRIVING FORCE 9
2.1.1 DEFINITION OFTHE ELECTROCHEMICAL POTENTIAL 9 2.1.2 SEPARABILITY
OFTHE CHEMICAL AND THE ELECTRICAL TERMS 10 2.2 TWO CASES OF SPECIAL
INTEREST 12
2.2.1 EQUILIBRIUM OF A SPECIES BETWEEN TWO PHASES IN CONTACT 12 2.2.2
TWO IDENTICAL PHASES NOT AT EQUILIBRIUM 13 2.3 THE MEANING OFTHE
STANDARD HYDROGEN ELECTRODE (SHE) SCALE 14
3 FUNDAMENTAL MEASUREMENTS IN ELECTROCHEMISTRY 17 3.1 MEASUREMENT OF
CURRENT AND POTENTIAL 17 3.1.1 THE CELL VOLTAGE IS THE SUM OF SEVERAL
POTENTIAL DIFFERENCES 17 3.1.2 USE OF A NON-POLARIZABLE COUNTER
ELECTRODE 17
3.1.3 THE THREE-ELECTRODE MEASUREMENT 18 3.1.4 RESIDUAL JR S POTENTIAL
DROP IN A THREE-ELECTRODE CELL 19 3.2 CELL GEOMETRY AND THE CHOICE OFTHE
REFERENCE ELECTRODE 20
PHYSICAL ELECTROCHEMISTRY FUNDAMENTALS, TECHNIQUES AND APPLICATIONS.
ELIEZER GIIEADI COPYRIGHT 2011 WILEY-VCH VERLAG GMBH & CO. KGAA,
WEINHEIM ISBN: 978-3-527-31970-1
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/98881210X
DIGITALISIERT DURCH
IMAGE 2
VI CONTENTS
3.2.1 TYPES OF REFERENCE ELECTRODES 20
3.2.2 USE OF AN AUXILIARY REFERENCE ELECTRODE FOR THE STUDY OF FAST
TRANSIENTS 21 3.2.3 CALCULATING THE UNCOMPENSATED SOLUTION RESISTANCE
FOR A FEW SIMPLE GEOMETRIES 21 3.2.3.1 PLANAR CONFIGURATION 21 3.2.3.2
CYLINDRICAL CONFIGURATION 22 3.2.3.3 SPHERICAL SYMMETRY 22 3.2.4
POSITIONING THE REFERENCE ELECTRODE 24 3.2.5 EDGE EFFECTS 25
4 ELECTRODE KINETICS: SOME BASIC CONCEPTS 29 4.1 RELATING ELECTRODE
KINETICS TO CHEMICAL KINETICS 29 4.1.1 THE RELATION OF CURRENT DENSITY
TO REACTION RATE 29 4.1.2 THE RELATION OF POTENTIAL TO ENERGY
OFACTIVATION 30 4.1.3 MASS-TRANSPORT VERSUS CHARGE-TRANSFER LIMITATION
32 4.1.4 THE THICKNESS OFTHE NERNST DIFFUSION LAYER 33 4.2 METHODS OF
MEASUREMENT 35
4.2.1 POTENTIAL CONTROL VERSUS CURRENT CONTROL 35 4.2.2 THE NEED TO
MEASURE FAST TRANSIENTS 37 4.2.3 POLAROGRAPHY AND THE DROPPING-MERCURY
ELECTRODE (DME) 40 4.2.4 APPLICATION OFTHE STATIONARY DROPPING-MERCURY
ELECTRODE
FOR KINETIC STUDIES 43 4.3 ROTATING ELECTRODES 44
4.3.1 THE ROTATING DISC ELECTRODE (RDE) 44 4.3.2 THE ROTATING CONE
ELECTRODE (RCONEE) 49 4.3.3 THE ROTATING RING-DISC ELECTRODE (RRDE) 49
4.3.4 ROTATING CYLINDER ELECTRODE (RCYLE) 51 4.4 THE PHYSICAL MEANING OF
REVERSIBILITY 52
5 SINGLE-STEP ELECTRODE REACTIONS 55
5.1 THE OVERPOTENTIAL, R) 55
5.1.1 DEFINITION AND PHYSICAL MEANING OF OVERPOTENTIAL 55 5.1.2 TYPES OF
OVERPOTENTIAL 57 5.2 FUNDAMENTAL EQUATIONS OF ELECTRODE KINETICS 59
5.2.1 THE EMPIRICAL TAFEL EQUATION 59 5.2.2 TRANSITION-STATE THEORY 59
5.2.3 THE EQUATION FOR A SINGLE-STEP ELECTRODE REACTION 61 5.2.4
LIMITING CASES OFTHE GENERAL EQUATION 63 5.3 THE SYMMETRY FACTOR IN
