Data mining: practical machine learning tools and techniques
Contents: Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Imple...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2011
|
Ausgabe: | 3. ed. |
Schriftenreihe: | The Morgan Kaufmann series in data management systems
|
Schlagworte: | |
Online-Zugang: | Ausführliche Beschreibung Inhaltsverzeichnis |
Zusammenfassung: | Contents: Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer. |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXXIII, 629 S. Ill., graph. Darst. |
ISBN: | 9780123748560 0123748569 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036896475 | ||
003 | DE-604 | ||
005 | 20210510 | ||
007 | t | ||
008 | 110111s2011 ad|| |||| 00||| eng d | ||
010 | |a 2010039827 | ||
020 | |a 9780123748560 |c Pb : € 64.40 |9 978-0-12-374856-0 | ||
020 | |a 0123748569 |9 0-12-374856-9 | ||
035 | |a (OCoLC)706859282 | ||
035 | |a (DE-599)BVBBV036896475 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-473 |a DE-706 |a DE-11 |a DE-1049 |a DE-188 |a DE-703 |a DE-573 |a DE-19 |a DE-29T |a DE-91G |a DE-521 |a DE-860 |a DE-634 |a DE-91 |a DE-355 |a DE-523 |a DE-384 |a DE-824 |a DE-945 |a DE-859 |a DE-83 |a DE-1102 |a DE-M347 |a DE-862 | ||
050 | 0 | |a QA76.9.D343 | |
050 | 0 | |a QA76.9.D343W58 2011 | |
082 | 0 | |a 006.3/12 |2 22 | |
082 | 0 | |a 006.3 |2 22 | |
084 | |a CM 4400 |0 (DE-625)18955: |2 rvk | ||
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a ST 270 |0 (DE-625)143638: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a DAT 450f |2 stub | ||
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a Witten, Ian H. |d 1947- |e Verfasser |0 (DE-588)138440166 |4 aut | |
245 | 1 | 0 | |a Data mining |b practical machine learning tools and techniques |c Ian H. Witten ; Eibe Frank ; Mark A. Hall |
250 | |a 3. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2011 | |
300 | |a XXXIII, 629 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The Morgan Kaufmann series in data management systems | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
520 | |a Contents: Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer. | ||
650 | 4 | |a Data Mining | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Weka 3 |0 (DE-588)1126597503 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Java |g Programmiersprache |0 (DE-588)4401313-9 |2 gnd |9 rswk-swf |
651 | 7 | |a Java |0 (DE-588)4028527-3 |2 gnd |9 rswk-swf | |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Weka 3 |0 (DE-588)1126597503 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 1 | |a Java |0 (DE-588)4028527-3 |D g |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 2 | 1 | |a Java |g Programmiersprache |0 (DE-588)4401313-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Frank, Eibe |e Verfasser |0 (DE-588)122539044 |4 aut | |
700 | 1 | |a Hall, Mark A. |e Verfasser |0 (DE-588)1012537048 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-08-089036-4 |w (DE-604)BV042314259 |
856 | 4 | 2 | |q text/html |u http://www.elsevier.com/books/data-mining-practical-machine-learning-tools-and-techniques/witten/978-0-12-374856-0 |3 Ausführliche Beschreibung |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020811561&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020811561 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-862_location | 2000 |
---|---|
DE-BY-FWS_call_number | 2000/ST 530 W829(3) |
DE-BY-FWS_katkey | 588008 |
DE-BY-FWS_media_number | 083000513816 |
_version_ | 1806174544870768640 |
adam_text | Contents
LIST OF
FIGURES
.................................................................................................xv
LIST OF TABLES
..................................................................................................xix
PREFACE
...............................................................................................................xxi
Updated and Revised Content
...........................................................................xxv
Second Edition
...............................................................................................xxv
Third Edition
.................................................................................................xxvi
ACKNOWLEDGMENTS
....................................................................................xxix
ABOUT THE AUTHORS
.....................................................:............................xxxiii
PART I INTRODUCTION TO DATA MINING
_______________
CHAPTER
1
What s It All About?
