The quantum theory of fields: 1 Foundations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2010
|
Ausgabe: | 4. print. |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXVI, 609 S. Ill. |
ISBN: | 9780521550017 9780521670531 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV036861164 | ||
003 | DE-604 | ||
005 | 20190918 | ||
007 | t | ||
008 | 101209s2010 a||| |||| 00||| eng d | ||
020 | |a 9780521550017 |9 978-0-521-55001-7 | ||
020 | |a 9780521670531 |9 978-0-521-67053-1 | ||
035 | |a (OCoLC)706055951 | ||
035 | |a (DE-599)BVBBV036861164 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 |a DE-20 |a DE-91G |a DE-11 | ||
100 | 1 | |a Weinberg, Steven |d 1933-2021 |e Verfasser |0 (DE-588)11562855X |4 aut | |
245 | 1 | 0 | |a The quantum theory of fields |n 1 |p Foundations |c Steven Weinberg |
250 | |a 4. print. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2010 | |
300 | |a XXVI, 609 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
773 | 0 | 8 | |w (DE-604)BV010519919 |g 1 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776918&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020776918 |
Datensatz im Suchindex
_version_ | 1804143560854863872 |
---|---|
adam_text | Contents
Sections
marked with an asterisk are somewhat out of the book s main line of
development and may be omitted in a first reading.
PREFACE
xx
NOTATION
xxv
1
HISTORICAL INTRODUCTION
1
1.1
Relativistk Wave Mechanics
3
De
Broglie waves
О
Schrödinger-Klein-Gordon
wave equation
D
Fine structure
О
Spin
D
Dirac equation
□
Negative energies
Π
Exclusion principle
О
Positrons
ϋ
Dirac equation reconsidered
1.2
The Birth of Quantum Field Theory
15
Born,
Heisenberg,
Jordan quantized field
□
Spontaneous emission
□
Anticom-
mutators
D
Heisenberg-Pauli
quantum field theory
D
Furry-Oppenheimer quan¬
tization of Dirac field
ü Pauli-Weisskopf
quantization of scalar field
G
Early
calculations in quantum electrodynamics
D
Neutrons
□
Mesons
13
The Problem of Infinities
31
Infinite electron energy shifts
π
Vacuum polarization
D
Scattering of light by light
G
Infrared divergences
G
Search for alternatives
G Renormalization G
Shelter
Island Conference
G
Lamb shift
α
Anomalous electron magnetic moment
G
Schwinger,
Tomonaga, Feynman, Dyson formalisms
G
Why not earlier?
Bibliography
39
References
40
2
RELATIVISTIC QUANTUM MECHANICS
49
2.1
Quantum Mechanics
49
Rays
G
Scalar products
G Observables G
Probabilities
ix
x
Contents
12
Symmetries
50
Wigner s theorem
□ Antilinear
and antiunitary operators
Π
Observables
□
Group
structure
□
Representations up to a phase
□
Superselection rules
G Lie
groups
D
Structure constants
G Abelian
symmetries
23
Quantum
Lorentz
Transformations
55
Lorentz
transformations
G
Quantum operators
G
Inversions
14
The
Poincaré
Algebra
58
Jľv
and
Ρμ
□
Transformation properties
D
Commutation relations
G
Conserved
and non-conserved generators
G
Finite translations and rotations
G
Inönü-
Wigner contraction
G
Galilean algebra
23
One-Particle States
62
Transformation rules
G
Boosts
G
Little groups
G
Normalization
α
Massive
particles
G
Massless particles
o Helicity
and polarization
2.6
Space Inversion and Time-Reversal
74
Transformation of yv and
Ρ 1 α Ρ
is unitary and
Τ
is antiunitary
α
Massive
particles
G
Massless particles
α
Kramers degeneracy
G
Electric
dipole
moments
2.7
Projective
Representations*
81
Two-cocyles
G
Central charges
G
Simply connected groups
α
No central charges
in the
Lorentz
group
G
Double connectivity of the
Lorentz
group
α
Covering
groups
G
Superselection rules reconsidered
Appendix A The Symmetry Representation Theorem
91
Appendix
В
Group Operators and Homotopy Classes
96
Appendix
С
Inversions and Degenerate
Multiplets
100
Problems
104
References
105
3
SCATTERING THEORY
107
3.1
In and Out States
107
Multi-particle states
G
Wave packets
α
Asymptotic conditions at early and late
times
G
Lippmann- Schwinger
equations
G
Principal value and delta functions
3.2
The S-matrix
113
Definition of the S-matrix
G
The
Т
-matrix
α
Born approximation
G
Unitarity
of the S-matrix
3.3
Symmetries of the S-Matrix
116
Lorentz
invariance
О
Sufficient conditions
