Developments and trends in infinite-dimensional Lie theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Birkhäuser
2011
|
Schriftenreihe: | Progress in Mathematics
288 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 492 S. |
ISBN: | 9780817647407 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV036791064 | ||
003 | DE-604 | ||
005 | 20110110 | ||
007 | t | ||
008 | 101123s2011 |||| 00||| eng d | ||
020 | |a 9780817647407 |9 978-0-8176-4740-7 | ||
035 | |a (OCoLC)698581423 | ||
035 | |a (DE-599)BVBBV036791064 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-384 |a DE-29T | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Neeb, Karl-Hermann |d 1964- |e Verfasser |0 (DE-588)112163920 |4 aut | |
245 | 1 | 0 | |a Developments and trends in infinite-dimensional Lie theory |c Karl-Hermann Neeb ...(eds.) |
264 | 1 | |a New York [u.a.] |b Birkhäuser |c 2011 | |
300 | |a VIII, 492 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 288 | |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Theorie |0 (DE-588)4251836-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Theorie |0 (DE-588)4251836-2 |D s |
689 | 0 | 1 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 2 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in Mathematics |v 288 |w (DE-604)BV000004120 |9 288 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020707475&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020707475 |
Datensatz im Suchindex
_version_ | 1804143480478367745 |
---|---|
adam_text | Titel: Developments and Trends in Infinite-Dimensional Lie Theory
Autor: Neeb, Karl-Hermann
Jahr: 2011
Contents
Preface........................................................ v
Part A Infinite-Dimensional Lie (Super-)Algebras
Isotopy for Extended Affine Lie Algebras and Lie Tori
Bruce Allison and John Faulkner.................................. 3
Remarks on the Isotriviality of Multiloop Algebras
Philippe Gille and Arturo Pianzola................................. 45
Extended Affine Lie Algebras and Other Generalizations of
Affine Lie Algebras - A Survey
Erhard Neher.................................................... 53
Tensor Representations of Classical Locally Finite Lie
Algebras
Ivan Penkov and Konstantin Styrkas...............................127
Lie Algebras, Vertex Algebras, and Automorphic Forms
Nils R. Scheithauer..............................................151
Kac-Moody Superalgebras and Integrability
Vera Serganova .................................................169
Part B Geometry of Infinite-Dimensional Lie (Transformation)
Groups
Jordan Structures and Non-Associative Geometry
Wolfgang Bertram...............................................221
Direct Limits of Infinite-Dimensional Lie Groups
Helge Glöckner..................................................243
viii Contents
Lie Groups of Bündle Automorphisms and Their Extensions
Karl-Hermann Neeb..............................................281
Gerbes and Lie Groups
Christoph Sclnueigert and Konrad Waldorf..........................339
Part C Representation Theory of Infinite-Dimensional Lie Groups
Functional Analytic Background for a Theory of Infinite-
Dimensional Reductive Lie Groups
Daniel Belti$ä...................................................367
Heat Kernel Measures and Critical Limits
Doug Pickrell....................................................393
Coadjoint Orbits and the Beginnings of a Geometrie
Representation Theory
Tudor S. Ratiu..................................................417
Infinite-Dimensional Multiplicity-Free Spaces I: Limits of
Compact Commutative Spaces
Joseph A. Wolf..................................................459
Index..........................................................483
|
any_adam_object | 1 |
author | Neeb, Karl-Hermann 1964- |
author_GND | (DE-588)112163920 |
author_facet | Neeb, Karl-Hermann 1964- |
author_role | aut |
author_sort | Neeb, Karl-Hermann 1964- |
author_variant | k h n khn |
building | Verbundindex |
bvnumber | BV036791064 |
classification_rvk | SK 340 |
ctrlnum | (OCoLC)698581423 (DE-599)BVBBV036791064 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01547nam a2200385 cb4500</leader><controlfield tag="001">BV036791064</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110110 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101123s2011 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647407</subfield><subfield code="9">978-0-8176-4740-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)698581423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036791064</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neeb, Karl-Hermann</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)112163920</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Developments and trends in infinite-dimensional Lie theory</subfield><subfield code="c">Karl-Hermann Neeb ...(eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 492 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">288</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">288</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">288</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020707475&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020707475</subfield></datafield></record></collection> |
id | DE-604.BV036791064 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:48:11Z |
institution | BVB |
isbn | 9780817647407 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020707475 |
oclc_num | 698581423 |
open_access_boolean | |
owner | DE-11 DE-384 DE-29T |
owner_facet | DE-11 DE-384 DE-29T |
physical | VIII, 492 S. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Neeb, Karl-Hermann 1964- Verfasser (DE-588)112163920 aut Developments and trends in infinite-dimensional Lie theory Karl-Hermann Neeb ...(eds.) New York [u.a.] Birkhäuser 2011 VIII, 492 S. txt rdacontent n rdamedia nc rdacarrier Progress in Mathematics 288 Lie-Algebra (DE-588)4130355-6 gnd rswk-swf Lie-Theorie (DE-588)4251836-2 gnd rswk-swf Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Lie-Theorie (DE-588)4251836-2 s Lie-Gruppe (DE-588)4035695-4 s Lie-Algebra (DE-588)4130355-6 s DE-604 Progress in Mathematics 288 (DE-604)BV000004120 288 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020707475&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Neeb, Karl-Hermann 1964- Developments and trends in infinite-dimensional Lie theory Progress in Mathematics Lie-Algebra (DE-588)4130355-6 gnd Lie-Theorie (DE-588)4251836-2 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
subject_GND | (DE-588)4130355-6 (DE-588)4251836-2 (DE-588)4035695-4 |
title | Developments and trends in infinite-dimensional Lie theory |
title_auth | Developments and trends in infinite-dimensional Lie theory |
title_exact_search | Developments and trends in infinite-dimensional Lie theory |
title_full | Developments and trends in infinite-dimensional Lie theory Karl-Hermann Neeb ...(eds.) |
title_fullStr | Developments and trends in infinite-dimensional Lie theory Karl-Hermann Neeb ...(eds.) |
title_full_unstemmed | Developments and trends in infinite-dimensional Lie theory Karl-Hermann Neeb ...(eds.) |
title_short | Developments and trends in infinite-dimensional Lie theory |
title_sort | developments and trends in infinite dimensional lie theory |
topic | Lie-Algebra (DE-588)4130355-6 gnd Lie-Theorie (DE-588)4251836-2 gnd Lie-Gruppe (DE-588)4035695-4 gnd |
topic_facet | Lie-Algebra Lie-Theorie Lie-Gruppe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020707475&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT neebkarlhermann developmentsandtrendsininfinitedimensionallietheory |