................................................................3
1.1
Data Mining and Machine Learning
..............................................3
Describing Structural Patterns
........................................................5
Machine Learning
...........................................................................7
Data Mining
....................................................................................8
1.2
Simple Examples: The Weather Problem and Others
....................9
The Weather Problem
.....................................................................9
Contact Lenses: An Idealized Problem
........................................12
Irises: A Classic Numeric
Dataset
................................................13
CPU Performance: Introducing Numeric Prediction
....................15
Labor Negotiations: A More Realistic Example
..........................15
Soybean Classification: A Classic Machine Learning Success....
19
1.3
Fielded Applications
.....................................................................21
Web Mining
...................................................................................21
Decisions Involving Judgment
.....................................................22
Screening Images
..........................................................................23
Load Forecasting
...........................................................................24
Diagnosis
.......................................................................................25
Marketing and Sales
.....................................................................26
Other Applications
........................................................................27
1.4
Machine Learning and Statistics
..................................................28
1.5
Generalization as Search
.............................................................29
1.6
Data Mining and Ethics
................................................................33
Reidentification
.............................................................................33
Using Personal Information
..........................................................34
Wider Issues
..................................................................................35
1.7
Further Reading
............................................................................36
VI
Contents
CHAPTER
2
Input: Concepts, Instances, and Attributes
.............................39
2.1
What s a Concept?
........................................................................40
2.2
What s in an Example?
.................................................................42
Relations
........................................................................................43
Other Example Types
....................................................................46
2.3
What s in an Attribute?
...................................„............................49
2.4
Preparing the Input
.......................................................................51
Gathering the Data Together
.........................................................51
ARFF Format
................................................................................52
Sparse Data
...................................................................................56
Attribute Types
............................_................................................56
Missing Values
..............................................................................58
Inaccurate Values
..........................................................................59
Getting to Know Your Data
..........................................................60
2.5
Further Reading
............................................................................60
CHAPTER
3
Output: Knowledge Representation
........................................61
3.1
Tables
............................................................................................61
3.2
Linear Models
...............................................................................62
3.3
Trees
..............................................................................................64
3.4
Rules
..............................................................................................67
Classification Rules
.......................................................................69
Association Rules
..........................................................................72
Rules with Exceptions
..................................................................73
More Expressive Rules
.................................................................75
3.5
Instance-Based Representation
.....................................................78
3.6
Clusters
..........................................................................................81
3.7
Further Reading
............................................................................83
CHAPTER
4
Algorithms: The Basic Methods
.............................................85
4.1
Inferring Rudimentary Rules
........................................................86
Missing Values and Numeric Attributes
.......................................87
Discussion
.....................................................................................89
4.2
Statistical Modeling
......................................................................90
Missing Values and Numeric Attributes
......................................94
Naïve Bayes
for Document Classification
....................................97
Discussion
.....................................................................................99
4.3
Divide-and-Conquer: Constructing Decision Trees
.....................99
Calculating Information
..............................................................103
Highly Branching Attributes
.......................................................105
Discussion
...................................................................................107
Contents
vii
4.4
Covering Algorithms: Constructing Rules
.................................108
Rules versus Trees
......................................................................109
A Simple Covering Algorithm
....................................................110
Rules versus Decision Lists
........................................................115
4.5
Mining Association Rules
...........................................................116
Item Sets
......................................................................................116
Association Rules
........................................................................119
Generating Rules Efficiently
.......................................................122
Discussion
...................................................................................123
4.6
Linear Models
.............................................................................124
Numeric Prediction: Linear Regression
.....................................124
Linear Classification: Logistic Regression
.................................125
Linear Classification Using the Perceptron
................................127
Linear Classification Using Winnow
..........................................129
4.7
Instance-Based Learning
.............................................................131
Distance Function
.......................................................................131
Finding Nearest Neighbors Efficiently
.......................................132
Discussion
...................................................................................137
4.8
Clustering
....................................................................................138
Iterative Distance-Based Clustering
...........................................139
Faster Distance Calculations
.......................................................139
Discussion
...................................................................................141
4.9
Multi-Instance Learning
..............................................................141
Aggregating the Input
.................................................................142
Aggregating the Output
..............................................................142
Discussion
............:......................................................................142
4.10
Further Reading
..........................................................................143
