Probability theory: the logic of science
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2010
|
Ausgabe: | 7. print. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 683 - 720. - Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXIX, 727 S. graph. Darst. |
ISBN: | 9780521592710 0521592712 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036860947 | ||
003 | DE-604 | ||
005 | 20200828 | ||
007 | t | ||
008 | 101209s2010 d||| |||| 00||| eng d | ||
020 | |a 9780521592710 |c hbk. : EUR 104.75 |9 978-0-521-59271-0 | ||
020 | |a 0521592712 |9 0-521-59271-2 | ||
035 | |a (OCoLC)682089650 | ||
035 | |a (DE-599)GBV640760473 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-473 |a DE-19 |a DE-355 |a DE-188 |a DE-860 | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a WC 7000 |0 (DE-625)148142: |2 rvk | ||
100 | 1 | |a Jaynes, Edwin T. |d 1922-1998 |e Verfasser |0 (DE-588)123687519 |4 aut | |
245 | 1 | 0 | |a Probability theory |b the logic of science |c E. T. Jaynes. Ed. by G. Larry Bretthorst |
250 | |a 7. print. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2010 | |
300 | |a XXIX, 727 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 683 - 720. - Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Bretthorst, G. Larry |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020776708 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804143560509882368 |
---|---|
adam_text | Contents
Editor
s
foreword page
xvii
Preface
xix
Part I Principles and elementary applications
1
Plausible reasoning
3
1.1
Deductive and plausible reasoning
3
1.2
Analogies with physical theories
6
1.3
The thinking computer
7
1.4
Introducing the robot
8
1.5
Boolean algebra
9
1.6
Adequate sets of operations
12
1.7
The basic desiderata
17
1.8
Comments
19
1.8.1
Common language vs. formal logic
21
1.8.2
Nitpicking
23
2
The quantitative rules
24
2.1
The product rule
24
2.2
The sum rule
30
2.3
Qualitative properties
35
2.4
Numerical values
37
2.5
Notation and finite-sets policy
43
2.6
Comments
44
2.6.1
Subjective vs. Objective
44
2.6.2 Gödel s
theorem
45
2.6.3
Venn diagrams
47
2.6.4
The Kolmogorov axioms
49
3
Elementary sampling theory
51
3.1
Sampling without replacement
52
3.2
Logic vs. propensity
60
3.3
Reasoning from less precise information
64
3.4
Expectations
66
3.5
Other forms and extensions
68
viii Contents
3.6
Probability as a mathematical tool
3.7
The binomial distribution
3.8
Sampling with replacement
3.8.1
Digression: a sermon on reality vs. models
3.9
Correction for correlations
3.10
Simplification
3.11
Comments
3.11.1
A look ahead
4
Elementary hypothesis testing
4.1
Prior probabilities
4.2
Testing binary hypotheses with binary data
4.3
Nonextensibility beyond the binary case
4.4
Multiple hypothesis testing
4.4.1
Digression on another derivation
4.5
Continuous probability distribution functions
4.6
Testing an infinite number of hypotheses
4.6.1
Historical digression
4.7
Simple and compound (or composite) hypotheses
4.8
Comments
4.8.1
Etymology
4.8.2
What have we accomplished?
5
Queer uses for probability theory
5.1
Extrasensory perception
5.2
Mrs Stewart s telepathic powers
5.2.1
Digression on the normal approximation
5.2.2
Back to Mrs Stewart
5.3
Converging and diverging views
5.4
Visual perception
-
evolution into Bayesianity?
5.5
The discovery of Neptune
5.5.1
Digression on alternative hypotheses
5.5.2
Back to Newton
5.6
Horse racing and weather forecasting
5.6.1
Discussion
5.7
Paradoxes of intuition
5.8
Bayesian jurisprudence
5.9
Comments
5.9.1
What is queer?
6
Elementary parameter estimation
6.1
Inversion of the urn distributions
6.2
Both
N
and
R
unknown
6.3
Uniform prior
6.4
Predictive distributions
Contents ix
6.5
Truncated
uniform
priors
157
6.6
A concave prior
158
6.7
The binomial monkey prior
160
6.8
Metamorphosis into continuous parameter estimation
163
6.9
Estimation with a binomial sampling distribution
163
6.9.1
Digression on optional stopping
166
6.10
Compound estimation problems
167
6.11
A simple Bayesian estimate: quantitative prior information
168
6.11.1
From posterior distribution function to estimate
172
6.12
Effects of qualitative prior information
177
6.13
Choice of a prior
178
6.14
On with the calculation
! 179
6.15
The Jeffreys prior
181
6.16
The point of it all
183
6.17
Interval estimation
186
6.18
Calculation of variance
186
6.19
Generalization and asymptotic forms
188
6.20
Rectangular sampling distribution
190
6.21
Small samples
192
6.22
Mathematical trickery
193
6.23
Comments
195
The central, Gaussian or normal distribution
198
7.1
The gravitating phenomenon
199
7.2
The Herschel-Maxwell derivation
200
7.3
The Gauss derivation
202
7.4
Historical importance of Gauss s result
203
7.5
The Landon derivation
205
7.6
Why the ubiquitous use of Gaussian distributions?
