The Ricci flow in Riemannian geometry: a complete proof of the differentiable 1/4-pinching sphere theorem
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
2011
|
Schriftenreihe: | Lecture notes in mathematics
2011 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Literaturangaben |
Beschreibung: | 1 Online-Ressource (XVII, 296 S.) graph. Darst. 24 cm |
ISBN: | 9783642162855 9783642162862 |
DOI: | 10.1007/978-3-642-16286-2 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV036889082 | ||
003 | DE-604 | ||
005 | 20131216 | ||
007 | cr|uuu---uuuuu | ||
008 | 110105s2011 gw |||| o||u| ||||||eng d | ||
015 | |a 10,N36 |2 dnb | ||
015 | |a 10,A51 |2 dnb | ||
020 | |a 9783642162855 |c kart. : EUR 48.10 (freier Pr.), ca. sfr 64.50 (freier Pr.) |9 978-3-642-16285-5 | ||
020 | |a 9783642162862 |c eISBN |9 978-3-642-16286-2 | ||
024 | 7 | |a 10.1007/978-3-642-16286-2 |2 doi | |
024 | 3 | |a 9783642162855 | |
028 | 5 | 2 | |a 80024308 |
035 | |a (OCoLC)694879407 | ||
035 | |a (DE-599)BVBBV036889082 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-91G |a DE-20 |a DE-384 |a DE-634 |a DE-703 |a DE-19 |a DE-29 |a DE-739 |a DE-83 | ||
082 | 0 | |a 516.362 |2 22/ger | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 537f |2 stub | ||
100 | 1 | |a Andrews, Ben |e Verfasser |0 (DE-588)143084186 |4 aut | |
245 | 1 | 0 | |a The Ricci flow in Riemannian geometry |b a complete proof of the differentiable 1/4-pinching sphere theorem |c Ben Andrews ; Christopher Hopper |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c 2011 | |
300 | |a 1 Online-Ressource (XVII, 296 S.) |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 2011 | |
500 | |a Literaturangaben | ||
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ricci-Fluss |0 (DE-588)7531847-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ricci-Fluss |0 (DE-588)7531847-7 |D s |
689 | 0 | 1 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hopper, Christopher |e Verfasser |0 (DE-588)143084194 |4 aut | |
830 | 0 | |a Lecture notes in mathematics |v 2011 |w (DE-604)BV014303148 |9 2011 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-16286-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-LNM | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020804307 |
Datensatz im Suchindex
_version_ | 1804143601059364864 |
---|---|
any_adam_object | |
author | Andrews, Ben Hopper, Christopher |
author_GND | (DE-588)143084186 (DE-588)143084194 |
author_facet | Andrews, Ben Hopper, Christopher |
author_role | aut aut |
author_sort | Andrews, Ben |
author_variant | b a ba c h ch |
building | Verbundindex |
bvnumber | BV036889082 |
classification_rvk | SI 850 |
classification_tum | MAT 537f |
collection | ZDB-2-SMA ZDB-2-LNM |
ctrlnum | (OCoLC)694879407 (DE-599)BVBBV036889082 |
dewey-full | 516.362 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.362 |
dewey-search | 516.362 |
dewey-sort | 3516.362 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-16286-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01980nmm a2200517 cb4500</leader><controlfield tag="001">BV036889082</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">110105s2011 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,N36</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">10,A51</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642162855</subfield><subfield code="c">kart. : EUR 48.10 (freier Pr.), ca. sfr 64.50 (freier Pr.)</subfield><subfield code="9">978-3-642-16285-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642162862</subfield><subfield code="c">eISBN</subfield><subfield code="9">978-3-642-16286-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-16286-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642162855</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">80024308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)694879407</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036889082</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.362</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andrews, Ben</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143084186</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Ricci flow in Riemannian geometry</subfield><subfield code="b">a complete proof of the differentiable 1/4-pinching sphere theorem</subfield><subfield code="c">Ben Andrews ; Christopher Hopper</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 296 S.)</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2011</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ricci-Fluss</subfield><subfield code="0">(DE-588)7531847-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ricci-Fluss</subfield><subfield code="0">(DE-588)7531847-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hopper, Christopher</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143084194</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2011</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">2011</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-16286-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-LNM</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020804307</subfield></datafield></record></collection> |
id | DE-604.BV036889082 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:50:15Z |
institution | BVB |
isbn | 9783642162855 9783642162862 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020804307 |
oclc_num | 694879407 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-20 DE-384 DE-634 DE-703 DE-19 DE-BY-UBM DE-29 DE-739 DE-83 |
owner_facet | DE-91G DE-BY-TUM DE-20 DE-384 DE-634 DE-703 DE-19 DE-BY-UBM DE-29 DE-739 DE-83 |
physical | 1 Online-Ressource (XVII, 296 S.) graph. Darst. 24 cm |
psigel | ZDB-2-SMA ZDB-2-LNM |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Andrews, Ben Verfasser (DE-588)143084186 aut The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem Ben Andrews ; Christopher Hopper Berlin ; Heidelberg Springer 2011 1 Online-Ressource (XVII, 296 S.) graph. Darst. 24 cm txt rdacontent c rdamedia cr rdacarrier Lecture notes in mathematics 2011 Literaturangaben Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Ricci-Fluss (DE-588)7531847-7 gnd rswk-swf Ricci-Fluss (DE-588)7531847-7 s Riemannsche Geometrie (DE-588)4128462-8 s DE-604 Hopper, Christopher Verfasser (DE-588)143084194 aut Lecture notes in mathematics 2011 (DE-604)BV014303148 2011 https://doi.org/10.1007/978-3-642-16286-2 Verlag Volltext |
spellingShingle | Andrews, Ben Hopper, Christopher The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem Lecture notes in mathematics Riemannsche Geometrie (DE-588)4128462-8 gnd Ricci-Fluss (DE-588)7531847-7 gnd |
subject_GND | (DE-588)4128462-8 (DE-588)7531847-7 |
title | The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem |
title_auth | The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem |
title_exact_search | The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem |
title_full | The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem Ben Andrews ; Christopher Hopper |
title_fullStr | The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem Ben Andrews ; Christopher Hopper |
title_full_unstemmed | The Ricci flow in Riemannian geometry a complete proof of the differentiable 1/4-pinching sphere theorem Ben Andrews ; Christopher Hopper |
title_short | The Ricci flow in Riemannian geometry |
title_sort | the ricci flow in riemannian geometry a complete proof of the differentiable 1 4 pinching sphere theorem |
title_sub | a complete proof of the differentiable 1/4-pinching sphere theorem |
topic | Riemannsche Geometrie (DE-588)4128462-8 gnd Ricci-Fluss (DE-588)7531847-7 gnd |
topic_facet | Riemannsche Geometrie Ricci-Fluss |
url | https://doi.org/10.1007/978-3-642-16286-2 |
volume_link | (DE-604)BV014303148 |
work_keys_str_mv | AT andrewsben thericciflowinriemanniangeometryacompleteproofofthedifferentiable14pinchingspheretheorem AT hopperchristopher thericciflowinriemanniangeometryacompleteproofofthedifferentiable14pinchingspheretheorem |