The quantum theory of fields: 2 Modern applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2010
|
Ausgabe: | 10th pr. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXI, 489 S. Ill., graph. Darst. |
ISBN: | 9780521670548 9780521550024 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV036861112 | ||
003 | DE-604 | ||
005 | 20230220 | ||
007 | t | ||
008 | 101209s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780521670548 |c Paperback |9 978-0-521-67054-8 | ||
020 | |a 9780521550024 |c Hardcover |9 978-0-521-55002-4 | ||
035 | |a (OCoLC)706055802 | ||
035 | |a (DE-599)BVBBV036861112 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 |a DE-91G |a DE-11 |a DE-20 | ||
100 | 1 | |a Weinberg, Steven |d 1933-2021 |e Verfasser |0 (DE-588)11562855X |4 aut | |
245 | 1 | 0 | |a The quantum theory of fields |n 2 |p Modern applications |c Steven Weinberg |
250 | |a 10th pr. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2010 | |
300 | |a XXI, 489 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |5 DE-604 | |
773 | 0 | 8 | |w (DE-604)BV010519919 |g 2 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776868&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020776868 |
Datensatz im Suchindex
_version_ | 1804143560770977792 |
---|---|
adam_text | Contents
Sections
marked with an asterisk are somewhat out of the book s main line of
development and may be omitted in a first reading.
PREFACE TO VOLUME II
xvii
NOTATION
xx
15
NON-ABELIAN GAUGE THEORIES
1
15.1
Gauge
Invariance
2
Gauge transformations
Π
Structure constants
Q
Jacobi identity
О
Adjoint repre¬
sentation
Π
Yang-Mills theory
□
Covariant derivatives
D
Field strength tensor
О
Finite gauge transformations
□
Analogy with general relativity
15.2
Gauge Theory Lagrangians and Simple Lie Groups
7
Gauge field Lagrangian
Π
Metric
D
Antisymmetric structure constants
D
Simple,
semisimple,
and
1/(1)
Lie algebras
D
Structure of gauge algebra
О
Compact
algebras
Π
Coupling constants
153
Field Equations and Conservation Laws
12
Conserved currents
О
Covariantly conserved currents
D
Inhomogeneous field
equations
□
Homogeneous field equations
□
Analogy with energy-momentum
tensor
D
Symmetry generators
15.4
Quantization
14
Primary and secondary first-class constraints
□
Axial gauge
o Gribov
ambiguity
О
Canonical variables
ü
Hamiltonian
G Reintroduction
of A°x
□
Covariant action
О
Gauge
invariance
of the measure
15.5
The
De Witt-Faddeev-Popov
Method
19
Generalization of axial gauge results
D
Independence of gauge fixing functionals
α
Generalized Feynman gauge
D
Form of vertices
15.6
Ghosts
24
Determinant as path integral
D
Ghost and antighost fields
Π
Feynman rules for
ghosts
α
Modified action
Q
Power counting and renormalizability
vii
viii Contents
15.7
BRST
Symmetry
27
Auxiliary field hx
□
BRST
transformation
О
Nilpotence
О
Invariance
of new
action
D
BRST-cohomology
О
Independence of gauge fixing
□
Application to
electrodynamics
О
BRST-quantization
α
Geometric interpretation
15.8
Generalizations of
BRST
Symmetry*
36
De
Witt notation
О
General Faddeev-Popov-De Witt theorem
D
BRST
transfor¬
mations
О
New action
О
Slavnov operator
G
Field-dependent structure constants
D
Generalized Jacobi identity
ü
Invariance
of new action
О
Independence of
gauge fixing
D
Beyond quadratic ghost actions
D
BRST
quantization
О
BRST
cohomology
O Anti-BRST
symmetry
15.9
The Batalin-Vilkovisky Formalism*
42
Open gauge algebras
D
Antifields
D
Master equation
О
Minimal fields and trivial
pairs
□
BRST-transformations with antifields
О
Antibrackets
Q Anticanonical
transformations
□
Gauge fixing
о
Quantum master equation
Appendix A A Theorem Regarding Lie Algebras
50
Appendix
В
The Cartan Catalog
54
Problems
58
References
59
16
EXTERNAL FIELD METHODS
63
16.1
The Quantum Effective Action
63
Currents
ü
Generating functional for all graphs
