Introduction to computational proteomics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2011
|
Schriftenreihe: | Chapman & Hall/CRC mathematical and computational biology series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Auch angekündigt u.d.T.: Computational proteomics |
Beschreibung: | XXII, 739 S. Ill., graph. Darst. |
ISBN: | 9781584885559 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV037157048 | ||
003 | DE-604 | ||
005 | 20110203 | ||
007 | t | ||
008 | 110122s2011 xxuad|| |||| 00||| eng d | ||
010 | |a 2010042932 | ||
020 | |a 9781584885559 |c hardcover : alkaline paper |9 978-1-58488-555-9 | ||
020 | |z 1584885556 |9 1-58488-555-6 | ||
035 | |a (OCoLC)706984771 | ||
035 | |a (DE-599)BVBBV037157048 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-20 | ||
050 | 0 | |a QP551 | |
082 | 0 | |a 572/.6 | |
084 | |a WC 4170 |0 (DE-625)148093: |2 rvk | ||
100 | 1 | |a Yona, Golan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to computational proteomics |c Golan Yona |
246 | 1 | 3 | |a Computational proteomics |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2011 | |
300 | |a XXII, 739 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC mathematical and computational biology series | |
500 | |a Auch angekündigt u.d.T.: Computational proteomics | ||
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Proteomics |x Mathematical models | |
650 | 4 | |a Proteomics |x methods | |
650 | 0 | 7 | |a Proteomanalyse |0 (DE-588)4596545-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Proteomanalyse |0 (DE-588)4596545-6 |D s |
689 | 0 | 1 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021071712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-021071712 |
Datensatz im Suchindex
_version_ | 1804143757674676224 |
---|---|
adam_text | Contents
I The Basics
1
1
What Is Computational Proteomics?
3
1.1
The complexity of
Ľ
ving
organisms
.............. 3
1.2
Proteomics in the modern era
................. 4
1.3
The main challenges in computational proteomics
...... 5
1.3.1
Analysis of individual molecules
............ 5
1.3.1.1
Sequence analysis
.............. 5
1.3.1.2
Structure analysis
............. 6
1.3.2
From individual proteins to protein families
..... 6
1.3.3
Protein classification, clustering and embedding
... 7
1.3.4
Interactions, pathways and gene networks
...... 7
2
Basic Notions in Molecular Biology
9
2.1
The cell structure of organisms
................ 9
2.2
It all starts from the
DNA................... 10
2.3
Proteins
............................. 12
2.4
Prom
DNA
to proteins
..................... 15
2.5
Protein folding
-
from sequence to structure
......... 18
2.6
Evolution and relational classes in the protein space
.... 20
2.7
Problems
............................. 22
3
Sequence Comparison
23
3.1
Introduction
........................... 23
3.2
Alignment of sequences
..................... 24
3.2.1
Global sequence similarity
............... 25
3.2.1.1
Calculating the global similarity score
. . 26
3.2.2
Penalties for gaps
.................... 27
3.2.2.1
Linear gap functions
............ 28
3.2.3
Local alignments
.................... 29
3.2.3.1
Calculating the local similarity score
... 30
3.3
Heuristic algorithms for sequence comparison
........ 31
3.4
Probability and statistics of sequence alignments
...... 32
3.4.1
Basic random model
.................. 33
3.4.2
Statistics of global alignment
............. 33
3.4.2.1
Fixed
alignment
- global
alignment without
gaps
..................... 34
3.4.2.2
Optimal alignment
............. 34
3.4.2.3
The zscore approach
............ 35
3.4.3
Statistics of local alignments without gaps
...... 37
3.4.3.1
Fixed alignment
.............. 37
3.4.3.2
Optimal alignment
............. 38
3.4.4
Local alignments with gaps
.............. 43
3.4.5
Handling low-complexity sequences
.......... 45
3.4.6
Sequence identity and statistical significance
..... 48
3.4.7
Similarity, homology and transitivity