ELECTRODE KINETICS 66 5.3.1 THE DEFINITION OFSS 66
5.3.2 THE NUMERICAL VALUE OFSS 68
5.4 THE MARCUS THEORY OF CHARGE TRANSFER 68 5.4.1 OUTER-SPHERE ELECTRON
TRANSFER 68 5.4.2 THE BORN-OPPENHEIMER APPROXIMATION 69
IMAGE 3
CONTENTS VIL
5.4.3 THE CALCULATED ENERGY OFACTIVATION 71
5.4.4 THE VALUE OFSS AND ITS POTENTIAL DEPENDENCE 71 5.5 TIME-RESOLVED
KINETICS OF CHARGE TRANSFER 72 5.5.1 METAL DEPOSITION AND DISSOLUTION 72
6 MULTI-STEP ELECTRODE REACTIONS 77
6.1 MECHANISTIC CRITERIA 77
6.1.1 THE TRANSFER COEFFICIENT, A, AND ITS RELATION TO THE SYMMETRY
FACTOR, SS 77 6.1.2 STEADY STATE AND QUASI-EQUILIBRIUM 79 6.1.3
CALCULATION OFTHE TAFEL SLOPE 81 6.1.4 REACTION ORDERS IN ELECTRODE
KINETICS 84 6.1.5 THE EFFECT OF PH ON REACTION RATES 88 6.1.6 THE
ENTHALPY OFACTIVATION 90
7 SPECIFIE EXAMPLES OF MULTI-STEP ELECTRODE REACTIONS 93 7.1
EXPERIMENTAL CONSIDERATIONS 93 7.1.1 MULTIPLE PROCESSES IN PARALLEL 93
7.1.2 THE LEVEL OF IMPURITY THAT CAN BE TOLERATED 94 7.2 THE
HYDROGEN-EVOLUTION REACTION 98 7.2.1 HYDROGEN EVOLUTION ON MERCURY 98
7.2.2 HYDROGEN EVOLUTION ON PLATINUM 99 7.3 HYDROGEN STORAGE AND
HYDROGEN EMBRITTLEMENT 102 7.3.1 HYDROGEN STORAGE 102 7.3.2 HYDROGEN
EMBRITTLEMENT 104 7.4 POSSIBLE PATHS FOR THE OXYGEN-EVOLUTION REACTION
105 7.5 THE ROLE AND STABILITY OF ADSORBED INTERMEDIATES 108 7.6
CATALYTIC ACRIVITY: THE RELATIVE IMPORTANCE OF J 0 AND B 109 7.7
ADSORPTION ENERGY AND CATALYTIC ACTIVITY 110 7.8 ELECTROCATALYTIC
OXIDATION OF METHANOL 112
8 THE LONIC DOUBLE-LAYER CAPACITANCE QI 113 8.1 THEORIES OF DOUBLE-LAYER
STRUCTURE 113 8.1.1 PHENOMENOLOGY 113 8.1.2 THE PARALLEL-PLATE MODEL OF
HELMHOLTZ 115 8.1.3 THE DIFFUSE-DOUBLE-LAYER THEORY OF GOUY AND CHAPMAN
116 8.1.4 THE STERN MODEL 118
8.1.5 THE ROLE OFTHE SOLVENT AT THE INTERFACE 121 8.1.6 SIMPLE
INSTRUMENTATION FOR THE MEASUREMENT OF C\ 123
9 ELECTROCAPILLARITY 127
9.1 THERMODYNAMICS 127
9.1.1 ADSORPTION AND SURFACE EXCESS 127 9.1.2 THE GIBBS ADSORPTION
ISOTHERM 129 9.1.3 THE ELECTROCAPILLARY EQUATION 130
IMAGE 4
VIII CONTENTS
9.2 METHODS OF MEASUREMENT AND SOME RESULTS 132
9.2.1 THE ELECTROCAPILLARY ELECTROMETER 132 9.2.2 SOME EXPERIMENTAL
RESULTS 137 9.2.2.1 THE ADSORPTION OF IONS 137 9.2.2.2 ADSORPTION OF
NEUTRAL MOLECULES JI38
10 NANOTECHNOLOGY AND ELECTROCATALYSIS 141 10.1 THE EFFECT OF SIZE ON
PHASE TRANSFORMATION 141 10.1.1 INTRODUCTION 141 10.1.2 THE VAPOR
PRESSURE OF SMALL DROPLETS AND THE MELTING POINT
OF SOLID NANOPARTICLES 142 10.1.3 THE THERMODYNAMIC STABILITY AND
THERMAL MOBILITY OF NANOPARTICLES 144 10.2 THE EFFECT OF PARTICLE SIZE
ON CATALYTIC ACTIVITY 146 10.2.1 DOES A HIGHER ENERGY OF ADSORPTION
INDICATE HIGHER CATALYTIC