D
Generating functional for
connected graphs
D
Legendre transformation
О
Generating functional for one-
particle-irreducible graphs
D
Quantum-corrected field equations
О
Summing tree
graphs
16.2
Calculation of the Effective Potential
68
Effective potential for constant fields
Π
One loop calculation
□
Divergences
О
Renormalization
O Fermion
loops
163
Energy Interpretation
72
Adiabatic perturbation
О
Effective potential as minimum energy
D
Convexity
о
Instability between local minima
О
Linear interpolation
16.4
Symmetries of the Effective Action
75
Symmetry and renormalization
□
Slavnov-Taylor identities
□
Linearly realized
symmetries
Π
Fermionic fields and currents
Problems
78
References
78
Contents ix
17 RENORMALIZATION
OF GAUGE THEORIES
80
17.1
The
Zinn-Justin
Equation
80
Slavnov-Taylor identities for
BRST
symmetry
О
External fields Kn(x)
□
An-
tibrackets
17.2
Renormalization: Direct Analysis
82
Recursive argument
D
BRST-symmetry condition on infinities
О
Linearity in
К„(х)
□
New
BRST
symmetry
D
Cancellation of infinities
π
Renormalization
constants
π
Nonlinear gauge conditions
173
Renormalization: General Gauge Theories*
91
Are non-renormalizable gauge theories renormalizable?
D
Structural constraints
о
Anticanonical change of variables
О
Recursive argument
□
Cohomology
theorems
17.4
Background Field Gauge
95
New gauge fixing functions
О
True and formal gauge
invariance
□
Renormaliza¬
tion constants
175
A One-Loop Calculation in Background Field Gauge
100
One-loop effective action
α
Determinants
О
Algebraic calculation for constant
background fields
□
Renormalization of gauge fields and couplings
□
Interpre¬
tation of infinities
Problems
109
References
110
18
RENORMALIZATION GROUP METHODS 111
18.1
Where do the Large Logarithms Come From?
112
Singularities at zero mass
О
Infrared safe amplitudes and rates
O Jets O
Zero
mass singularities from renormalization
ü Renormalized
operators
18.2
The Sliding Scale
119
Gell-Mann-Low renormalization
О
Renormalization group equation
□
One-
loop calculations
D
Application to
φ*
theory
О
Field renormalization factors
О
Application to quantum electrodynamics
О
Effective fine structure constant
Π
Field-dependent renormaiized couplings
□
Vacuum instability
183
Varieties of Asymptotic Behavior
130
Singularities at finite energy
□
Continued growth
О
Fixed point at finite coupling
□
Asymptotic freedom
D
Lattice quantization
G
Triviality
□
Universal coefficients
in the beta function
x
Contents
18.4 Multiple
Couplings and Mass Effects
139
Behavior near a fixed point
О
Invariant eigenvalues
D Nonrenormalizable
theories
G
Finite dimensional critical surfaces
D
Mass renormalization at zero mass
□
Renormalization group equations for masses
18.5
Critical Phenomena*
145
Low wave numbers
D
Relevant, irrelevant, and marginal couplings
D
Phase
transitions and critical surfaces
D
Critical temperature
π
Behavior of correlation
length
□
Critical exponent
Q
4 —
є
dimensions
α
Wilson-Fisher fixed point
Q
Comparison with experiment
□
Universality classes
18.6
Minimal Subtraction
148
Definition of renormalized coupling
О
Calculation of beta function
□
Applica¬
tion to electrodynamics
ü
Modified minimal subtraction
О
Non-renormalizable
interactions
18.7
Quantum Chromodynamics
152
Quark colors and flavors
G
Calculation of beta function
Q
Asymptotic freedom
G
Quark and gluon trapping
Π
Jets
Q
e+-e~ annihilation into hadrons
G
Accidental
symmetries
G
Non-renormalizable corrections
G
Behavior of gauge coupling
G
Experimental results for g5 and
Λ
18.8
Improved Perturbation Theory*
157
Leading logarithms
G
Coefficients of logarithms
Problems
158
References
159
19
SPONTANEOUSLY BROKEN GLOBAL SYMMETRIES
163
19.1
Degenerate Vacua
163
Degenerate minima of effective potential
G
Broken symmetry or symmetric super¬
positions?