......... 49
3.5
Scoring matrices and gap penalties
.............. 50
3.5.1
Scoring matrices for nucleic acids
........... 50
3.5.2
Scoring matrices for
amino
acids
........... 50
3.5.2.1
The
РАМ
family of scoring matrices
... 52
3.5.2.2
The BLOSUM family of scoring matrices
57
3.5.3
Information content of scoring matrices
....... 58
3.5.3.1
Choosing the scoring matrix
........ 60
3.5.4
Gap penalties
...................... 61
3.6
Distance and pseudo-distance functions for proteins
..... 62
3.7
Further reading
......................... 66
3.8
Conclusions
........................... 68
3.9
Appendix
-
non-linear gap penalty functions
......... 69
3.10
Appendix
-
implementation of BLAST and
FASTA
...... 72
3.10.1
FASTA
.......................... 72
3.10.2
BLAST
......................... 72
3.11
Appendix
-
performance evaluation
.............. 75
3.11-1
Accuracy, sensitivity and selectivity
......... 76
3.11.2
ROC
........................... 79
3.11.3
Setup and normalization
................ 80
3.11.4
Reference
datasets,
negatives and positives
..... 82
3.11.5
Training and testing algorithms
............ 83
3.12
Appendix
-
basic concepts in probability
........... 85
3.12.1
Probability mass and probability density
....... 85
3.12.2
Moments
........................ 86
3.12.3
Conditional probability and
Bayes
formula
..... 87
3.12.4
Common probability distributions
.......... 88
3.12.5
The entropy function
.................. 91
3.12.6
Relative entropy and mutual information
...... 92
3.12.7
Prior and posterior, ML and MAP estimators
.... 93
3.12.8
Decision rules and hypothesis testing
......... 95
3.13
Appendix
-
metrics and real normed spaces
......... 98
3.14
Problems
............................. 100
Multiple
Sequence Alignment, Profiles and Partial Order
Graphs
105
4.1
Dynamic programming in
N
dimensions
........... 106
4.1.1
Scoring functions
.................... 107
4.2
Classical heuristic methods
. .................. 108
4.2.1
Star alignment
..................... 109
4.2.2
Tree alignment
..................... 110
4.3
MSA representation and scoring
................ 113
4.3.1
The consensus sequence of an MSA
.......... 113
4.3.2
Regular expressions
................... 114
4.3.3
Profiles and position-dependent scores
........ 116
4.3.3.1
Generating a profile
............ 116
4.3.3.2
Pseudo-counts
............... 117
4.3.3.3
Weighting sequences
............ 122
4.3.4
Position-specific scoring matrices
........... 126
4.3.4.1
Using PSSMs with the dynamic
programming algorithm
.......... 128
4.3.5
Profile-profile comparison
............... 128
4.4
Iterative and progressive alignment
.............. 132
4.4.1
PSI-BLAST
-
iterative profile search algorithm
... 132
4.4.2
Progressive star alignment
............... 136
4.4.3
Progressive profile alignment
............. 137
4.5
Transitive alignment
...................... 138
4.5.1
T-coffee
......................... 139
4.6
Partial order alignment
..................... 141
4.6.1
The partial order MSA model
............. 142
4.6.2
The partial order alignment algorithm
........ 144
4.7
Further reading
......................... 148
4.8
Conclusions
........................... 149
4.9
Problems
............................. 150
Motif Discovery
155
5.1
Introduction
........................... 155
5.2
Model-based algorithms
.................... 156
5.2.1
The basic model
.................... 157
5.2.2
Model quality
...................... 158
5.2.2.1
Case
1:
model unknown, patterns are given
159
5.2.2.2
Case
2:
model is given, patterns are
unknown
.................. 160
5.3
Searching for good models
................... 160
5.3.1
The Gibbs sampling algorithm
............ 161
5.3.1.1
Improvements
................ 162
5.3.2
The
MEME
algorithm
................. 162
5.3.2.1
E-step
.................... 164
5.3.2.2
M-step
.................... 165
5.3.2.3
The
iterative
procedure
.......... 166
5.4
Combinatorial approaches ...................
