Multiparametric statistics:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam ; Oxford
Elsevier
c2008
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references and index. - Title from e-book title screen (viewed Jan. 15, 2008). - This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters. This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution. Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations. In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book. This monograph will be of interest to a variety of specialists ++ working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions. A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science. - Presents original mathematical investigations and open a new branch of mathematical statistics - Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems - Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis |
Beschreibung: | 1 Online-Ressource (1 online resource (xvii, 315 p.)) |
ISBN: | 0444530495 6611096299 9780444530493 9786611096298 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV036962170 | ||
003 | DE-604 | ||
005 | 20230511 | ||
007 | cr|uuu---uuuuu | ||
008 | 110118s2008 ne |||| o||u| ||||||eng d | ||
020 | |a 0444530495 |9 0-444-53049-5 | ||
020 | |a 6611096299 |9 6-611-09629-9 | ||
020 | |a 9780444530493 |9 978-0-444-53049-3 | ||
020 | |a 9786611096298 |9 978-6-611-09629-8 | ||
020 | |z 0080555926 |9 0-08-055592-6 | ||
020 | |z 0444530495 |9 0-444-53049-5 | ||
035 | |a (OCoLC)190762906 | ||
035 | |a (DE-599)GBVNLM003729680 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a ne |c XA-NL | ||
049 | |a DE-526 |a DE-522 |a DE-523 |a DE-521 |a DE-634 |a DE-2070s |a DE-210 |a DE-155 |a DE-150 |a DE-22 |a DE-54 |a DE-128 |a DE-862 |a DE-863 |a DE-898 |a DE-92 |a DE-M347 |a DE-859 |a DE-573 |a DE-1028 |a DE-858 |a DE-1050 |a DE-1102 |a DE-1047 |a DE-1046 |a DE-Aug4 |a DE-706 |a DE-20 |a DE-355 |a DE-739 |a DE-91 |a DE-19 |a DE-29 |a DE-824 |a DE-703 |a DE-473 |a DE-384 |a DE-12 |a DE-860 |a DE-70 |a DE-B768 | ||
050 | 0 | |a QA278 | |
082 | 0 | |a 519.535 22 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
245 | 1 | 0 | |a Multiparametric statistics |c Vadim I. Serdobolskii |
264 | 1 | |a Amsterdam ; Oxford |b Elsevier |c c2008 | |
300 | |a 1 Online-Ressource (1 online resource (xvii, 315 p.)) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index. - Title from e-book title screen (viewed Jan. 15, 2008). - This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters. This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution. Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations. In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book. This monograph will be of interest to a variety of specialists ++ | ||
500 | |a working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions. A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science. - Presents original mathematical investigations and open a new branch of mathematical statistics - Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems - Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis | ||
533 | |a Online-Ausgabe |f Elsevier e-book collection on ScienceDirect |n Sonstige Standardnummer des Gesamttitels: 041169-3 | ||
534 | |c 2008 | ||
650 | 4 | |a Multivariate analysis | |
650 | 0 | 7 | |a Parameterschätzung |0 (DE-588)4044614-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multivariate Analyse |0 (DE-588)4040708-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Multivariate Analyse |0 (DE-588)4040708-1 |D s |
689 | 0 | 1 | |a Parameterschätzung |0 (DE-588)4044614-1 |D s |
689 | 0 | 2 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Serdobolʹskij, Vadim I. |e Sonstige |0 (DE-588)12704602X |4 oth | |
776 | 0 | 8 | |i Reproduktion von |t Multiparametric statistics |d c2008 |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444530493 |x Verlag |3 Volltext |
912 | |a ZDB-1-ELC |a ZDB-33-ESD | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020877039 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-FWS_katkey | 389787 |
---|---|
_version_ | 1806177798682836992 |
any_adam_object | |
author_GND | (DE-588)12704602X |
building | Verbundindex |
bvnumber | BV036962170 |
callnumber-first | Q - Science |
callnumber-label | QA278 |
callnumber-raw | QA278 |
callnumber-search | QA278 |
callnumber-sort | QA 3278 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 830 |
collection | ZDB-1-ELC ZDB-33-ESD |
ctrlnum | (OCoLC)190762906 (DE-599)GBVNLM003729680 |
dewey-full | 519.53522 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.535 22 |
dewey-search | 519.535 22 |
dewey-sort | 3519.535 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05618nmm a2200553 c 4500</leader><controlfield tag="001">BV036962170</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230511 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">110118s2008 ne |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444530495</subfield><subfield code="9">0-444-53049-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611096299</subfield><subfield code="9">6-611-09629-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444530493</subfield><subfield code="9">978-0-444-53049-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611096298</subfield><subfield code="9">978-6-611-09629-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0080555926</subfield><subfield code="9">0-08-055592-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0444530495</subfield><subfield code="9">0-444-53049-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)190762906</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM003729680</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-526</subfield><subfield code="a">DE-522</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-150</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-54</subfield><subfield code="a">DE-128</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1047</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-B768</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA278</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.535 22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiparametric statistics</subfield><subfield code="c">Vadim I. Serdobolskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam ; Oxford</subfield><subfield code="b">Elsevier</subfield><subfield code="c">c2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (1 online resource (xvii, 315 p.))