ACTIVITY? 146
10.2.2 NANOPARTICLES COMPARED TO MICROELECTRODES 147 10.2.3 THE NEED FOR
HIGH SURFACE AREA 148
11 INTERMEDIATES IN ELECTRODE REACTIONS 151 11.1 ADSORPTION ISOTHERMS
FOR INTERMEDIATES FORMED BY CHARGE TRANSFER 151
11.1.1 GENERAL 151
11.1.2 THE LANGMUIR ISOTHERM AND ITS LIMITATIONS 151 11.1.3 RELATING
BULK CONCENTRATION TO SURFACE COVERAGE 153 11.1.4 APPLICATION OFTHE
LANGMUIR ISOTHERM FOR CHARGE-TRANSFER PROCESSES 153 11.1.5 THE FRUMKIN
AND TEMKIN ISOTHERMS 155 11.2 THE ADSORPTION PSEUDOCAPACITANCE C F, 157
11.2.1 FORMAL DEFINITION OF Q, AND ITS PHYSICAL SIGNIFICANCE 157 11.2.2
THE EQUIVALENT CIRCUIT REPRESENTATION 159 11.2.3 CALCULATION OF C^ AS A
FONCTION OF 6 AND 160
11.2.3.1 THE LANGMUIR ISOTHERM 160 11.2.3.2 THE FRUMKIN ISOTHERM 161
11.2.4 THE CASE OF NEGATIVE VALUES OFTHE PARAMETER F 163
12 UNDERPOTENTIAL DEPOSITION AND SINGLE-CRYSTAL ELECTROCHEMISTRY 165
12.1 UNDERPOTENTIAL DEPOSITION (UPD) 165 12.1.1 DEFINITION AND
PHENOMENOLOGY 165 12.1.2 UPD ON SINGLE CRYSTALS 169 12.1.3
UNDERPOTENTIAL DEPOSITION OF HALOGEN ATOMS 171 12.1.4 UNDERPOTENTIAL
DEPOSITION OFATOMIC OXYGEN AND HYDROGEN 172
13 ELECTROSORPTION 175
13.1 PHENOMENOLOGY 175
IMAGE 5
CONTENTS IX
13.1.1 WHAT IS ELECTROSORPTION? 175
13.1.2 ELECTROSORPTION OF NEUTRAL ORGANIC MOLECULES 177 13.1.3 THE
POTENTIAL OF ZERO CHARGE, E Z , AND ITS IMPORTANCE IN ELECTROSORPTION
178 13.1.4 THE WORK FUNCTION AND THE POTENTIAL OF ZERO CHARGE 181
13.2 METHODS OF MEASUREMENT AND SOME EXPERIMENTAL RESULTS 182 13.2.1
ELECTROSORPTION ON SOLID ELECTRODES 182 13.2.2 THE RADIOTRACER METHODS
185 13.2.3 METHODS BASED ON THE CHANGE IN BULK CONCENTRATION 185 13.2.4
THE LIPKOWSKI METHOD 186 13.3 ADSORPTION ISOTHERMS FOR NEUTRAL SPECIES
188 13.3.1 GENERAL COMMENTS 188 13.3.2 THE PARALLEL-PLATE MODEL OF
FRUMKIN 189 13.3.3 THE WATER-REPLACEMENT MODEL OF BOCKRIS, DEVANATHAN
AND MULLER 191
14 EXPERIMENTAL TECHNIQUES 195 14.1 FAST TRANSIENTS 195
14.1.1 THE NEED FOR FAST TRANSIENTS 195 14.1.2 SMALL-AMPLITUDE
TRANSIENTS 197 14.1.3 THE SLUGGISH RESPONSE OFTHE ELECTROCHEMICAL
INTERFACE 199 14.1.4 HOW CAN THE SLOW RESPONSE OFTHE INTERFACE BE
OVEREOME? 199
14.1.4.1 GALVANOSTATIC TRANSIENT 199 14.1.4.2 THE DOUBLE-PULSE
GALVANOSTATIC METHOD 200 14.1.4.3 THE COULOSTATIC (CHARGE-INJECTION)
METHOD 201 14.2 THE TIME-DEPENDENT DIFFUSION EQUATION 204 14.2.1 THE
BOUNDARY CONDITIONS OFTHE DIFFUSION EQUATION 204
14.2.1.1 POTENTIAL STEP, REVERSIBLE CASE (CHRONO-AMPEROMETRY) 205
14.2.1.2 POTENTIAL STEP, HIGH OVERPOTENTIAL REGION (CHRONO-AMPEROMETRY)
208 14.2.1.3 CURRENT STEP (CHRONOPOTENTIOMETRY) 209 14.2.2
OPEN-CIRCUIT-DECAY TRANSIENTS 211 14.3 MICROELECTRODES 213 14.3.1 THE
