Topology, geometry, and Gauge fields: foundations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2011
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Texts in applied mathematics
25 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XX, 437 S. graph. Darst. |
ISBN: | 9781441972538 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV036856999 | ||
003 | DE-604 | ||
005 | 20190527 | ||
007 | t | ||
008 | 101207s2011 gw d||| |||| 00||| eng d | ||
020 | |a 9781441972538 |c hbk. |9 978-1-4419-7253-8 | ||
035 | |a (OCoLC)706942307 | ||
035 | |a (DE-599)BVBBV036856999 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-20 |a DE-19 |a DE-11 |a DE-188 |a DE-83 | ||
082 | 0 | |a 510 | |
082 | 0 | |a 530.154 | |
084 | |a SK 280 |0 (DE-625)143228: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a UO 4060 |0 (DE-625)146244: |2 rvk | ||
084 | |a 58E15 |2 msc | ||
084 | |a MAT 550f |2 stub | ||
084 | |a PHY 014f |2 stub | ||
084 | |a PHY 417f |2 stub | ||
084 | |a MAT 530f |2 stub | ||
100 | 1 | |a Naber, Gregory L. |d 1948- |e Verfasser |0 (DE-588)113221207 |4 aut | |
245 | 1 | 0 | |a Topology, geometry, and Gauge fields |b foundations |c Gregory L. Naber |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2011 | |
300 | |a XX, 437 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Texts in applied mathematics |v 25 | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Eichtheorie |0 (DE-588)4122125-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Eichfeld |0 (DE-588)4328765-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Eichfeld |0 (DE-588)4328765-7 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 1 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | 2 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Eichtheorie |0 (DE-588)4122125-4 |D s |
689 | 2 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 2 | 2 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 2 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4419-7254-5 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-4614-2682-0 |
830 | 0 | |a Texts in applied mathematics |v 25 |w (DE-604)BV002476038 |9 25 | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020772849&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020772849 |
Datensatz im Suchindex
_version_ | 1804143554461696000 |
---|---|
adam_text | CONTENTS
CHAPTER 1
GEOMETRICAL BACKGROUND
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 1
1.1 SMOOTH MANIFOLDS AND MAPS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 1
1.2 MATRIX LIE GROUPS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 11
1.3 PRINCIPAL BUNDLES . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 23
1.4 CONNECTIONS AND CURVATURE . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 29
1.5 ASSOCIATED BUNDLES AND MATTER FIELDS . . . . . . . . . . . . . . . .
. . . . . . 38
CHAPTER 2
PHYSICAL MOTIVATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 45
2.1 GENERAL FRAMEWORK FOR CLASSICAL GAUGE THEORIES . . . . . . . . . . .
. 45
2.2 ELECTROMAGNETIC FIELDS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 48
2.3 SPIN ZERO ELECTRODYNAMICS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 60
2.4 SPIN ONE-HALF ELECTRODYNAMICS . . . . . . . . . . . . . . . . . . .
. . . . . . . . 71
2.5
S U
(2)
-YANG-MILLS-HIGGS THEORY ON
R
N
. . . . . . . . . . . . . . . . . . . . . 104
2.6 EPILOGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 137
CHAPTER 3
FRAME BUNDLES AND SPACETIMES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.1 PARTITIONS OF UNITY, RIEMANNIAN METRICS AND CONNECTIONS . . . . .
139
3.2 CONTINUOUS VERSUS SMOOTH . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 145
3.3 FRAME BUNDLES . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 148
3.4 MINKOWSKI SPACETIME . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 162
3.5 SPACETIME MANIFOLDS AND SPINOR STRUCTURES . . . . . . . . . . . . .
. . . . 168
CHAPTER 4
DI*ERENTIAL FORMS AND INTEGRATION
. . . . . . . . . . . . . . . . . . . . . . . . . . . 179
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 179
4.1 MULTILINEAR ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 179
4.2 VECTOR-VALUED FORMS . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 198
4.3 DI*ERENTIAL FORMS . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 205
4.4 THE DE RHAM COMPLEX . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 212
4.5 TENSORIAL FORMS . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 222
4.6 INTEGRATION ON MANIFOLDS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 232
4.7 STOKES THEOREM . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 249
CHAPTER 5
DE RHAM COHOMOLOGY
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 257
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 257
5.1 THE DE RHAM COHOMOLOGY GROUPS . . . . . . . . . . . . . . . . . . .
. . . . . 258
5.2 INDUCED HOMOMORPHISMS . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 262
5.3 COCHAIN COMPLEXES AND THEIR COHOMOLOGY . . . . . . . . . . . . . . .
. . 275
5.4 THE MAYER-VIETORIS SEQUENCE . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . 281
XI
XII CONTENTS
5.5 THE COHOMOLOGY OF COMPACT, ORIENTABLE MANIFOLDS . . . . . . . . . .
290
5.6 THE BROUWER DEGREE . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 294
5.7 THE HOPF INVARIANT . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 299
CHAPTER 6
CHARACTERISTIC CLASSES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 303
6.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . 303
6.2 ALGEBRAIC PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 306
6.3 THE CHERN-WEIL HOMOMORPHISM . . . . . . . . . . . . . . . . . . . .
. . . . . . 317
6.4 CHERN NUMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 327
6.5
Z
2
-
*
C
ECH COHOMOLOGY FOR SMOOTH MANIFOLDS . . . . . . . . . . . . . . . . .