207
7.7
Why the ubiquitous success?
210
7.8
What estimator should we use?
211
7.9
Error cancellation
213
7.10
The near irrelevance of sampling frequency distributions
215
7.11
The remarkable efficiency of information transfer
216
7.12
Other sampling distributions
218
7.13
Nuisance parameters as safety devices
219
7.14
More general properties
220
7.15
Convolution of Gaussians
221
7.16
The central limit theorem
222
7.17
Accuracy of computations
224
7.18
Galton s discovery
227
7.19
Population dynamics and Darwinian evolution
229
7.20
Evolution of humming-birds and flowers
231
Contents
7.21 Application
to economics
233
7.22
The great inequality of Jupiter and Saturn
234
7.23
Resolution of distributions into Gaussians
235
7.24
Hermite polynomial solutions
236
7.25
Fourier transform relations
238
7.26
There is hope after all
239
7.27
Comments
240
7.27.1
Terminology again
240
Sufficiency, ancillarity, and all that
243
8.1
Sufficiency
243
8.2
Fisher sufficiency
245
8.2.1
Examples
246
8.2.2
The Blackwell-Rao theorem
247
8.3
Generalized sufficiency
248
8.4
Sufficiency plus nuisance parameters
249
8.5
The likelihood principle
250
8.6
Ancillarity
253
8.7
Generalized ancillary information
254
8.8
Asymptotic likelihood: Fisher information
256
8.9
Combining evidence from different sources
257
8.10
Pooling the data
260
8.10.1
Fine-grained propositions
261
8.11
Sam s broken thermometer
262
8.12
Comments
264
8.12.1
The fallacy of sample re-use
264
8.12.2
A folk theorem
266
8.12.3
Effect of prior information
267
8.12.4
Clever tricks and gamesmanship
267
Repetitive experiments: probability and frequency
270
9.1
Physical experiments
271
9.2
The poorly informed robot
274
9.3
Induction
276
9.4
Are there general inductive rules?
277
9.5
Multiplicity factors
280
9.6
Partition function algorithms
281
9.6.1
Solution by inspection
282
9.7
Entropy algorithms
285
9.8
Another way of looking at it
289
9.9
Entropy maximization
290
9.10
Probability and frequency
292
9.11
Significance tests
293
9.11.1
Implied alternatives
296
Contents
10
Part II
Ad
11
12
9.12
Comparison of
psi
and chi-squared
300
9.13
The chi-squared test
302
9.14
Generalization
304
9.15
Halley s mortality table
305
9.16
Comments
310
9.16.1
The irrationalists
310
9.16.2
Superstitions
312
Physics of random experiments
314
10.1
An interesting correlation
314
10.2
Historical background
315
10.3
How to cheat at coin and die tossing
317
10.3.1
Experimental evidence
320
10.4
Bridge hands
321
10.5
General random experiments
324
10.6
Induction revisited
326
10.7
But what about quantum theory?
327
10.8
Mechanics under the clouds
329
10.9
More on coins and symmetry
331
10.10
Independence of tosses
335
10.11
The arrogance of the uninformed
338
meed
;
applications
Discrete prior probabilities: the entropy principle
343
11.1
A new kind of prior information
343
11.2
Minimum
Σ
pf
345
11.3
Entropy: Shannon s theorem
346
11.4
The
Wallis
derivation
351
11.5
An example
354
11.6
Generalization: a more rigorous proof
355
11.7
Formal properties of maximum entropy
distributions
358
11.8
Conceptual problems
-
frequency correspondence
365
11.9
Comments
370
Ignorance priors and transformation groups
372
12.1
What are we trying to do?
372
12.2
Ignorance priors
374
12.3
Continuous distributions
374
12.4
Transformation groups
378
12.4.1
Location and scale parameters
378
12.4.2
A Poisson
rate
382
12.4.3
Unknown probability for success
382
12
A A Bertrand s
problem
386
12.5
Comments
394
Contents
13
Decision theory, historical
background
397
13.1
Inference vs. decision
397
13.2
Daniel Bernoulli s suggestion
398
13.3
The rationale of insurance
400
13.4
Entropy and utility
402
13.5
The honest weatherman
402
13.6
Reactions to Daniel Bernoulli and Laplace
404
13.7
Wald s decision theory
406
13.8
Parameter estimation for minimum loss
410
13.9
Reformulation of the problem
412
13.10
Effect of varying loss functions
415
13.11
General decision theory
417
13.12
Comments
418
13.12.1
Objectivity of decision theory
418
13.12.2
Loss functions in human society
421
13.12.3
A new look at the Jeffreys prior
423
13.12.4
Decision theory is not fundamental
423
13.12.5
Another dimension?