167
5.4.1
Clique elimination
................... 167
5.4.2
Random projections
.................. 170
5.5
Further reading
......................... 173
5.6
Conclusions
........................... 175
5.7
Appendix
-
the Expectation-Maximization algorithm
.... 176
5.8
Problems
............................. 180
Markov Models of Protein Families
183
6.1
Introduction
........................... 183
6.2
Markov models
......................... 184
6.2.1
Gene prediction
..................... 184
6.2.2
Formal definition
.................... 188
6.2.2.1
Visible symbols and hidden Markov models
190
6.2.2.2
The model s components
.......... 190
6.3
Main applications of hidden Markov models
......... 191
6.3.1
The evaluation problem
................ 192
6.3.1.1
The
HMM
forward algorithm
....... 194
6.3.1.2
The
HMM
backward algorithm
...... 194
6.3.1.3
Using HMMs for classification
....... 196
6.3.2
The decoding problem
................. 196
6.3.3
The learning problem
................. 198
6.3.3.1
The forward-backward algorithm
..... 198
6.3.3.2
Learning from multiple training sequences
200
6.3.4
Handling machine precision limitations
........ 201
6.3.5
Constructing a model
................. 202
6.3.5.1
General model topology
.....·..... 202
6.3.5.2
Model architecture
............. 202
6.3.5.3
Hidden Markov models for protein families
204
6.3.5.4
Handling silent states
........... 206
6.3.5.5
Building a model from an MSA
...... 206
6.3.5.6
Single model vs. mixtures of multiple
models
.................... 209
6.4
Higher order models, codes and compression
......... 210
6.4.1
Fixed order models
................... 211
. 6.4.2
Variable-order Markov models
............. 213
6.4.2.1
Codes and compression
.......... 214
6.4.2.2
Compression and prediction
........ 217
6.4.2.3
Lempel-Ziv compression and extensions
. 218
6.4.2.4
Probabilistic suffix trees
.......... 219
6.4.2.5
Sparse
Markov transducers
........ 227
6.4.2.6
Prediction by partial matches
....... 229
6.5
Further reading
......................... 231
6.6
Conclusions
........................... 232
6.7
Problems
............................. 233
Classifiers and Kernels
235
7.1
Generative models vs. discriminative models
......... 235
7.2
Classifiers and discriminant functions
............. 237
7.2.1
Linear classifiers
.................... 238
7.2.2
Linearly separable case
................. 241
7.2.3
Maximizing the margin
................ 244
7.2.4
The non-separable case
-
soft margin
......... 246
7.2.5
Non-linear discriminant functions
........... 249
7.2.5.1
Mercer kernels
............... 253
7.3
Applying SVMs to protein classification
........... 255
7.3.1
String kernels
...................... 256
7.3.1.1
Simple string kernel
-
the spectrum kernel
256
7.3.1.2
The mismatch spectrum kernel
...... 257
7.3.2
The pairwise kernel
.................... 257
7.3.3
The Fischer kernel
................... 258
7.3.4
Mutual information kernels
.............. 259
7.4
Decision trees
.......................... 262
7.4.1
The basic decision tree model
............. 263
7.4.2
Training decision trees
................. 264
7.4.2.1
Impurity measures for
multi-
valued
attributes
.................. 267
7.4.2.2
Missing attributes
............. 268
7.4.2.3
Tree pruning
................ 268
7.4.3
Stochastic trees and mixture models
......... 270
7.4.4
Evaluation of decision trees
.............. 272
7
Λ
A.I Handling skewed distributions
....... 274
7.4.5
Representation and feature extraction
........ 275
7.4.5.1
Feature processing
............. 276
7.4.5.2
Dynamic attribute filtering
........ 277
7.4.5.3
Binary splitting
............... 278
7.5
Further reading
.......................... 279
7.6
Conclusions
........................... 280
7.7
Appendix
-
estimating the significance of a split
....... 281
7.8
Problems
............................. 288
Protein
Structure
Analysis
291
8.1
Introduction
........................... 291
8.2
Structure prediction
-
the protein folding problem
...... 293
8.2.1
Protein secondary structure prediction
........ 296
8.2.1.1
Secondary structure assignment
...... 297
8.2.1.2
Secondary structure prediction
...... 299
8.2.1.3
Accuracy of secondary structure prediction
301
8.3
Structure comparison
...................... 303
8.3.1
Algorithms based on inter-atomic distances
..... 305
8.3.1.1
The RMSd measure
............ 305
8.3.1.2
The structal algorithm
........... 309
8.3.1.3
The URMS distance
............ 311
8.3.1.4
The URMS-RMS algorithm
........ 312
8.3.2
Distance matrix based algorithms
........... 318
8.3.2.1
Dali
..................... 319
8.3.2.2
GE......................