UNIQUE FEATURES OF MICROELECTRODES 213 14.3.2 ENHANCEMENT OF DIFFUSION
AT A MICROELECTRODE 214 14.3.3 REDUCTION OF SOLUTION RESISTANCE 215
14.3.4 THE CHOICE BETWEEN SINGLE MICROELECTRODES OR ENSEMBLES OF
THOUSANDS
OF MICROELECTRODES 216 14.3.5 SHAPES OF MICROELECTRODES AND ENSEMBLES
219
15 EXPERIMENTAL TECHNIQUES (2) 221 15.1 LINEAR POTENTIAL SWEEP AND
CYCLIC VOLTAMMETRY 221 15.1.1 THREE TYPES OF LINEAR POTENTIAL SWEEP 221
15.1.2 DOUBLE-LAYER-CHARGING CURRENTS 223
15.1.3 THE FORM OFTHE CURRENT-POTENTIAL RELATIONSHIP 225 15.2 SOLUTION
OFTHE DIFFUSION EQUATIONS 226 15.2.1 REVERSIBLE REGION 227
IMAGE 6
CONTENTS
15.2.2 HIGH-OVERPOTENTIAL REGION 228
15.3 USES AND LIMITATIONS OF LPS AND CV 229 15.4 CYCLIC VOLTAMMETRY FOR
MONOLAYER ADSORPTION 232 15.4.1 REVERSIBLE REGION 232 15.4.2
HIGH-OVERPOTENTIAL REGION 235
16 EXPERIMENTAL TECHNIQUES (3) 237
16.1 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS) 237 16.1.1
INTRODUCTION 237 16.1.2 GRAPHICAL REPRESENTATIONS 241 16.2 THEEFFECTOF
DIFFUSION LIMITATION 244 16.2.1 THE WARBURG IMPEDANCE IS A
CONSTANT-PHASE ELEMENT 244 16.2.2 SOME EXPERIMENTAL RESULTS 248
17 THE ELECTROCHEMICAL QUARTZ CRYSTAL MICROBALANCE 253 17A FUNDAMENTAL
PROPERTIES 253 17.1.1 INTRODUCTION 253 17.1.2 THE FUNDAMENTAL EQUATIONS
OFTHE QCM 254
17.1.3 THE EFFECT OF VISCOSITY 255 17.1.4 IMMERSION IN A LIQUID 256
17.1.5 SCALESOFROUGHNESS 256 17.2 IMPEDANCE ANALYSIS OFTHE EQCM 258
17.2.1 THE EXTENDED EQUATION FOR THE FREQUENCY SHIFT 258 17.2.2 OTHER
FACTORS INFLUENCING THE FREQUENCY SHIFT 258 17.2.3 ANALYSIS OFTHE
MECHANICAL IMPEDANCE SPECTRUM 259 17.3 USE OFTHE EQCM AS A MICROSENSOR
262 17.3.1 SOME APPLICATIONS OFTHE EQCM 262 17.3.2 PIATING OF A METAL ON
A FOREIGN SUBSTRATE 263
18 CORROSION 265
18.1 SCOPE AND ECONOMIES OF CORROSION 265 18.1.1 INTRODUCTION 265 18.1.2
THE FUNDAMENTAL ELECTROCHEMISTRYOF CORROSION 266 18.1.3
MICROPOLARIZATION MEASUREMENTS 271 18.2 POTENTIAL-PH DIAGRAMS 273 18.2.1
SOME EXAMPLES OF POTENTIAL-PH DIAGRAMS 273 18.2.2 PASSIVATION AND ITS
BREAKDOWN 280 18.2.3 LOCALIZED CORROSION 283 18.2.3.1 PITTING CORROSION
283 18.2.3.2 CREVICE CORROSION 285 18.3 CORROSION PROTECTION 286 18.3.1
BIMETALLIC (GALVANIC) CORROSION 286 18.3.2 CATHODIC PROTECTION 288
18.3.3 ANODIC PROTECTION 290
18.3.4 COATINGS AND INHIBITORS 291
IMAGE 7
CONTENTS XI
19 ELECTROPLATING 293
19.1 GENERAL OBSERVATIONS 293 19.1.1 INTRODUCTION 293 19.1.2 THE
FUNDAMENTAL EQUATIONS OF ELECTROPLATING 294 19.1.3 PRACTICAL ASPECTS OF
METAL DEPOSITION 295 19.1.4 HYDROGEN EVOLUTION AS A SIDE REACTION 296
19.1.5 PIATING OF NOBLE METALS 296
19.2 CURRENT DISTRIBUTION IN PIATING 297 19.2.1 UNIFORMITYOF CURRENT