G
Internal symmetries
G
Electric
charge, strangeness, isospin, St7(3)
α
Parity conservation
G
Intrinsic parities
α
Contents xi
Pion
parity
□
Parity non-conservation
ü
Time-reversal
invariance D
Watson s
theorem
O PT
non-conservation
ü
С,
CP,
СРТ
D Neutral
К
-mesons
α
CP
non-
conservation
3.4
Rates and Cross-Sections
134
Rates in a box
□
Decay rates
О
Cross-sections
D
Lorentz
invariance
□
Phase
space
O Dalitz
plots
3.5
Perturbation Theory
141
Old-fashioned perturbation theory
Π
Time-dependent perturbation theory
D
Time-ordered products
о
The Dyson series
□
Lorentz-invariant theories
О
Dis¬
torted wave Born approximation
3.6
Implications of Unitarity
147
Optical theorem
о
Diffraction peaks
о СРТ
relations
О
Particle and antiparticle
decay rates
D
Kinetic theory
o Boltzmann
H-theorem
3.7
Partial-Wave Expansions*
151
Discrete basis
о
Expansion in spherical harmonics
О
Total elastic and inelastic
cross-sections
о
Phase shifts
О
Threshold behavior: exothermic, endothermic,
and elastic reactions
α
Scattering length
α
High-energy elastic and inelastic
scattering
3.8
Resonances* 1S9
Reasons for resonances: weak coupling, barriers, complexity
G
Energy-
dependence
D
Unitarity
о
Breit-Wigner formula
Π
Unresolved resonances
□
Phase shifts at resonance
D
Ramsauer-Townsend effect
Problems
165
References
166
4
THE CLUSTER DECOMPOSITION PRINCIPLE
169
4.1
Bosons and
Fermions
170
Permutation phases
D
Bose
and Fermi statistics
D
Normalization for identical
particles
4.2
Creation and Annihilation Operators
173
Creation operators
О
Calculating the adjoint
□
Derivation of commutation/
anticommutation
relations
□
Representation of general operators
G
Free-particle
Hamiltonian
G Lorentz
transformation of creation and annihilation operators
D
C, P, T
properties of creation and annihilation operators
43
Cluster Decomposition and Connected Amplitudes
177
Decorrelation of distant experiments
G
Connected amplitudes
D
Counting delta
functions
xii
Contents
4.4
Structure of the Interaction 182
Condition for cluster decomposition
D
Graphical analysis
G
Two-body scattering
implies three-body scattering
Problems 189
References 189
5
QUANTUM FIELDS AND ANTIPARTICLES
191
5.1
Free Fields
191
Creation and annihilation fields
α
Lorentz
transformation of the coefficient func¬
tions
G
Construction of the coefficient functions
α
Implementing cluster decom¬
position
D
Lorentz
invariance
requires causality
α
Causality requires antiparticles
О
Field equations
G
Normal ordering
5.2
Causal Scalar Fields
201
Creation and annihilation fields
G
Satisfying causality
G
Scalar fields describe
bosons
G
Antiparticles
G P, C, T
transformations
α π°
5.3
Causal
Vector Fields
207
Creation and annihilation fields
G
Spin zero or spin one
α
Vector fields describe
bosons
G
Polarization vectors
Q
Satisfying causality
G
Antiparticles
α
Mass zero
limit
Q P, C, T
transformations
5.4
The Dine Formalism
213
Clifford representations of the
Poincaré
algebra
α
Transformation of Dirac matri¬
ces
G
Dimensionality of Dirac matrices
G
Explicit matrices
ο γ5
G Pseudounitarity
□
Complex conjugate and transpose
55
Causal Dirac Fields
219
Creation and annihilation fields
G
Dirac spinors
α
Satisfying causality
α
Dirac
fields describe
fermions
α
Antiparticles
G
Space inversion
G
Intrinsic parity of
particle-antiparticle pairs
G
Charge-conjugation
α
Intrinsic
С
-phase of particle-
antiparticle pairs
□
Majorana
fermions G
Time-reversal
α
Bilinear
covariante
α
Beta decay interactions
5.6
General Irreducible Representations of the Homogeneous
Lorentz
Group*
229
Isomorphism with
S
1/(2)
®
S
1/(2)
G
(А, В)
representation of familiar fields
G
Rarita-Schwinger
field
α
Space inversion
5.7
General Causal Fields*
233
Constructing the coefficient functions
G
Scalar Hamiltonian densities
G
Satisfying
causality
G
Antiparticles
G
General spin-statistics connection
G
Equivalence of
different field types
G
Space inversion
α
Intrinsic parity of general particle-
antiparticle pairs
G
Charge-conjugation
G
Intrinsic
С
-phase of antiparticles
Q
Contents xiii
Self-charge-conjugate particles and reality relations
G
Time-reversal
D
Problems
for higher spin?