4.11
Weka
Implementations
................................................................145
CHAPTER
5
Credibility: Evaluating What s Been Learned
........................147
5.1
Training and Testing
...................................................................148
5.2
Predicting Performance
...............................................................150
5.3
Cross-Validation
..........................................................................152
5.4
Other Estimates
...........................................................................154
Leave-One-Out Cross-Validation
................................................154
The Bootstrap
..............................................................................155
5.5
Comparing Data Mining Schemes
..............................................156
5.6
Predicting Probabilities
...............................................................159
Quadratic Loss Function
.............................................................160
Informational Loss Function
.......................................................161
Discussion
...................................................................................162
viii Contents
5.7
Counting the Cost
.......................................................................163
Cost-Sensitive Classification
......................................................166
Cost-Sensitive Learning
..............................................................167
Lift Charts
...................................................................................168
ROC Curves
................................................................................172
Recall-Precision Curves
.............................................................174
Discussion
...................................................................................175
Cost Curves
................................................................................177
5.8
Evaluating Numeric Prediction
...................................................180
5.9
Minimum Description Length Principle
.....................................183
5.10
Applying the
MDL
Principle to Clustering
................................186
5.11
Further Reading
..........................................................................187
PART
И
ADVANCED DATA MINING
_____________________
CHAPTER
6
Implementations: Real Machine Learning Schemes
..............191
6.1
Decision Trees
.............................................................................192
Numeric Attributes
......................................................................193
Missing Values
............................................................................194
Pruning
........................................................................................195
Estimating Error Rates
................................................................197
Complexity of Decision Tree Induction
.....................................199
From Trees to Rules
....................................................................200
C4.5: Choices and Options
.........................................................201
Cost-Complexity Pruning
...........................................................202
Discussion
...................................................................................202
6.2
Classification Rules
.....................................................................203
Criteria for Choosing Tests
.........................................................203
Missing Values, Numeric Attributes
...........................................204
Generating Good Rules
...............................................................205
Using Global Optimization
.........................................................208
Obtaining Rules from Partial Decision Trees
.............................208
Rules with Exceptions
................................................................212
Discussion
...................................................................................215
6.3
Association Rules
........................................................................216
Building a Frequent-Pattern Tree
...............................................216
Finding Large Item Sets
.............................................................219
Discussion
...................................................................................222
6.4
Extending Linear Models
...........................................................223
Maximum-Margin
Hyperplane...................................................224
Nonlinear Class Boundaries
.......................................................226
Contents ix
Support
Vector
Regression..........................................................227
Kernel Ridge Regression............................................................229
Kernel Perceptron.......................................................................231
Multilayer Perceptrons
................................................................232
Radial Basis
Function
Networks................................................241
Stochastic
Gradient
Descent
.......................................................242
Discussion...................................................................................
243
6.5
Instance-Based Learning
.............................................................244
Reducing the Number of Exemplars
..........................................245
Pruning Noisy Exemplars
...........................................................245
Weighting Attributes
...................................................................246
Generalizing Exemplars
..............................................................247
Distance Functions for Generalized
Exemplars
....................................................................................248
Generalized Distance Functions
.................................................249
Discussion
...................................................................................250
6.6
Numeric Prediction with Local Linear Models
..........................251
Model Trees
................................................................................252
Building the Tree
........................................................................253
Pruning the Tree
..........................................................................253
Nominal Attributes
......................................................................254
Missing Values
............................................................................254
Pseudocode for Model Tree Induction
.......................................255
Rules from Model Trees
.............................................................259
Locally Weighted Linear Regression
..........................................259
Discussion
...................................................................................261
6.7
Bayesian Networks
.....................................................................261
Making Predictions
.....................................................................262
Learning Bayesian Networks
......................................................266
Specific Algorithms
.....................................................................268
Data Structures for Fast Learning
..............................................270
Discussion
...................................................................................273
6.8
Clustering
....................................................................................273
Choosing the Number of Clusters
..............................................274
Hierarchical Clustering
...............................................................274
Example of Hierarchical Clustering
...........................................276
Incremental Clustering
................................................................279
Category Utility
..........................................................................284
Probability-Based Clustering
......................................................285
The EM Algorithm
......................................................................287
Extending the Mixture Model
....................................................289
Contents
Bayesian
Clustering....................................................................