DISTRIBUTION 297 19.2.2 THE FARADAIC RESISTANCE, R F AND THE SOLUTION
RESISTANCE, R S 298 19.2.3 THE DIMENSIONLESS WAGNER NUMBER, W A 298
19.2.4 KINETICALLY LIMITED CURRENT DENSITY 302 19.3 THROWING POWER 303
19.3.1 MACRO-THROWING POWER 303 19.3.2 MICRO-THROWING POWER 304 19.3.3
THE USE OF ADDITIVES 305 19.4 PIATING FROM NONAQUEOUS SOLUTIONS 307
19.4.1 STATEMENT OFTHE PROBLEM 307 19.4.2 METHODS OF PIATING OFALUMINUM
308 19.5 ELECTROPLATING OF ALLOYS 310 19.5.1 GENERAL OBSERVATIONS 310
19.5.2 SOME SPECIFIE EXAMPLES 312 19.6 ELECTROLESS DEPOSITION OF METALS
313 19.6.1 SOME FUNDAMENTAL ASPECTS OF ELECTROLESS PIATING
OF METALS AND ALLOYS 313 19.6.2 ADVANTAGE AND DISADVANTAGES COMPARED TO
ELECTROPLATING 315 19.7 THE MECHANISM OF CHARGE TRANSFER IN METAL
DEPOSITION 316 19.7.1 METAL DEPOSITION IS AN UNEXPECTEDLY FAST REACTION
316 19.7.2 WHAT CARRIES THE CHARGE ACROSS THE INTERFACE DURING METAL
DEPOSITION? 317
19.7.3 MICROSCOPIC REVERSIBILITY AND THE ANODIC DISSOLUTION OF METALS
318 19.7'.4 REDUCTIO AD ABSURDUM 319 19.7.5 MIGRATION OFTHE ION ACROSS
THE DOUBLE LAYER 320 19.7.6 THE MECHANISM OF ION TRANSFER 321 19.7.7 THE
SYMMETRY FACTOR, SS 322 19.7.8 THE EXCHANGE-CURRENT DENSITY, J 0 324
19.7.9 WHY ARE SOME ELECTRODE REACTIONS FAST? 325
20 ENERGY CONVERSION AND STORAGE 329 20.1 BATTERIES AND FUEL CELLS 329
20.1.1 CLASSES OF BATTERIES 329 20.1.1.1 PRIMARY BATTERIES 329 20.1.1.2
RECHARGEABLE BATTERIES 330 20.1.1.3 FUEL CELLS 331
20.1.2 THE THEORETICAL LIMIT OF ENERGY PER UNIT WEIGHT 332
IMAGE 8
XII CONTENTS
20.1.3 HOWISTHEQUALITYOFABATTERYDEFINED? 333
20.2 PRIMARY BATTERIES 333
20.2.1 WHY DO WE NEED PRIMARY BATTENES? 333 20.2.2 THE LECLANCHE AND THE
ALKALINE BATTERIES 334 20.2.3 THE LI-THIONYL CHLORIDE BATTERY 335 20.2.4
THE LITHIUM-IODINE SOLID STATE BATTERY 338 20.3 SECONDARY BATTERIES 338
20.3.1 SELF-DISCHARGE AND CYCLE LIFE 338 20.3.2 BATTERY STACKS VERSUS
SINGLE CELLS 339 20.3.3 SOME COMMON TYPES OF SECONDARY BATTERIES 339
20.3.3.1 THE LEAD-ACID BATTERY 339 20.3.3.2 THE NICKEL-CADMIUM BATTERY
341 20.3.3.3 THE NICKEL-METAL HYDRIDE BATTERY (NIMH) 343 20.3.4 THE
II-ION BATTERY 344 20.4 FUEL CELLS 346
20.4.1 THE ENERGY DENSITY OF FUEL CELLS 346 20.4.1.1 THE HYDROGEN-OXYGEN
FUEL CELL 346 20.4.2 FUEL CELLS USING HYDROCARBONS - THE PHOSPHORIC ACID
FUEL CELL (PAFC) 346 20.4.3 THE DIRECT METHANOL FUEL CELL (DMFC) 348
20.4.3.1 THE ANODE 349 20.4.3.2 THE POLYMER ELECTROLYTE MEMBRANE (PEM)
350 20.4.3.3 THE REDUCTION OF MOLECULAR OXYGENAT THE CATHODE 351 20.4.4
HIGH-TEMPERATURE FUEL CELLS 352 20.4.4.1 THE HIGH-TEMPERATURE
SOLID-OXIDE (HTSO) FUEL CELL 353 20.4.4.2 THE MOLTEN CARBONATE FUEL CELL
353