424
14
Simple applications of decision theory
426
14.1
Definitions and preliminaries
426
14.2
Sufficiency and information
428
14.3
Loss functions and criteria of optimum
performance
430
14.4
A discrete example
432
14.5
How would our robot do it?
437
14.6
Historical remarks
438
14.6.1
The classical matched filter
439
14.7
The widget problem
440
14.7.1
Solution for Stage
2 443
14.7.2
Solution for Stage
3 445
14.7.3
Solution for Stage
4 449
14.8
Comments
450
15
Paradoxes of probability theory
451
15.1
How do paradoxes survive and grow?
451
15.2
Summing a series the easy way
452
15.3
Nonconglomerability
453
15.4
The tumbling tetrahedra
456
15.5
Solution for a finite number of tosses
459
15.6
Finite vs. countable additivity
464
15.7
The Borel-Kolmogorov paradox
467
15.8
The marginalization paradox
470
15.8.1
On to greater disasters
474
Contents xiii
15.9
Discussion
478
15.9.1
The DSZ Example
#5 480
15.9.2
Summary
483
15.10
A useful result after all?
484
15.11
How to mass-produce paradoxes
485
15.12
Comments
486
16
Orthodox methods: historical background
490
16.1
The early problems
490
16.2
Sociology of orthodox statistics
492
16.3
Ronald Fisher, Harold Jeffreys, and
Jerzy Neyman
493
16.4
Pre-data and post-data considerations
499
16.5
The sampling distribution for an estimator
500
16.6
Pro-causal and anti-causal bias
503
16.7
What is real, the probability or the phenomenon?
505
16.8
Comments
506
16.8.1
Communication difficulties
507
17
Principles and pathology of orthodox statistics
509
17.1
Information loss
510
17.2
Unbiased estimators
511
17.3
Pathology of an unbiased estimate
516
17.4
The fundamental inequality of the sampling variance
518
17.5
Periodicity: the weather in Central Park
520
17.5.1
The folly of pre-filtering data
521
17.6
A Bayesian analysis
527
17.7
The folly of randomization
531
17.8
Fisher: common sense at Rothamsted
532
17.8.1
The Bayesian safety device
532
17.9
Missing data
533
17.10
Trend and seasonality in time series
534
17.10.1
Orthodox methods
535
17.10.2
The Bayesian method
536
17.10.3
Comparison of Bayesian and orthodox
estimates
540
17.10.4
An improved orthodox estimate
541
17.10.5
The orthodox criterion of performance
544
17.11
The general case
545
17.12
Comments
550
18
The Ap distribution and rule of succession
553
18.1
Memory storage for old robots
553
18.2
Relevance
555
18.3
A surprising consequence
557
18.4
Outer and inner robots
559
Contents
18.5 An
application
561
18.6
Laplace s rule of
succession
563
18.7
Jeffreys objection
566
18.8
Bass or carp?
567
18.9
So where does this leave the rule?
568
18.10
Generalization
568
18.11
Confirmation and weight of evidence
571
18.11.1
Is indifference based on knowledge or ignorance?
573
18.12
Carnap s inductive methods
574
18.13
Probability and frequency in exchangeable sequences
576
18.14
Prediction of frequencies
576
18.15
One-dimensional neutron multiplication
579
18.15.1
The frequentist solution
579
18.15.2
The Laplace solution
581
18.16
The
de Finetti
theorem
586
18.17
Comments
588
19
Physical measurements
589
19.1
Reduction of equations of condition
589
19.2
Reformulation as a decision problem
592
19.2.1
Sermon on Gaussian error distributions
592
19.3
The underdetermined case:
К
is singular
594
19.4
The overdetermined case:
К
can be made nonsingular
595
19.5
Numerical evaluation of the result
596
19.6
Accuracy of the estimates
597
19.7
Comments
599
19.7.1
A paradox
599
20
Model comparison
601
20.1
Formulation of the problem
602
20.2
The fair judge and the cruel realist
603
20.2.1
Parameters known in advance
604
20.2.2
Parameters unknown
604
20.3
But where is the idea of simplicity?