D
Large systems
G
Factorization at large distances
G Diagonalization
of vacuum expectation values
G
Cluster decomposition
19.2 Goldstone
Bosons
167
Broken global symmetries imply massless bosons
G
Proof using effective potential
□
Proof using current algebra
G F
factors and vacuum expectation values
D
Interactions of soft
Goldstone
bosons
193
Spontaneously Broken Approximate Symmetries
177
Pseudo-Goldstone bosons
α
Tadpoles
α
Vacuum alignment
G
Mass matrix
G
Positivity
Contents xi
19.4
Pions as
Goldstone
Bosons
182
SU(2)
x S
1/(2)
chiral symmetry of quantum chromodynamics
D
Breakdown to
isospin
D
Vector and axial-vector weak currents
D
Pion
decay amplitude
D
Axial
form factors of
nucleón
Π
Goldberger-Treiman relation
D
Vacuum alignment
□
Quark and
pion
masses
□
Soft
pion
interactions
□
Historical note
19.5
Effective Field Theories:
Pions
and
Nucléons
192
Current algebra for two soft
pions
О
Current algebra justification for effective
Lagrangian
Π σ
-model
о
Transformation to derivative coupling
ü
Nonlinear
realization of
S
U(
2)
x S
1/(2)
Π
Effective Lagrangian for soft
pions o
Direct
justification of effective Lagrangian
Π
General effective Lagrangian for
pions
□
Power counting
D
Pion-pion
scattering for massless
pions D
Identification of
/ -factor
D
Pion
mass terms in effective Lagrangian
□
Pion-pion scattering for
real
pions o Pion-pion
scattering lengths
□
Pion-nucleon effective Lagrangian
ü
Covariant derivatives
D
gA
φ
1
D
Power counting with
nucléons
α
Pion-nucleon
scattering lengths
D
σ
-terms
О
Isospin violation
О
Adler-
Weisberger
sum rule
19.6
Effective Field Theories: General Broken Symmetries
211
Transformation to derivative coupling
D
Goldstone
bosons and right cosets
□
Symmetric spaces
α
Cartan decomposition
о
Nonlinear transformation rules
О
Uniqueness
□
Covariant derivatives
О
Symmetry breaking terms
Q
Application
to quark mass terms
ü
Power counting
ü
Order parameters
19.7
Effective Field Theories: SU(3)
x SU(3)
225
S
1/(3)
multiplets
and matrices
α
Goldstone
bosons of broken
S
1/(3)
x SU(3) D
Quark mass terms
D
Pseudoscalar meson masses
О
Electromagnetic corrections
О
Quark mass ratios
О
Higher terms in Lagrangian
D
Nucleón
mass shifts
19.8
Anomalous Terms in Effective Field Theories*
234
Wess-Zumino-Witten term
О
Five-dimensional form
□
Integer coupling
Π
Uniqueness and
de Rham
cohomology
19.9
Unbroken Symmetries
238
Persistent mass conjecture
□
Vafa-Witten proof
□
Small non-degenerate quark
masses
19.10
The
ř/(l)
Problem
243
Chiral
1/(1)
symmetry
О
Implications for pseudoscalar masses
Problems
246
References
247
xii
Contents
20
OPERATOR PRODUCT EXPANSIONS
252
20.1
The Expansion: Description and Derivation
253
Statement of expansion
О
Dominance of simple operators
G
Path-integral deriva¬
tion
20.2
Momentum Flow*
255
φ2
contribution for two large momenta
D
Renormalized operators
О
Integral
equation for coefficient function
Ο φ2
contribution for many large momenta
203
Renormalization Group Equations for Coefficient Functions
263
Derivation and solution
О
Behavior for fixed points
D
Behavior for asymptotic
freedom
20.4
Symmetry Properties of Coefficient Functions
265
Invariance
under spontaneously broken symmetries
203
Spectral Function Sum Rules
266
Spectral functions defined
D
First, second, and third sum rules
D
Application to
chiral SU(N)
χ
SU(N)
G
Comparison with experiment
20.6
Deep Inelastic Scattering
272
Form factors Wi and Wi