290
Discussion
...................................................................................292
6.9 Semisupervised
Learning
............................................................294
Clustering for Classification
.......................................................294
Co-training
..................................................................................296
EM and Co-training
....................................................................297
Discussion
...................................................................................297
6.10
Multi-Instance Learning
..............................................................298
Converting to Single-Instance Learning
.....................................298
Upgrading Learning Algorithms
.................................................300
Dedicated Multi-Instance Methods
.............................................301
Discussion
.......................................................................>...........302
6.11
Weka
Implementations
................................................................303
CHAPTER
7
Data Transformations
..........................................................305
7.1
Attribute Selection
......................................................................307
Scheme-Independent Selection
...................................................308
Searching the Attribute Space
....................................................311
Scheme-Specific Selection
..........................................................312
7.2
Discretizing Numeric Attributes
.................................................314
Unsupervised Discretization
.......................................................316
Entropy-Based Discretization
.....................................................316
Other Discretization Methods
.....................................................320
Entropy-Based versus Error-Based Discretization
.....................320
Converting Discrete Attributes to Numeric Attributes
...............322
7.3
Projections
...................................................................................322
Principal Components Analysis
..................................................324
Random Projections
....................................................................326
Partial Least-Squares Regression
...............................................326
Text to Attribute Vectors
.............................................................328
Time Series
.................................................................................330
7.4
Sampling
.....................................................................................330
Reservoir Sampling
.....................................................................330
7.5
Cleansing
.....................................................................................331
Improving Decision Trees
...........................................................332
Robust Regression
......................................................................333
Detecting Anomalies
...................................................................334
One-Class Learning
....................................................................335
7.6
Transforming Multiple Classes to Binary Ones
.........................338
Simple Methods
..........................................................................338
Error-Correcting Output Codes
..................................................339
Ensembles of Nested Dichotomies
.............................................341
Contents
XI
7.7
Calibrating Class Probabilities
...................................................343
7.8
Further Reading
..........................................................................346
7.9
Weka
Implementations
................................................................348
CHAPTER
8
Ensemble Learning
.............................................................351
8.1
Combining Multiple Models
.......................................................351
8.2/
Bagging
.......................................................................................352
Bias-Variance Decomposition
....................................................353
Bagging with Costs
.....................................................................355
8.3
Randomization
............................................................................356
Randomization versus Bagging
..................................................357
Rotation Forests
..........................................................................357
8.4
Boosting
......................................................................................358
AdaBoost
.....................................................................................358
The Power of Boosting
...............................................................361
8.5
Additive Regression
....................................................................362
Numeric Prediction
.....................................................................362
Additive Logistic Regression
.....................................................364
8.6
Interpretable
Ensembles
..............................................................365
Option Trees
................................................................................365
Logistic Model Trees
..................................................................368
8.7
Stacking
.......................................................................................369
8.8
Further Reading
..........................................................................371
8.9
Weka
Implementations
................................................................372
Chapter
9
Moving on: Applications and Beyond
...................................375
9.1
Applying Data Mining
................................................................375
9.2
Learning from Massive
Datasets
................................................378
9.3
Data Stream Learning
.................................................................380
9.4
Incorporating Domain Knowledge
.............................................384
9.5
Text Mining
.................................................................................386
9.6
Web Mining
.................................................................................389
9.7
Adversarial Situations
.................................................................393
9.8
Ubiquitous Data Mining
.............................................................395
9.9
Further Reading
..........................................................................397
PART III THE
WEKA
DATA MINING WORKBENCH
________
CHAPTER
10
Introduction to
Weka
..........................................................403
10.1
What s in
Weka?