5.8
The CPT Theorem
244
CPT transformation of scalar, vector, and Dirac fields
Π
CPT transformation of
scalar interaction density
α
CPT transformation of general irreducible fields
D
CPT
invariance
of Hamiltonian
5.9
Massless Particle Fields
246
Constructing the coefficient functions
D
No vector fields for
helicity
±1
D
Need
for gauge
invariance
D
Antisymmetric tensor fields for
helicity
±1
Π
Sums over
helicity
D
Constructing causal fields for
helicity
+1
D
Gravitons
□
Spin
> 3
ü
General
irreducible
massless
fields
□
Unique
helicity
for
(А, В)
fields
Problems 2SS
References
256
6
THE FEYNMAN RULES
259
6.1
Derivation of the Rules
259
Pairings
D
Wick s theorem
О
Coordinate space rules
O Combinatorie
factors
D
Sign factors
О
Examples
6.2
Calculation of the Propagator
274
Numerator polynomial
D
Feynman propagator for scalar fields
D
Dirac fields
D
General irreducible fields
О
Covariant propagators
D
Non-covariant terms in
time-ordered products
63
Momentum Space Rules
280
Conversion to momentum space
О
Feynman rules
ü
Counting independent
momenta
Q
Examples
О
Loop suppression factors
6.4
Off the Mass Shell
286
Currents
О
Off-shell amplitudes are exact matrix elements of Heisenberg-picture
operators
□
Proof of the theorem
Problems
290
References
291
7
THE CANONICAL FORMALISM
292
7.1
Canonical Variables
293
Canonical commutation relations
О
Examples: real scalars, complex scalars,
vector fields, Dirac fields
D
Free-particle Hamiltonians
□
Free-field Lagrangian
О
Canonical formalism for interacting fields
xiv Contents
12
The Lagrangian Formalism
298
Lagrangian
equations of motion
О
Action
α
Lagrangian density
D
Euler-
Lagrange
equations
о
Reality of the action
□
From Lagrangians to Hamiltonians
α
Scalar fields revisited
D
From
Heisenberg
to interaction picture
α
Auxiliary
fields
□
Integrating by parts in the action
7
J
Global Symmetries
306
Noether s theorem
Π
Explicit formula for conserved quantities
D
Explicit formula
for conserved currents
Π
Quantum symmetry generators
α
Energy-momentum
tensor
D
Momentum
D
Internal symmetries
α
Current commutation relations
7.4
Lorentz
Invariance
314
Currents Jin
□
Generators
Јџ
G Belinfante
tensor
α
Lorentz
invariance
of
S-matrix
7.5
Transition
to
Interaction
Picture: Examples
318
Scalar field with derivative coupling
□
Vector field
□
Dirac field
7.6
Constraints and Dirac Brackets
325
Primary and secondary constraints
□
Poisson
brackets
□
First and second class
constraints
ü
Dirac brackets
D
Example: real vector field
7.7
Field Redefinitions and Redundant Couplings*
331
Redundant parameters
О
Field redefinitions
О
Example: real scalar field
Appendix Dirac Brackets from Canonical Commutators
332
Problems
337
References
338
8
ELECTRODYNAMICS
339
8.1
Gauge
Invariance
339
Need for coupling to conserved current
G
Charge operator
О
Local symmetry
α
Photon action
□
Field equations
Π
Gauge-invariant derivatives
8.2
Constraints and Gauge Conditions
343
Primary and secondary constraints
D
Constraints are first class
D
