Data mining: practical machine learning tools and techniques

Contents: Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Imple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Witten, Ian H. 1947- (VerfasserIn), Frank, Eibe (VerfasserIn), Hall, Mark A. (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Amsterdam [u.a.] Elsevier 2011
Ausgabe:3. ed.
Schriftenreihe:The Morgan Kaufmann series in data management systems
Schlagworte:
Online-Zugang:Ausführliche Beschreibung
Inhaltsverzeichnis
Zusammenfassung:Contents: Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned -- Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond -- Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer -- 12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.
Beschreibung:Hier auch später erschienene, unveränderte Nachdrucke
Beschreibung:XXXIII, 629 S. Ill., graph. Darst.
ISBN:9780123748560
0123748569
Inhaltsverzeichnis

THWS Schweinfurt Zentralbibliothek Lesesaal

Bestandesangaben von THWS Schweinfurt Zentralbibliothek Lesesaal
Signatur: 2000 ST 530 W829(3)
Exemplar 1 ausleihbar Verfügbar Bestellen