.........................................................................403
10.2
How Do You Use It?
..................................................................404
10.3
What Else Can You Do?
.............................................................405
10.4
How Do You Get It?
...................................................................406
xii Contents
CHAPTER
11
The Explorer
.......................................................................407
11.1
Getting Started
............................................................................407
Preparing the Data
......................................................................407
Loading the Data into the Explorer
............................................408
Building a Decision Tree
............................................................410
Examining the Output
.................................................................411
Doing It Again
............................................................................413
Working with Models
.................................................................414
When Things Go Wrong
.............................................................415
11.2
Exploring the Explorer
...............................................................416
Loading and Filtering Files
........................................................416
Training and Testing Learning Schemes
....................................422
Do It Yourself: The User Classifier
............................................424
Using a Metalearner
....................................................................427
Clustering and Association Rules
...............................................429
Attribute Selection
......................................................................430
Visualization
................................................................................430
11.3
Filtering Algorithms
....................................................................432
Unsupervised Attribute Filters
....................................................432
Unsupervised Instance Filters
.....................................................441
Supervised Filters
........................................................................443
11.4
Learning Algorithms
...................................................................445
Bayesian Classifiers
....................................................................451
Trees
............................................................................................454
Rules
............................................................................................457
Functions
.....................................................................................459
Neural Networks
.........................................................................469
Lazy Classifiers
...........................................................................472
Multi-Instance Classifiers
...........................................................472
Miscellaneous Classifiers
............................................................474
11.5
Metalearning Algorithms
............................................................474
Bagging and Randomization
.......................................................474
Boosting
......................................................................................476
Combining Classifiers
.................................................................477
Cost-Sensitive Learning
..............................................................477
Optimizing Performance
.............................................................478
Retargeting Classifiers for Different Tasks
................................479
11.6
Clustering Algorithms
.................................................................480
11.7
Association-Rule Learners
..........................................................485
11.8
Attribute Selection
......................................................................487
Attribute Subset Evaluators
........................................................488
Contents xiii
Single-Attribute Evaluators........................................................490
Search Methods...........................................................................
492
CHAPTER
12
The Knowledge Flow Interface
............................................495
12.1
Getting Started
............................................................................495
12.2
Components
.................................................................................498
12.3
Configuring and Connecting the Components
...........................500
12.4
Incremental Learning
..................................................................502
CHAPTER
13
The Experimenter
...............................................................505
13.1
Getting Started
............................................................................505
Running an Experiment
..............................................................506
Analyzing the Results
.................................................................509
13.2
Simple Setup
...............................................................................510
13.3
Advanced Setup
..........................................................................511
13.4
The Analyze Panel
......................................................................512
13.5
Distributing Processing over Several Machines
.........................515
CHAPTER
14
The Command-Line Interface
...............................................519
14.1
Getting Started
............................................................................519
14.2
The Structure of
Weka
................................................................519
Classes, Instances, and Packages
................................................520
The weka.core Package
...............................................................520
The weka.classifiers Package
......................................................523