О
Deep inelastic differential cross section
o Björken
scaling
D
Parton
model
D
Callan-Gross relation
О
Sum rules
ü Form
factors T
and T2
□
Relation between Tr and Wr
D
Symmetric tensor operators
□
Twist
Π
Operators of minimum twist
D
Calculation of coefficient functions
ü
Sum
rules for
parton
distribution functions
О
Altarelli-Parisi differential equations
D
Logarithmic corrections to
Björken
scaling
20.7
Renormalons*
283
Borei
summation of perturbation theory
о
Instanton
and renormalon obstruc¬
tions
D
Instantons
in massless
φ*
theory
□
Renormalons in quantum chromody-
namics
Appendix Momentum Flow: The General Case
288
Problems
292
References
293
21
SPONTANEOUSLY BROKEN GAUGE SYMMETRIES
295
21.1
Unitarity
Gange 295
Elimination of
Goldstone
bosons
α
Vector boson masses
α
Unbroken symmetries
and massless vector bosons
G
Complex representations
G
Vector field propagator
О
Continuity for vanishing gauge couplings
Contents xiii
21.2 Renormalizable
¿-Gauges
300
Gauge fixing function
О
Gauge-fixed Lagrangian
□
Propagators
213
The Electroweak Theory
305
Lepton-number preserving symmetries
π
SU(2)
χ
t/(l)
Π
W±, Z°, and photons
О
Mixing angle
□
Lepton-vector boson couplings
D
W*-
and Z° masses
О
Muon
decay
О
Effective fine structure constant
О
Discovery of neutral currents
□
Quark
currents
□
Cabibbo angle
□
с
quark
□
Third generation
D
Kobayashi-Maskawa
matrix
о
Discovery of W± and Z°
D
Precise experimental tests
о
Accidental
symmetries
D Nonrenormalizable
corrections
□
Lepton nonconservation
and
neutrino masses
D
Baryon
nonconservation and proton decay
21.4
Dynamically Broken Local Symmetries*
318
Fictitious gauge fields
О
Construction of Lagrangian
D
Power counting
О
Gen¬
eral mass formula
О
Example:
S
17(2)
χ
SU(2)
G
Custodial SU(2)
χ
SU
(2)
О
Technicolor
21.5
Electroweak-Strong Unification
327
Simple gauge groups
□
Relations among gauge couplings
D
Renormalization
group flow
Π
Mixing angle and unification mass
□ Baryon
and
lepton
noncon¬
servation
21.6
Superconductivity
332
1/(1)
broken to Z.2
О
Goldstone
mode
D
Effective Lagrangian
D
Conservation
of charge
О
Meissner effect
О
Penetration depth
О
Critical field
O Flux
quan¬
tization
о
Zero resistance
π
ас
Josephson
effect
□
Landau-Ginzburg theory
о
Correlation length
D
Vortex lines
□ 1/(1)
restoration
о
Stability
о
Type I and
II superconductors
D
Critical fields for vortices
О
Behavior near vortex center
ü
Effective theory for electrons near Fermi surface
Π
Power counting
Π
Introduc¬
tion of pair field
D
Effective action
Π
Gap equation
D
Renormalization group
equations
О
Conditions for superconductivity
Appendix General Unitarity Gauge
352
Problems
353
References
354
22
ANOMALIES
359
22.1
The
π
Decay Problem
359
Rate for
π°
-♦
2y
О
Naive estimate
D
Suppression by chiral symmetry
□
Comparison with experiment
212
Transformation of the Measure: The Abelian Anomaly
362
Chiral and non-chiral transformations
α
Anomaly function
ü
Chern-Pontryagin
density
Π
Nonconservation of current
D
Conservation of gauge-non-invariant
xiv Contents
current
D
Calculation of
π°
-»
2y
α
Euclidean calculation
O Atiyah-Singer
index theorem
223
Direct Calculation of Anomalies: The General Case
370
Fermion non-conserving currents
D
Triangle graph calculation
□
Shift vectors
D
Symmetric anomaly
D
Bardeen
form
O Adler-Bardeen
theorem
□
Massive
fermions
D
Another approach
ü
Global anomalies
214
Anomaly-Free Gauge Theories
383