322
8.3.3
Geometric hashing
................... 324
8.3.4
Statistical significance of structural matches
..... 327
8.3.5
Evaluation of structure comparison
.......... 330
8.4
Generalized sequence profiles
-
integrating secondary structure
with sequence information
................... 332
8.5
Further reading
......................... 336
8.6
Conclusions
........................... 339
8.7
Appendix
-
minimizing RMSd
................. 340
8.8
Problems
............................. 342
Protein Domains
345
9.1
Introduction
........................... 345
9.2
Domain detection
........................ 348
9.2.1
Domain prediction from
3D
structure
......... 349
9.2.2
Domain analysis based on predicted measures of
structural stability
................... 351
9.2.3
Domain prediction based on sequence similarity search
355
9.2.4
Domain prediction based on multiple sequence
alignments
........................ 361
9.3
Learning domain boundaries from multiple features
..... 364
9.3.1
Feature optimization
.................. 365
9.3.2
Scaling features
..................... 366
9.3.3
Post-processing predictions
.............. 366
9.3.4
Training and evaluation of models
.......... 369
9.4
Testing domain predictions
................... 370
9.4.1
Selecting more likely partitions
............ 373
9.4.1.1
Computing
tlie
prior P(D)
........ 375
9.4.1.2 Computing
the likelihood P(S D)
.... 376
9.4.2
The distribution of domain lengths
.......... 378
9.5
Multi-domain architectures
.................. 380
9.5.1
Hierarchies of multi-domain proteins
......... 380
9.5.2
Relationships between domain architectures
..... 381
9.5.3
Semantically significant domain architectures
.... 385
9.6
Further reading
......................... 387
9.7
Conclusions
........................... 389
9.8
Appendix
-
domain databases
................. 390
9.9
Problems
............................. 393
II Putting All the Pieces Together
395
10
Clustering and Classification
397
10.1
Introduction
........................... 397
10.2
Clustering methods
........................ 399
10.3
Vector-space clustering algorithms
.............. 401
10.3.1
The k-means algorithm
................ 402
10.3.2
Fuzzy clustering
.................... 404
10.3.3
Hierarchical algorithms
................. 408
10.3.3.1
Hierarchical k-means
............ 409
10.3.3.2
The statistical mechanics approach
.... 409
10.4
Graph-based clustering algorithms
.............. 410
10.4.1
Pairwise clustering algorithms
............. 411
10.4.1.1
The single linkage algorithm
........ 412
10.4.1.2
The complete linkage algorithm
...... 414
10.4.1.3
The average linkage algorithm
....... 414
10.4.2
Collaborative clustering
................ 415
10.4.3
Spectral clustering algorithms
............. 421
10.4.4
Markovian clustering algorithms
........... 425
10.4.5
Super-paramagnetic clustering
............ 427
10.5
Cluster validation and assessment
............... 428
10.5.1
External indices of validity
.............. 430
10.5.1.1
The case of known classification
...... 430
10.5.1.2
The case of known relations
........ 433
10.5.2
Internal indices of validity
............... 434
10.5.2.1
The
MDL
principle
............. 434
10.5.2.2
Cross-validation
............... 439
10.6
Clustering proteins
....................... 440
10.6.1
Domains vs. complete proteins
............ 440
10.6.2
Graph representation
.................. 441
10.6.3
Graph-based protein clustering
............ 442
1Ö.6.4
Integrating multiple similarity measures
....... 444
10.7
Further reading
......................... 448
10.8
Conclusions
........................... 450
10.9
Appendix
-
cross-validation tests
............... 451
10.10
Problems
............................. 457
11
Embedding Algorithms and
Vectorial
Representations
459
11.1
Introduction
........................... 459
11.2
Structure preserving embedding
................. 461
11.2.1
Maximal variance embeddings
............. 461
11.2.1.1
Principal component analysis
....... 462
11.2.1.2
Singular value decomposition
....... 467
11.2.2
Distance preserving embeddings
............ 467
11.2.2.1
Multidimensional scaling
.......... 468
11.2.2.2
Embedding through random projections
. 474
11.2.3
Manifold learning
-
topological embeddings
..... 478
11.2.3.1
Embedding with geodesic distances
.... 479
11.2.3.2
Preserving local neighborhoods
...... 482
11.2.3.3
Distributional scaling
........... 484
11.3
Setting the dimension of the host space
............ 488
11.4
Vectorial
representations
.................... 490
11.4.1
Internal representations
................ 492
11.4.2
Collective and external representations
........ 493
11.4.2.1
Choosing a reference set and an association
measure
.................... 494
11.4.2.2
Transformations and normalizations
. . . 495
11.4.2.3
Noise reduction
............... 495
11.4.2.4
Comparing distance profiles
........ 496
11.4.2.5
Distance profiles and mixture models
. . . 500
11.5
Further reading
......................... 502
11.6
Conclusions
........................... 503
11.7
Problems
............................. 504
12
Analysis of Gene Expression Data
505
12.1
Introduction