20.4.5 WHY DO WE NEED A FUEL CELL? 354 20.5 POROUS GAS DIFFUSION
ELECTRODES 356 20.6 THE POLARITYOF BATTERIES 358
20.7 SUPER-CAPACITORS 358 20.7.1 ELECTROSTATIC CONSIDERATIONS 358 20.7.2
THE ENERGY STORED IN A CAPACITOR 360 20.7.3 THE ADVANTAGE OF
ELECTROCHEMICAL SUPER-CAPACITORS 361 20.7.4 HYBRID SUPER-CAPACITORS 361
INDEX 363 |
any_adam_object | 1 |
author | Gileadi, Eliʿezer 1932- |
author_GND | (DE-588)124010180 |
author_facet | Gileadi, Eliʿezer 1932- |
author_role | aut |
author_sort | Gileadi, Eliʿezer 1932- |
author_variant | e g eg |
building | Verbundindex |
bvnumber | BV037182777 |
classification_rvk | VE 6300 |
classification_tum | CHE 140f |
ctrlnum | (OCoLC)706986784 (DE-599)DNB98881210X |
dewey-full | 541.37 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.37 |
dewey-search | 541.37 |
dewey-sort | 3541.37 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV037182777</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130605</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110125s2011 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N24,1568</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">98881210X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527319701</subfield><subfield code="9">978-3-527-31970-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706986784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB98881210X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-B768</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.37</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 6300</subfield><subfield code="0">(DE-625)147132:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gileadi, Eliʿezer</subfield><subfield code="d">1932-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124010180</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physical electrochemistry</subfield><subfield code="b">fundamentals, techniques and applications</subfield><subfield code="c">Eliezer Gileadi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 373 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrochemie</subfield><subfield code="0">(DE-588)4014241-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physikalische Chemie</subfield><subfield code="0">(DE-588)4045959-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrochemie</subfield><subfield code="0">(DE-588)4014241-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Physikalische Chemie</subfield><subfield code="0">(DE-588)4045959-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3112939&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021097354&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021097354</subfield></datafield></record></collection> |