</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index. - Title from e-book title screen (viewed Jan. 15, 2008). - This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters. This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution. Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. Near exact solutions are constructed for a number of concrete multi-dimensional problems: estimation of expectation vectors, regression and discriminant analysis, and for the solution to large systems of empiric linear algebraic equations. It is remarkable that these solutions prove to be not only non-degenerating and always stable, but also near exact within a wide class of populations. In the conventional situation of small dimension and large sample size these new solutions far surpass the classical, commonly used consistent ones. It can be expected in the near future, for the most part, traditional multivariate statistical software will be replaced by the always reliable and more efficient versions of statistical procedures implemented by the technology described in this book. This monograph will be of interest to a variety of specialists ++</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">working with the theory of statistical methods and its applications. Mathematicians would find new classes of urgent problems to be solved in their own regions. Specialists in applied statistics creating statistical packages will be interested in more efficient methods proposed in the book. Advantages of these methods are obvious: the user is liberated from the permanent uncertainty of possible instability and inefficiency and gets algorithms with unimprovable accuracy and guaranteed for a wide class of distributions. A large community of specialists applying statistical methods to real data will find a number of always stable highly accurate versions of algorithms that will help them to better solve their scientific or economic problems. Students and postgraduates will be interested in this book as it will help them get at the foremost frontier of modern statistical science. - Presents original mathematical investigations and open a new branch of mathematical statistics - Illustrates a technique for developing always stable and efficient versions of multivariate statistical analysis for large-dimensional problems - Describes the most popular methods some near exact solutions; including algorithms of non-degenerating large-dimensional discriminant and regression analysis</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Online-Ausgabe</subfield><subfield code="f">Elsevier e-book collection on ScienceDirect</subfield><subfield code="n">Sonstige Standardnummer des Gesamttitels: 041169-3</subfield></datafield><datafield tag="534" ind1=" " ind2=" "><subfield code="c">2008</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multivariate analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parameterschätzung</subfield><subfield code="0">(DE-588)4044614-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Multivariate Analyse</subfield><subfield code="0">(DE-588)4040708-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Parameterschätzung</subfield><subfield code="0">(DE-588)4044614-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Serdobolʹskij, Vadim I.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)12704602X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Reproduktion von</subfield><subfield code="t">Multiparametric statistics</subfield><subfield code="d">c2008</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444530493</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-ELC</subfield><subfield code="a">ZDB-33-ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020877039</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV036962170 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T11:42:56Z |
institution | BVB |
isbn | 0444530495 6611096299 9780444530493 9786611096298 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020877039 |
oclc_num | 190762906 |
open_access_boolean | |
owner | DE-526 DE-522 DE-523 DE-521 DE-634 DE-2070s DE-210 DE-155 DE-BY-UBR DE-150 DE-22 DE-BY-UBG DE-54 DE-128 DE-862 DE-BY-FWS DE-863 DE-BY-FWS DE-898 DE-BY-UBR DE-92 DE-M347 DE-859 DE-573 DE-1028 DE-858 DE-1050 DE-1102 DE-1047 DE-1046 DE-Aug4 DE-706 DE-20 DE-355 DE-BY-UBR DE-739 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-29 DE-824 DE-703 DE-473 DE-BY-UBG DE-384 DE-12 DE-860 DE-70 DE-B768 |
owner_facet | DE-526 DE-522 DE-523 DE-521 DE-634 DE-2070s DE-210 DE-155 DE-BY-UBR DE-150 DE-22 DE-BY-UBG DE-54 DE-128 DE-862 DE-BY-FWS DE-863 DE-BY-FWS DE-898 DE-BY-UBR DE-92 DE-M347 DE-859 DE-573 DE-1028 DE-858 DE-1050 DE-1102 DE-1047 DE-1046 DE-Aug4 DE-706 DE-20 DE-355 DE-BY-UBR DE-739 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-29 DE-824 DE-703 DE-473 DE-BY-UBG DE-384 DE-12 DE-860 DE-70 DE-B768 |
physical | 1 Online-Ressource (1 online resource (xvii, 315 p.)) |
psigel | ZDB-1-ELC ZDB-33-ESD |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Elsevier |
record_format | marc |
spellingShingle | Multiparametric statistics Multivariate analysis Parameterschätzung (DE-588)4044614-1 gnd Statistik (DE-588)4056995-0 gnd Multivariate Analyse (DE-588)4040708-1 gnd |
subject_GND | (DE-588)4044614-1 (DE-588)4056995-0 (DE-588)4040708-1 |
title | Multiparametric statistics |
title_auth | Multiparametric statistics |
title_exact_search | Multiparametric statistics |
title_full | Multiparametric statistics Vadim I. Serdobolskii |
title_fullStr | Multiparametric statistics Vadim I. Serdobolskii |
title_full_unstemmed | Multiparametric statistics Vadim I. Serdobolskii |
title_short | Multiparametric statistics |
title_sort | multiparametric statistics |
topic | Multivariate analysis Parameterschätzung (DE-588)4044614-1 gnd Statistik (DE-588)4056995-0 gnd Multivariate Analyse (DE-588)4040708-1 gnd |
topic_facet | Multivariate analysis Parameterschätzung Statistik Multivariate Analyse |
url | http://www.sciencedirect.com/science/book/9780444530493 |
work_keys_str_mv | AT serdobolʹskijvadimi multiparametricstatistics |