Gauge anomalies must vanish
D
Real and
pseudoreal
representations
□
Safe
groups
Π
Anomaly cancellation in standard model
D
Gravitational anomalies
□
Hypercharge assignments
G
Another
1/(1)?
225
Massless Bound States*
389
Composite quarks and leptons?
□
Unbroken chiral symmetries
□
t Hooft
anomaly matching conditions
D
Anomaly matching for unbroken chiral
S U
(ή) χ
SV(n) with SU(N) gauge group
D
The case
N = 3
D
G
Chiral SU(3)
χ
SC/(3)
must be broken
G
t Hooft
decoupling condition
G
Persistent mass condition
22.6
Consistency Conditions
396
Wess-Zumino conditions
G
BRST
cohomology
G
Derivation of symmetric
anomaly
G
Descent equations
G
Solution of equations
G
Schwinger
terms
G
Anomalies in Zinn-Justin equation
G Antibracket
cohomology
□
Algebraic proof
of anomaly absence for safe groups
22.7
Anomalies and
Goldstone
Bosons
408
Anomaly matching
G
Solution of anomalous Slavnov-Taylor identities
G
Unique¬
ness
D
Anomalous
Goldstone
boson interactions
G
The case SC/(3)
x S
1/(3)
G
Derivation of Wess-Zumino-
Witten
interaction
G
Evaluation of integer coeffi¬
cient
G
Generalization
Problems
416
References
417
23
EXTENDED FIELD CONFIGURATIONS
421
23.1
The Uses of Topology
422
Topological classifications
G
Homotopy
G
Skyrmions
α
Derrick s theorem
G
Domain boundaries
G Bogomoľnyi
inequality
D Cosmological
problems
□
In-
stantons
G Monopoles
and vortex lines
G
Symmetry restoration
23.2
Homotopy Groups
430
Multiplication rule for
п (Л)
G
Associativity
D
Inverses
G
πι
(Si) O
Topological
conservation
laws
G Multiplication
rule for
nt(Jf) G
Winding number
Contents xv
23.3
Monopoles
436
SU(2)/U(l)
model
О
Winding number
D
Electromagnetic field
D
Magnetic
monopole
moment
□ Kronecker
index
□
t
Hooft-Polyakov
monopole D
Another
Bogomoľnyi
inequality
π
BPS monopole G Dirac
gauge
□
Charge
quantization
О
G /{H
χ
1/(1))
monopoles
□
Cosmological
problems
О
Monopole-particle
interactions
D
G/H monopoles
with
G
not simply connected
О
Irrelevance of
field content
23.4
The Cartan-Maurer Integral Invariant
445
Definition of the invariant
D
Independence of coordinate system
O Topological
invariance
D
Additivity
О
Integral invariant for Si
·—► 1/(1) □
Bott s theorem
α
Integral invariant for
S3 *-»
SU(2)
23.5
Instantons
450
Evaluation of Cartan-Maurer invariant
D
Chern-Pontryagin density
О
One more
Bogomoľnyi
inequality
D v
= 1
solution
D
General winding number
D
Solution
of
1/(1)
problem
D
Baryon
and
lepton
non-conservation by electroweak
instantons
G
Minkowskian approach
G
Barrier penetration
G
Thermal fluctuations
23.6
The Theta Angle
455
Cluster decomposition
G
Superposition of winding numbers
α Ρ
and
CP
non-
conservation
G
Complex fermion masses
G
Suppression of
Ρ
and CP non-
conservation by small quark masses
G
Neutron electric
dipole
moment
D
Peccei-
Quinn symmetry
G Axions G
Axion
mass
G
Axion
interactions
23.7
Quantum
Fluctuations around Extended Field
Configurations
462
Fluctuations
in general
G Collective
parameters
G Determinental
factor
G
Cou¬
pling
constant
dependence
G
Counting
collective
parameters
23.8
Vacuum Decay
464
False and true vacua
G
Bounce solutions
G
Four dimensional rotational
invari¬
ance G
Sign of action
G
Decay rate per volume
G
Thin wall approximation
Appendix A Euclidean Path Integrals
468
Appendix
В
A List of Homotopy Groups
472
Problems
473
References
474
AUTHOR INDEX
478
SUBJECT INDEX
484
|
any_adam_object | 1 |
author | Weinberg, Steven 1933-2021 |