Gauge fixing
D
Coulomb gauge
О
Solution for
Ай
8.3
Quantization in Coulomb Gauge
346
Remaining constraints are second class
G
Calculation of Dirac brackets in
Coulomb gauge
G
Construction of Hamiltonian
G
Coulomb interaction
8.4
Electrodynamics in the Interaction Picture
350
Free-field and interaction Hamiltonians
G
Interaction picture operators
О
Normal
mode decomposition
Contents xv
8.5 The Photon
Propagator
353
Numerator polynomial
О
Separation of non-covariant terms
□
Cancellation of
non-covariant terms
8.6
Feynman Rules for Spinor Electrodynamics
355
Feynman graphs
π
Vertices
D
External lines
D
Internal lines
D
Expansion in
α/4π
D
Circular, linear, and elliptic polarization
ü
Polarization and spin sums
8.7
Compton Scattering
362
S-matrix
о
Differential cross-section
ö
Kinematics
D
Spin sums
□
Traces
□
Klein-Nishina formula
о
Polarization by Thomson scattering
О
Total cross-
section
8.8
Generalization
:
p-form Gauge Fields*
369
Motivation
D
p-forms
D
Exterior derivatives
О
Closed and exact p-forms
D
p-form gauge fields
□
Dual fields and currents in
D
spacetime dimensions
□
p-form gauge fields equivalent to (D
—
ρ
—
2)-form gauge fields
D
Nothing new in
four spacetime dimensions
Appendix Traces
372
Problems
374
References
375
9
PATH-INTEGRAL METHODS
376
9.1
The General Path-Integral Formula
378
Transition amplitudes for infinitesimal intervals
□
Transition amplitudes for finite
intervals
о
Interpolating functions
D
Matrix elements of time-ordered products
О
Equations of motion
9.2
Transition to
tne
S-Matrix
385
Wave function of vacuum
D
if terms
93
Lagrangian Version of the Path-Integral Formula
389
Integrating out the momenta
о
Derivatively coupled scalars
D
Non-linear
sigma
model
α
Vector field
9.4
Path-Integral Derivation of Feynman Rules
395
Separation of free-field action
□
Gaussian integration
D
Propagators: scalar
fields, vector fields, derivative coupling
93
Path Integrals for
Fermions
399
Anticommuting
с
-numbers
D
Eigenvectors of canonical operators
D
Summing
states by Berezin integration
D
Changes of variables
α
Transition amplitudes for
infinitesimal intervals
D
Transition amplitudes for finite intervals
О
Derivation
of Feynman rules
D
Fermion propagator
О
Vacuum amplitudes as determinants
xvi Contents
9jí
PatMategnl
FonnułatioR
of
Quantum
Electrodynamics
413
Patb rategral in Coulomb
gauge
О
Reintroduction
of efi
D
Transition to covariant
gaufes
9.7
Varieties of Statistics*
418
Preparing in and out states
π
Composition rules
α
Only bosons and
fermions
in
> 3
dimensions
D
Anyons in two dimensions
Appendix Gaussian Multiple Integrals
420
Problems
423
References
423
10
NON-PERTURBATTVE METHODS
425
10.1
Symmetries
425
Translations
D
Charge conservation
□
Furry s theorem
102
Potoiogy
428
Рок
formula for general amplitudes
Π
Derivation of the pole formula
□
Pion
exchange
103
Field and Mass Renormalization
436
LSZ reduction formula
D
Renormalized fields
D
Propagator poles
Π
No radiative
corrections in external lines
О
Counterterms in self-energy parts