335
APPENDIX
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 351
SEIBERG-WITTEN GAUGE THEORY . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . 351
A.1 DONALDSON INVARIANTS AND TQFT . . . . . . . . . . . . . . . . . . .
. . . . . . . 351
A.2 CLI*ORD ALGEBRA AND SPIN
C
-STRUCTURES . . . . . . . . . . . . . . . . . . . . . . 363
A.3 SEIBERG-WITTEN EQUATIONS . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . 379
A.4 THE MODULI SPACE AND INVARIANT . . . . . . . . . . . . . . . . . . .
. . . . . . . . 385
A.5 THE WITTEN CONJECTURE . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 398
REFERENCES
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . 401
SYMBOLS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . 407
INDEX
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . 413
|
any_adam_object | 1 |
author | Naber, Gregory L. 1948- |
author_GND | (DE-588)113221207 |
author_facet | Naber, Gregory L. 1948- |
author_role | aut |
author_sort | Naber, Gregory L. 1948- |
author_variant | g l n gl gln |
building | Verbundindex |
bvnumber | BV036856999 |
classification_rvk | SK 280 SK 350 SK 950 UO 4060 |
classification_tum | MAT 550f PHY 014f PHY 417f MAT 530f |
ctrlnum | (OCoLC)706942307 (DE-599)BVBBV036856999 |
dewey-full | 510 530.154 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 530 - Physics |
dewey-raw | 510 530.154 |
dewey-search | 510 530.154 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics 530 - Physics |
discipline | Physik Mathematik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02642nam a2200685 cb4500</leader><controlfield tag="001">BV036856999</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190527 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101207s2011 gw d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441972538</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-4419-7253-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706942307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036856999</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.154</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="0">(DE-625)143228:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4060</subfield><subfield code="0">(DE-625)146244:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58E15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 550f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 014f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 417f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naber, Gregory L.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113221207</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Topology, geometry, and Gauge fields</subfield><subfield code="b">foundations</subfield><subfield code="c">Gregory L. Naber</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 437 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">25</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Eichfeld</subfield><subfield code="0">(DE-588)4328765-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Eichfeld</subfield><subfield code="0">(DE-588)4328765-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Eichtheorie</subfield><subfield code="0">(DE-588)4122125-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4419-7254-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-4614-2682-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Texts in applied mathematics</subfield><subfield code="v">25</subfield><subfield code="w">(DE-604)BV002476038</subfield><subfield code="9">25</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020772849&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020772849</subfield></datafield></record></collection> |
id | DE-604.BV036856999 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:49:30Z |
institution | BVB |
isbn | 9781441972538 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020772849 |
oclc_num | 706942307 |
open_access_boolean | |
owner | DE-20 DE-19 DE-BY-UBM DE-11 DE-188 DE-83 |
owner_facet | DE-20 DE-19 DE-BY-UBM DE-11 DE-188 DE-83 |
physical | XX, 437 S. graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series | Texts in applied mathematics |
series2 | Texts in applied mathematics |
spelling | Naber, Gregory L. 1948- Verfasser (DE-588)113221207 aut Topology, geometry, and Gauge fields foundations Gregory L. Naber 2. ed. New York [u.a.] Springer 2011 XX, 437 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Texts in applied mathematics 25 Hier auch später erschienene, unveränderte Nachdrucke Eichtheorie (DE-588)4122125-4 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Eichfeld (DE-588)4328765-7 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Eichfeld (DE-588)4328765-7 s Topologie (DE-588)4060425-1 s Geometrie (DE-588)4020236-7 s DE-604 Eichtheorie (DE-588)4122125-4 s Mathematische Physik (DE-588)4037952-8 s Erscheint auch als Online-Ausgabe 978-1-4419-7254-5 Erscheint auch als Druck-Ausgabe, Paperback 978-1-4614-2682-0 Texts in applied mathematics 25 (DE-604)BV002476038 25 SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020772849&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Naber, Gregory L. 1948- Topology, geometry, and Gauge fields foundations Texts in applied mathematics Eichtheorie (DE-588)4122125-4 gnd Topologie (DE-588)4060425-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Eichfeld (DE-588)4328765-7 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4122125-4 (DE-588)4060425-1 (DE-588)4037952-8 (DE-588)4328765-7 (DE-588)4020236-7 |
title | Topology, geometry, and Gauge fields foundations |
title_auth | Topology, geometry, and Gauge fields foundations |
title_exact_search | Topology, geometry, and Gauge fields foundations |
title_full | Topology, geometry, and Gauge fields foundations Gregory L. Naber |
title_fullStr | Topology, geometry, and Gauge fields foundations Gregory L. Naber |
title_full_unstemmed | Topology, geometry, and Gauge fields foundations Gregory L. Naber |
title_short | Topology, geometry, and Gauge fields |
title_sort | topology geometry and gauge fields foundations |
title_sub | foundations |
topic | Eichtheorie (DE-588)4122125-4 gnd Topologie (DE-588)4060425-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Eichfeld (DE-588)4328765-7 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Eichtheorie Topologie Mathematische Physik Eichfeld Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020772849&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002476038 |
work_keys_str_mv | AT nabergregoryl topologygeometryandgaugefieldsfoundations |