Other Packages
............................................................................525
Javadoc Indexes
..........................................................................525
14.3
Command-Line Options
..............................................................526
Generic Options
..........................................................................526
Scheme-Specific Options
............................................................529
CHAPTER
15
Embedded Machine Learning
..............................................531
15.1
A Simple Data Mining Application
............................................531
MessageClassifierQ
.....................................................................536
updateDataQ
...............................................................................536
classifyMessageQ
........................................................................537
CHAPTER
16
Writing New Learning Schemes
..........................................539
16.1
An Example Classifier
................................................................539
buildClassifierQ
...........................................................................540
makeTreeQ
...................................................................................540
computelnfoGainQ
......................................................................549
classify Instanced
.........................................................................549
xiv Contents
toSourceQ....................................................................................550
main()..........................................................................................553
16.2 Conventions
for Implementing Classifiers
.................................555
Capabilities
..................................................................................555
CHAPTER
17
Tutorial Exercises for the
Weka
Explorer
.............................559
17.1
Introduction to the Explorer Interface
........................................559
Loading
a
Dataset
.......................................................................559
The
Dataset
Editor
......................................................................560
Applying a Filter
.........................................................................561
The Visualize Panel
....................................................................562
The Classify Panel
......................................................................562
17.2
Nearest-Neighbor Learning and Decision Trees
........................566
The Glass
Dataset
.......................................................................566
Attribute Selection
......................................................................567
Class Noise and Nearest-Neighbor Learning
.............................568
Varying the Amount of Training Data
........................................569
Interactive Decision Tree Construction
......................................569
17.3
Classification Boundaries
............................................................571
Visualizing
IR
.............................................................................571
Visualizing Nearest-Neighbor Learning
.....................................572
Visualizing
Naïve Bayes
.............................................................573
Visualizing Decision Trees and Rule Sets
..................................573
Messing with the Data
................................................................574
17.4
Preprocessing and Parameter Tuning
.........................................574
Discretization
..............................................................................574
More on Discretization
...............................................................575
Automatic Attribute Selection
....................................................575
More on Automatic Attribute Selection
.....................................576
Automatic Parameter Tuning
......................................................577
17.5
Document Classification
.............................................................578
Data with String Attributes
.........................................................579
Classifying Actual Documents
...................................................580
Exploring the StringToWordVector Filter
...................................581
17.6
Mining Association Rules
...........................................................582
Association-Rule Mining
............................................................582
Mining a Real-World
Dataset
.....................................................584
Market Basket Analysis
..............................................................584
REFERENCES
...............................................................................................587
INDEX
.........................................................................................................607
|
any_adam_object | 1 |
author | Witten, Ian H. 1947- Frank, Eibe Hall, Mark A. |
author_GND | (DE-588)138440166 (DE-588)122539044 (DE-588)1012537048 |
author_facet | Witten, Ian H. 1947- Frank, Eibe Hall, Mark A. |
author_role | aut aut aut |
author_sort | Witten, Ian H. 1947- |
author_variant | i h w ih ihw e f ef m a h ma mah |
building | Verbundindex |
bvnumber | BV036896475 |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.9.D343 QA76.9.D343W58 2011 |
callnumber-search | QA76.9.D343 QA76.9.D343W58 2011 |
callnumber-sort | QA 276.9 D343 |
callnumber-subject | QA - Mathematics |
classification_rvk | CM 4400 QH 500 SK 850 ST 270 ST 300 ST 530 |
classification_tum | DAT 450f DAT 708f |
ctrlnum | (OCoLC)706859282 (DE-599)BVBBV036896475 |
dewey-full | 006.3/12 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 006.3 |