10.4
Renormalized Charge and Ward Identities
442
Charge operator
α
Electromagnetic field renormalization
D
Charge renormaliz¬
ation
ü
Ward-Takahashi identity
D
Ward identity
10.5
Gauge
Invariance
448
Transversality of multi-photon amplitudes
□ Schwinger
terms
О
Gauge terms in
photon propagator
о
Structure of photon propagator
о
Zero photon renormal¬
ized mass
D
Calculation of
Zí O
Radiative corrections to choice of gauge
10.6
Electromagnetic Form Factors and Magnetic Moment
452
Matrix elements of J°
D
Form factors of
Јџ
:
spin zero
О
Form factors of
Зџ
:
spin
ü
Magnetic moment of a spin particle
α
Measuring the form factors
10.7
The
Källen-Lehmann
Representation*
457
Spectral functions
α
Causality relations
D
Spectral representation
G
Asymptotic
behavior of propagators
D
Poles
D
Bound on field renormalization constant
G
Ζ =
0
for composite particles
10.8
Dispersion Relations*
462
History
□
Analytic properties of massless boson forward scattering amplitude
Contents xvii
D
Subtractions
□
Dispersion relation
D
Crossing symmetry
D
Pomeranehuk s
theorem
ü
Regge
asymptotic behavior
D
Photon scattering
Problems
469
References
470
11
ONE-LOOP RADIATIVE CORRECTIONS IN QUANTUM
ELECTRODYNAMICS
472
11.1
Counterterms
472
Field, charge, and mass renormalization
O Lagrangian
counterterms
11.2
Vacuum Polarization
473
One-loop integral for photon self-energy part
D
Feynman parameters
D
Wick
rotation
ü
Dimensional regularization
D
Gauge
invariance Cl
Calculation of
Z-¡
□
Cancellation of divergences
D
Vacuum polarization in charged particle scattering
ü
Uehling effect
D
Muonic atoms
11.3
Anomalous Magnetic Moments and Charge Radii
485
One-loop formula for vertex function
□
Calculation of form factors
□
Anomalous
lepton
magnetic moments to order <x
D
Anomalous muon magnetic moment to
order a.2
п(тџ/те)
□
Charge radius of leptons
11.4
Electron Self-Energy
493
One-loop formula for electron self-energy part
π
Electron mass renormalization
Q
Cancellation of ultraviolet divergences
Appendix Assorted Integrals
497
Problems
498
References
498
12
GENERAL RENORMALIZATION THEORY
499
12.1
Degrees of Divergence
500
Superficial degree of divergence
□
Dimensional analysis
o Renormalizability D
Criterion for actual convergence
12.2
Cancellation of Divergences
505
Subtraction by differentiation
D
Renormalization program
D Renormalizable
theories
Π
Example: quantum electrodynamics
□
Overlapping divergences
□
BPHZ renormalization prescription
□
Changing the renormalization point:
φΑ
theory
123
Is
Renormalizability
Necessary?
516
xviii Contents
Renomuüizablc
interactions
cataloged
О
No renormalizable theories of gravita¬
tion
О
Cancellation of divergences in non-renormalizable theories
α
Suppression
of non-renormalizable interactions
О
Limits on new mass scales
□
Problems with
higher derivatives?
Π
Detection of non-renormalizable interactions
D
Low-energy
expansions in non-renormalizable theories
α
Example: scalar with only derivative
coupling
О
Saturation or new physics?