........................... 505
12.2
Microarrays
........................... 509
12.2.1
Datasets
......................... 512
12.3
Analysis of individual genes
.................. 513
12.4
Pairwise analysis
........................ 515
12.4.1
Measures of expression similarity
........... 517
12.4.1.1
Shifts
.................... 520
12.4.2
Missing data
....................... 521
12.4.3
Correlation vs. anti-correlation
............ 523
12.4.4
Statistical significance of expression similarity
.... 524
12.4.5
Evaluating similarity measures
............ 527
12.4.5.1
Estimating baseline performance
..... 528
12.5
Cluster analysis and class discovery
.............. 529
12.5.1
Validating clustering results
.............. 534
12.5.2
Assessing individual clusters
.............. 536
12.5.3
Enrichment analysis
.................. 538
12.5.3.1
The gene ontology
............. 538
12.5.3.2
Gene set enrichment
............ 541
12.5.4
Limitations of mRNA arrays
............. 544
12.6
Protein arrays
.......................... 545
12.6.1
Mass-spectra data
................... 546
12.7
Further reading
......................... 548
12.8
Conclusions
........................... 550
12.9
Problems
............................. 551
13
Protein-Protein Interactions
553
13.1
Introduction
........................... 553
13.2
Experimental detection of protein interactions
........ 556
13.2.1
Traditional methods
.................. 557
13.2.1.1
Affinity chromatography
.......... 557
13.2.1.2
Co-immunoprecipitation
.......... 558
13.2.2
High-throughput methods
............... 558
13.2.2.1
The two-hybrid system
........... 558
13.2.2.2
Tandem affinity purification
. ....... 560
13.2.2.3
Protein arrays
................ 561
13.3
Prediction of protein-protein interactions
........... 561
13.3.1
Structure-based prediction of interactions
...... 562
13.3.1.1
Protein docking and prediction of
interaction sites
............... 563
13.3.1.2
Extensions to sequences of unknown
structures
.................. 567
13.3.2
Sequence-based inference
................ 568
13.3.2.1
Gene preservation and locality
...... 568
13.3.2.2
Co-evolution analysis
............ 571
13.3.2.3
Predicting the interaction interface
.... 578
13.3.2.4
Sequence signatures and domain-based
prediction
.................. 582
13.3.3
Gene co-expression
................... 589
13.3.4
Hybrid methods
.................... 589
13.3.5
Training and testing models on interaction data
. . . 591
13.4
Interaction networks
...................... 592
13.4.1
Topological properties of interaction networks
.... 593
13.4.2
Applications
....................... 601
13.4.3 Network
motifs
and the modular organization of
networks
......................... 603
13.5
Further reading
......................... 606
13.6
Conclusions
........................... 607
13.7
Appendix
- DNA
amplification and protein expression
. . . 608
13.7.1
Plasmids
......................... 608
13.7.2
SDS-PAGE
....................... 608
13.8
Appendix
-
the Pearson correlation
.............. 610
13.8.1
Uneven divergence rates
................ 610
13.8.2
Insensitivity to the size of the
dataset
........ 610
13.8.3
The effect of outliers
.................. 611
13.9
Problems
............................. 613
14
Cellular Pathways
615
14.1
Introduction
........................... 615
14.2
Metabolic pathways
....................... 618
14.3
Pathway prediction
....................... 621
14.3.1
Metabolic pathway prediction
............. 621
14.3.2
Pathway prediction from blueprints
.......... 623
14.3.2.1
The problem of pathway holes
....... 623
14.3.2.2
The problem of ambiguity
......... 623
14.3.3
Expression data and pathway analysis
........ 624
14.3.3.1
Deterministic gene assignments
...... 626
14.3.3.2
Fuzzy assignments
.............. 629
14.3.4
From model to practice
................ 632
14.4
Regulatory networks: modules and regulation programs
. . 635
14.5
Pathway networks and the minimal cell
............ 640
14.6
Further reading
......................... 642
14.7
Conclusions
........................... 645
14.8
Problems
............................. 646
15
Learning Gene Networks with Bayesian Networks
649
15.1
Introduction
........................... 649
15.1.1
The basics of Bayesian networks
........... 650
15.2
Computing the likelihood of observations
........... 654
15.3
Probabilistic inference
..................... 655
15.3.1
Inferring the values of variables in a network
.... 656
15.3.2
Inference of multiple unknown variables
....... 660
15.4
Learning the parameters of a Bayesian network
....... 661
15.4.1
Computing the probability of new instances
..... 666
15.4.2
Learning from incomplete data
............ 667
15.5
Learning the structure of a Bayesian network
........ 669
15.5.1
Alternative score functions
............... 672
15.5.2
Searching for optimal structures
........... 674
15.5.2.1
Greedy search
................ 675
15.5.2.2
Sampling techniques
............ 675
15.5.2.3
Model averaging
.............. 676
15.5:3
Computing the probability of new instances
..... 678
15.6
Learning Bayesian networks from microarray data
...... 678
15.7
Further reading