id | DE-604.BV037182777 |
illustrated | Illustrated |
indexdate | 2024-07-20T10:56:40Z |
institution | BVB |
isbn | 9783527319701 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021097354 |
oclc_num | 706986784 |
open_access_boolean | |
owner | DE-29T DE-11 DE-526 DE-20 DE-634 DE-92 DE-1043 DE-188 DE-703 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91 DE-BY-TUM DE-B768 DE-83 |
owner_facet | DE-29T DE-11 DE-526 DE-20 DE-634 DE-92 DE-1043 DE-188 DE-703 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91 DE-BY-TUM DE-B768 DE-83 |
physical | XX, 373 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Gileadi, Eliʿezer 1932- Verfasser (DE-588)124010180 aut Physical electrochemistry fundamentals, techniques and applications Eliezer Gileadi Weinheim Wiley-VCH 2011 XX, 373 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Elektrochemie (DE-588)4014241-3 gnd rswk-swf Physikalische Chemie (DE-588)4045959-7 gnd rswk-swf Elektrochemie (DE-588)4014241-3 s Physikalische Chemie (DE-588)4045959-7 s 1\p DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3112939&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021097354&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gileadi, Eliʿezer 1932- Physical electrochemistry fundamentals, techniques and applications Elektrochemie (DE-588)4014241-3 gnd Physikalische Chemie (DE-588)4045959-7 gnd |
subject_GND | (DE-588)4014241-3 (DE-588)4045959-7 |
title | Physical electrochemistry fundamentals, techniques and applications |
title_auth | Physical electrochemistry fundamentals, techniques and applications |
title_exact_search | Physical electrochemistry fundamentals, techniques and applications |
title_full | Physical electrochemistry fundamentals, techniques and applications Eliezer Gileadi |
title_fullStr | Physical electrochemistry fundamentals, techniques and applications Eliezer Gileadi |
title_full_unstemmed | Physical electrochemistry fundamentals, techniques and applications Eliezer Gileadi |
title_short | Physical electrochemistry |
title_sort | physical electrochemistry fundamentals techniques and applications |
title_sub | fundamentals, techniques and applications |
topic | Elektrochemie (DE-588)4014241-3 gnd Physikalische Chemie (DE-588)4045959-7 gnd |
topic_facet | Elektrochemie Physikalische Chemie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3112939&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021097354&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gileadieliʿezer physicalelectrochemistryfundamentalstechniquesandapplications |