author_GND | (DE-588)11562855X |
author_facet | Weinberg, Steven 1933-2021 |
author_role | aut |
author_sort | Weinberg, Steven 1933-2021 |
author_variant | s w sw |
building | Verbundindex |
bvnumber | BV036861112 |
ctrlnum | (OCoLC)706055802 (DE-599)BVBBV036861112 |
edition | 10th pr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01486nam a2200361 cc4500</leader><controlfield tag="001">BV036861112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230220 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101209s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521670548</subfield><subfield code="c">Paperback</subfield><subfield code="9">978-0-521-67054-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521550024</subfield><subfield code="c">Hardcover</subfield><subfield code="9">978-0-521-55002-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706055802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036861112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weinberg, Steven</subfield><subfield code="d">1933-2021</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11562855X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The quantum theory of fields</subfield><subfield code="n">2</subfield><subfield code="p">Modern applications</subfield><subfield code="c">Steven Weinberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">10th pr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 489 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV010519919</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776868&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020776868</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV036861112 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:49:36Z |
institution | BVB |
isbn | 9780521670548 9780521550024 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020776868 |
oclc_num | 706055802 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-11 DE-20 |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-11 DE-20 |
physical | XXI, 489 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Weinberg, Steven 1933-2021 Verfasser (DE-588)11562855X aut The quantum theory of fields 2 Modern applications Steven Weinberg 10th pr. Cambridge [u.a.] Cambridge Univ. Press 2010 XXI, 489 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Quantenfeldtheorie (DE-588)4047984-5 s DE-604 (DE-604)BV010519919 2 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776868&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Weinberg, Steven 1933-2021 The quantum theory of fields Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4123623-3 |
title | The quantum theory of fields |
title_auth | The quantum theory of fields |
title_exact_search | The quantum theory of fields |
title_full | The quantum theory of fields 2 Modern applications Steven Weinberg |
title_fullStr | The quantum theory of fields 2 Modern applications Steven Weinberg |
title_full_unstemmed | The quantum theory of fields 2 Modern applications Steven Weinberg |
title_short | The quantum theory of fields |
title_sort | the quantum theory of fields modern applications |
topic | Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Quantenfeldtheorie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776868&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010519919 |
work_keys_str_mv | AT weinbergsteven thequantumtheoryoffields2 |