......................... 682
15.8
Conclusions
........................... 683
15.9
Problems
............................. 684
References
687
Conference Abbreviations
735
Acronyms
737
Index
739
|
any_adam_object | 1 |
author | Yona, Golan |
author_facet | Yona, Golan |
author_role | aut |
author_sort | Yona, Golan |
author_variant | g y gy |
building | Verbundindex |
bvnumber | BV037157048 |
callnumber-first | Q - Science |
callnumber-label | QP551 |
callnumber-raw | QP551 |
callnumber-search | QP551 |
callnumber-sort | QP 3551 |
callnumber-subject | QP - Physiology |
classification_rvk | WC 4170 |
ctrlnum | (OCoLC)706984771 (DE-599)BVBBV037157048 |
dewey-full | 572/.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572/.6 |
dewey-search | 572/.6 |
dewey-sort | 3572 16 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01752nam a2200469zc 4500</leader><controlfield tag="001">BV037157048</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110122s2011 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010042932</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584885559</subfield><subfield code="c">hardcover : alkaline paper</subfield><subfield code="9">978-1-58488-555-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1584885556</subfield><subfield code="9">1-58488-555-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706984771</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037157048</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QP551</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572/.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 4170</subfield><subfield code="0">(DE-625)148093:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yona, Golan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to computational proteomics</subfield><subfield code="c">Golan Yona</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Computational proteomics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 739 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC mathematical and computational biology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Auch angekündigt u.d.T.: Computational proteomics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteomics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proteomics</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proteomanalyse</subfield><subfield code="0">(DE-588)4596545-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Proteomanalyse</subfield><subfield code="0">(DE-588)4596545-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021071712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021071712</subfield></datafield></record></collection> |
id | DE-604.BV037157048 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:52:44Z |
institution | BVB |
isbn | 9781584885559 |
language | English |
lccn | 2010042932 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021071712 |
oclc_num | 706984771 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 |
owner_facet | DE-355 DE-BY-UBR DE-20 |
physical | XXII, 739 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | CRC Press |
record_format | marc |
series2 | Chapman & Hall/CRC mathematical and computational biology series |
spelling | Yona, Golan Verfasser aut Introduction to computational proteomics Golan Yona Computational proteomics Boca Raton [u.a.] CRC Press 2011 XXII, 739 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chapman & Hall/CRC mathematical and computational biology series Auch angekündigt u.d.T.: Computational proteomics Mathematisches Modell Proteomics Mathematical models Proteomics methods Proteomanalyse (DE-588)4596545-6 gnd rswk-swf Methode (DE-588)4038971-6 gnd rswk-swf Proteomanalyse (DE-588)4596545-6 s Methode (DE-588)4038971-6 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021071712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Yona, Golan Introduction to computational proteomics Mathematisches Modell Proteomics Mathematical models Proteomics methods Proteomanalyse (DE-588)4596545-6 gnd Methode (DE-588)4038971-6 gnd |
subject_GND | (DE-588)4596545-6 (DE-588)4038971-6 |
title | Introduction to computational proteomics |
title_alt | Computational proteomics |
title_auth | Introduction to computational proteomics |
title_exact_search | Introduction to computational proteomics |
title_full | Introduction to computational proteomics Golan Yona |
title_fullStr | Introduction to computational proteomics Golan Yona |
title_full_unstemmed | Introduction to computational proteomics Golan Yona |
title_short | Introduction to computational proteomics |
title_sort | introduction to computational proteomics |
topic | Mathematisches Modell Proteomics Mathematical models Proteomics methods Proteomanalyse (DE-588)4596545-6 gnd Methode (DE-588)4038971-6 gnd |
topic_facet | Mathematisches Modell Proteomics Mathematical models Proteomics methods Proteomanalyse Methode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021071712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT yonagolan introductiontocomputationalproteomics AT yonagolan computationalproteomics |