605
20.4
An example: linear response models
607
20.4.1
Digression: the old sermon still another time
608
20.5
Comments
613
20.5.1
Final causes
614
21
Outliers and robustness
615
21.1
The experimenter s dilemma
615
21.2
Robustness
617
21.3
The two-model model
619
21.4
Exchangeable selection
620
21.5
The general Bayesian solution
622
Contents
21.6
Pure outliers
21.7
One receding datum
22
Introduction to communication theory
22.1
Origins of the theory
22.2
The noiseless channel
22.3
The information source
22.4
Does the English language have statistical properties?
22.5
Optimum encoding: letter frequencies known
22.6
Better encoding from knowledge of digram frequencies
22.7
Relation to a stochastic model
22.8
The noisy channel
Appendix A Other approaches to probability theory
A.
1
The Kolmogorov system of probability
A.
2
The
de Finetti
system of probability
A.3 Comparative probability
A.4 Holdouts against universal comparability
A.
5
Speculations about lattice theories
Appendix
В
Mathematical formalities and style
B.I Notation and logical hierarchy
B.2 Our cautious approach policy
B.3 Willy Feller on measure theory
B.4
Kronecker
vs. Weierstrasz
B.5 What is a legitimate mathematical function?
B.5.1 Delta-functions
B.5.
2
Nondifferentiable functions
B.5.3 Bogus nondifferentiable functions
B.6 Counting infinite sets?
B.7 The Hausdorff sphere paradox and mathematical
diseases
B.8 What am I supposed to publish?
B.9 Mathematical courtesy
Appendix
С
Convolutions and
cumulants
С.
1
Relation of
cumulants
and moments
C.2 Examples
References
Bibliography
Author index
Subject index
624
625
627
627
628
634
636
638
641
644
648
651
651
655
656
658
659
661
661
662
663
665
666
668
668
669
671
672
674
675
677
679
680
683
705
721
724
|
any_adam_object | 1 |
author | Jaynes, Edwin T. 1922-1998 |
author_GND | (DE-588)123687519 |
author_facet | Jaynes, Edwin T. 1922-1998 |
author_role | aut |
author_sort | Jaynes, Edwin T. 1922-1998 |
author_variant | e t j et etj |
building | Verbundindex |
bvnumber | BV036860947 |
classification_rvk | SK 800 WC 7000 |
ctrlnum | (OCoLC)682089650 (DE-599)GBV640760473 |
discipline | Biologie Mathematik |
edition | 7. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01830nam a2200421 c 4500</leader><controlfield tag="001">BV036860947</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200828 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101209s2010 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521592710</subfield><subfield code="c">hbk. : EUR 104.75</subfield><subfield code="9">978-0-521-59271-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521592712</subfield><subfield code="9">0-521-59271-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)682089650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV640760473</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-860</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 7000</subfield><subfield code="0">(DE-625)148142:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jaynes, Edwin T.</subfield><subfield code="d">1922-1998</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123687519</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability theory</subfield><subfield code="b">the logic of science</subfield><subfield code="c">E. T. Jaynes. Ed. by G. Larry Bretthorst</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">7. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 727 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 683 - 720. - Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bretthorst, G. Larry</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020776708</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV036860947 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:49:36Z |
institution | BVB |
isbn | 9780521592710 0521592712 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020776708 |
oclc_num | 682089650 |
open_access_boolean | |
owner | DE-92 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-860 |
owner_facet | DE-92 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-860 |
physical | XXIX, 727 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Jaynes, Edwin T. 1922-1998 Verfasser (DE-588)123687519 aut Probability theory the logic of science E. T. Jaynes. Ed. by G. Larry Bretthorst 7. print. Cambridge [u.a.] Cambridge Univ. Press 2010 XXIX, 727 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 683 - 720. - Hier auch später erschienene, unveränderte Nachdrucke Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 s DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 1\p DE-604 Bretthorst, G. Larry Sonstige oth Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jaynes, Edwin T. 1922-1998 Probability theory the logic of science Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4079013-7 |
title | Probability theory the logic of science |
title_auth | Probability theory the logic of science |
title_exact_search | Probability theory the logic of science |
title_full | Probability theory the logic of science E. T. Jaynes. Ed. by G. Larry Bretthorst |
title_fullStr | Probability theory the logic of science E. T. Jaynes. Ed. by G. Larry Bretthorst |
title_full_unstemmed | Probability theory the logic of science E. T. Jaynes. Ed. by G. Larry Bretthorst |
title_short | Probability theory |
title_sort | probability theory the logic of science |
title_sub | the logic of science |
topic | Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Wahrscheinlichkeitsrechnung Wahrscheinlichkeitstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776708&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT jaynesedwint probabilitytheorythelogicofscience AT bretthorstglarry probabilitytheorythelogicofscience |