D
Effective field theories
124
TV Floating Cutoff·
525
Wilson s approach
О
Renormalization group equation
D
Polchinski s theorem
□
Attraction to a stable surface
□
Floating cutoff vs renormalization
125
Accidental
Symmetries*
529
General renormalizable theory of charged leptons
D
Redefinition of the
lepton
fields
О
Accidental conservation of
lepton
flavors, P, C, and
Τ
Problems
531
Refertaces
532
13
INFRARED EFFECTS
534
13.1
Soft Pkotoa Amplitudes
534
Single photon emission
D
Negligible emission from internal lines
□
Lorentz
invariance
implies charge conservation
□
Single graviton emission
D
Lorentz
invariance
implies equivalence principle
Π
Multi-photon emission
Π
Factorization
13.2
Virtual Soft Photons
539
Effect of soft virtual photons
D
Radiative corrections on internal lines
133
Real Soft Photons; Cancellation of Divergences
544
Sum over helicities
G
Integration over energies
□
Sum over photon number
□
Cancellation of infrared cutoff factors
О
Likewise for gravitation
13.4
General Infrared Divergences
548
Massless charged particles
□
Infrared divergences in general
o Jets o Lee-Nau-
enberg theorem
135
Soft Photon Scattering*
553
Poles in the amplitude
□
Conservation relations
□
Universality of the low-energy
limit
13.6
The External Field Approximation*
556
Sums over photon vertex permutations
D
Non-relativistic limit
D
Crossed ladder
exchange
Problems
562
References
562
Contents xix
14
BOUND
STATES IN
EXTERNAL FIELDS
564
14.1
The Dirac Equation
565
Dirac wave functions as field matrix elements
D
Anticommutators and complete¬
ness
G
Energy eigenstates
D
Negative energy wave functions
D
Orthonormaliza-
tion
□
Large and small components
D
Parity
□
Spin- and angle-dependence
D
Radial wave equations
□
Energies
Π
Fine structure
D Non-relativistic
approxi¬
mations
14.2
Radiative Corrections in External Fields S72
Electron propagator in an external field
о
Inhomogeneous Dirac equation
ü
Effects of radiative corrections
G
Energy shifts
14.3
The Lamb Shift in Light Atoms
578
Separating high and low energies
D
High-energy term
D
Low-energy term
Π
Effect of mass renormalization
□
Total energy shift Or — OG/^O Numerical
results
□
Theory vs experiment for classic Lamb shift
G
Theory vs experiment
for Is energy shift
Problems
594
References
595
AUTHOR INDEX
597
SUBJECT INDEX
602
OUTLINE OF VOLUME II
15
NON-ABELIAN GAUGE THEORIES
16
EXTERNAL FIELD METHODS
17
RENORMALIZATION OF GAUGE THEORIES
18
RENORMALIZATION GROUP METHODS
19
SPONTANEOUSLY BROKEN GLOBAL SYMMETRIES
20
OPERATOR PRODUCT EXPANSIONS
21
SPONTANEOUSLY BROKEN LOCAL SYMMETRIES
22
ANOMALIES
23
EXTENDED FIELD CONFIGURATIONS
|
any_adam_object | 1 |
author | Weinberg, Steven 1933-2021 |
author_GND | (DE-588)11562855X |
author_facet | Weinberg, Steven 1933-2021 |
author_role | aut |
author_sort | Weinberg, Steven 1933-2021 |
author_variant | s w sw |
building | Verbundindex |
bvnumber | BV036861164 |
ctrlnum | (OCoLC)706055951 (DE-599)BVBBV036861164 |
edition | 4. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01237nam a2200313 cc4500</leader><controlfield tag="001">BV036861164</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190918 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101209s2010 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521550017</subfield><subfield code="9">978-0-521-55001-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521670531</subfield><subfield code="9">978-0-521-67053-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706055951</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036861164</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weinberg, Steven</subfield><subfield code="d">1933-2021</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11562855X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The quantum theory of fields</subfield><subfield code="n">1</subfield><subfield code="p">Foundations</subfield><subfield code="c">Steven Weinberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 609 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV010519919</subfield><subfield code="g">1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776918&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020776918</subfield></datafield></record></collection> |
id | DE-604.BV036861164 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:49:37Z |
institution | BVB |
isbn | 9780521550017 9780521670531 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020776918 |
oclc_num | 706055951 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-20 DE-91G DE-BY-TUM DE-11 |
physical | XXVI, 609 S. Ill. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Weinberg, Steven 1933-2021 Verfasser (DE-588)11562855X aut The quantum theory of fields 1 Foundations Steven Weinberg 4. print. Cambridge [u.a.] Cambridge Univ. Press 2010 XXVI, 609 S. Ill. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke (DE-604)BV010519919 1 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776918&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Weinberg, Steven 1933-2021 The quantum theory of fields |
title | The quantum theory of fields |
title_auth | The quantum theory of fields |
title_exact_search | The quantum theory of fields |
title_full | The quantum theory of fields 1 Foundations Steven Weinberg |
title_fullStr | The quantum theory of fields 1 Foundations Steven Weinberg |
title_full_unstemmed | The quantum theory of fields 1 Foundations Steven Weinberg |
title_short | The quantum theory of fields |
title_sort | the quantum theory of fields foundations |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776918&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010519919 |
work_keys_str_mv | AT weinbergsteven thequantumtheoryoffields1 |