dewey-search | 006.3/12 006.3 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Psychologie Mathematik Wirtschaftswissenschaften |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04111nam a2200757 c 4500</leader><controlfield tag="001">BV036896475</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210510 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110111s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2010039827</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123748560</subfield><subfield code="c">Pb : € 64.40</subfield><subfield code="9">978-0-12-374856-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123748569</subfield><subfield code="9">0-12-374856-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706859282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036896475</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343W58 2011</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4400</subfield><subfield code="0">(DE-625)18955:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 270</subfield><subfield code="0">(DE-625)143638:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 450f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Witten, Ian H.</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138440166</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining</subfield><subfield code="b">practical machine learning tools and techniques</subfield><subfield code="c">Ian H. Witten ; Eibe Frank ; Mark A. Hall</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIII, 629 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The Morgan Kaufmann series in data management systems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Contents: Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weka 3</subfield><subfield code="0">(DE-588)1126597503</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Java</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4401313-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="651" ind1=" " ind2="7"><subfield code="a">Java</subfield><subfield code="0">(DE-588)4028527-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Weka 3</subfield><subfield code="0">(DE-588)1126597503</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Java</subfield><subfield code="0">(DE-588)4028527-3</subfield><subfield code="D">g</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Java</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4401313-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frank, Eibe</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122539044</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hall, Mark A.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1012537048</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-08-089036-4</subfield><subfield code="w">(DE-604)BV042314259</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://www.elsevier.com/books/data-mining-practical-machine-learning-tools-and-techniques/witten/978-0-12-374856-0</subfield><subfield code="3">Ausführliche Beschreibung</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020811561&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020811561</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
geographic | Java (DE-588)4028527-3 gnd |
geographic_facet | Java |
id | DE-604.BV036896475 |
illustrated | Illustrated |
indexdate | 2024-08-01T10:51:14Z |
institution | BVB |
isbn | 9780123748560 0123748569 |
language | English |
lccn | 2010039827 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020811561 |
oclc_num | 706859282 |
open_access_boolean | |
owner | DE-20 DE-473 DE-BY-UBG DE-706 DE-11 DE-1049 DE-188 DE-703 DE-573 DE-19 DE-BY-UBM DE-29T DE-91G DE-BY-TUM DE-521 DE-860 DE-634 DE-91 DE-BY-TUM DE-355 DE-BY-UBR DE-523 DE-384 DE-824 DE-945 DE-859 DE-83 DE-1102 DE-M347 DE-862 DE-BY-FWS |
owner_facet | DE-20 DE-473 DE-BY-UBG DE-706 DE-11 DE-1049 DE-188 DE-703 DE-573 DE-19 DE-BY-UBM DE-29T DE-91G DE-BY-TUM DE-521 DE-860 DE-634 DE-91 DE-BY-TUM DE-355 DE-BY-UBR DE-523 DE-384 DE-824 DE-945 DE-859 DE-83 DE-1102 DE-M347 DE-862 DE-BY-FWS |
physical | XXXIII, 629 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Elsevier |
record_format | marc |
series2 | The Morgan Kaufmann series in data management systems |
spellingShingle | Witten, Ian H. 1947- Frank, Eibe Hall, Mark A. Data mining practical machine learning tools and techniques Data Mining Data Mining (DE-588)4428654-5 gnd Weka 3 (DE-588)1126597503 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Java Programmiersprache (DE-588)4401313-9 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)1126597503 (DE-588)4193754-5 (DE-588)4401313-9 (DE-588)4028527-3 |
title | Data mining practical machine learning tools and techniques |
title_auth | Data mining practical machine learning tools and techniques |
title_exact_search | Data mining practical machine learning tools and techniques |
title_full | Data mining practical machine learning tools and techniques Ian H. Witten ; Eibe Frank ; Mark A. Hall |
title_fullStr | Data mining practical machine learning tools and techniques Ian H. Witten ; Eibe Frank ; Mark A. Hall |
title_full_unstemmed | Data mining practical machine learning tools and techniques Ian H. Witten ; Eibe Frank ; Mark A. Hall |
title_short | Data mining |
title_sort | data mining practical machine learning tools and techniques |
title_sub | practical machine learning tools and techniques |
topic | Data Mining Data Mining (DE-588)4428654-5 gnd Weka 3 (DE-588)1126597503 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Java Programmiersprache (DE-588)4401313-9 gnd |
topic_facet | Data Mining Weka 3 Maschinelles Lernen Java Programmiersprache Java |
url | http://www.elsevier.com/books/data-mining-practical-machine-learning-tools-and-techniques/witten/978-0-12-374856-0 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020811561&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wittenianh dataminingpracticalmachinelearningtoolsandtechniques AT frankeibe dataminingpracticalmachinelearningtoolsandtechniques AT hallmarka dataminingpracticalmachinelearningtoolsandtechniques |
Inhaltsverzeichnis
THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: |
2000 ST 530 W829(3) |
---|---|
Exemplar 1 | ausleihbar Verfügbar Bestellen |